
SCIENCE CHINA
Information Sciences

May 2019, Vol. 62 052204:1–052204:19

https://doi.org/10.1007/s11432-018-9602-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .

Policy iteration based Q-learning for linear

nonzero-sum quadratic differential games

Xinxing LI1,2, Zhihong PENG1,2*, Li LIANG1,2 & Wenzhong ZHA3

1School of Automation, Beijing Institute of Technology, Beijing 100081, China;
2State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing 100081, China;

3Information Science Academy, China Electronics Technology Group Corporation, Beijing 100086, China

Received 4 July 2018/Accepted 5 September 2018/Published online 2 April 2019

Abstract In this paper, a policy iteration-based Q-learning algorithm is proposed to solve infinite hori-

zon linear nonzero-sum quadratic differential games with completely unknown dynamics. The Q-learning

algorithm, which employs off-policy reinforcement learning (RL), can learn the Nash equilibrium and the

corresponding value functions online, using the data sets generated by behavior policies. First, we prove

equivalence between the proposed off-policy Q-learning algorithm and an offline PI algorithm by selecting

specific initially admissible polices that can be learned online. Then, the convergence of the off-policy Q-

learning algorithm is proved under a mild rank condition that can be easily met by injecting appropriate

probing noises into behavior policies. The generated data sets can be repeatedly used during the learn-

ing process, which is computationally effective. The simulation results demonstrate the effectiveness of the

proposed Q-learning algorithm.

Keywords adaptive dynamic programming, ADP, Q-learning, reinforcement learning, RL, linear nonzero-

sum quadratic differential games, policy iteration, PI, off-policy

Citation Li X X, Peng Z H, Liang L, et al. Policy iteration based Q-learning for linear nonzero-sum quadratic

differential games. Sci China Inf Sci, 2019, 62(5): 052204, https://doi.org/10.1007/s11432-018-9602-1

1 Introduction

Differential game theory [1] is an important tool for dealing with the coordination and conflict issues in

dynamical systems with multiple decision-makers or control inputs and has been widely applied in social

and behavior science, industrial processing control [2], robotic maneuvering control [3], communication [4],

H-infinity robust control [5], among others. In differential games, each player tries to pursue the optimal

control policy to optimize his own performance objective while taking account of the control policies of

other players. The solution of a differential game is always characterized by the Nash equilibrium [1], in

which no player can improve its outcome by unilaterally changing its strategy.

Theoretically, to obtain the Nash equilibrium in a nonzero-sum differential game, one should solve

coupled Hamilton-Jacobi-Bellman (HJB) equations [1]. However, HJB equations are nonlinear partial

differential equations, and it is difficult or even impossible to obtain their analytic solutions. In linear

nonzero-sum quadratic differential games, where HJB equations reduce to coupled algebraic Riccati equa-

tions (AREs), the analytic solutions are still not readily available. Therefore, many approximate methods

have been proposed to solve differential games such as Galerkin’s spectral method [6], neural network

approximation [7], iterative algorithm [8], successive approximation [9], algebraic methods [10, 11], and

*Corresponding author (email: peng@bit.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9602-1&domain=pdf&date_stamp=2019-4-2
https://doi.org/10.1007/s11432-018-9602-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9602-1
https://doi.org/10.1007/s11432-018-9602-1

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:2

partial differential inequalities [12]. However, these methods are offline methods that generate fixed con-

trol policies; thus, they are unable to meet the need of real-time implementation for controllers. Moreover,

they require full knowledge of system dynamics, which makes them vulnerable to changes in system dy-

namics and inaccuracies in system modeling. In this study, we are interested in developing an intelligent

online algorithm to seek the Nash equilibrium of linear nonzero-sum quadratic differential games with

completely unknown dynamics.

The motivation of our work comes from reinforcement learning (RL) [13]. The core idea of RL is that an

agent can unceasingly improve his action or policy based on the observed response from the environment,

with which the agent interacts. In the control field, RL is also called approximate dynamic programming

(ADP) [14] or neurodynamic programming [15]. In the seminal work of [16], an adaptive dynamic

programming approach combining RL with dynamic programming (DP) was proposed to approximate the

solution of a Bellman equation arising in optimal control. Different from DP, which operates backwards

in time (offline) and suffers from the curse of dimensionality, ADP operates forwards in time (online),

and overcomes the curse of dimensionality [17]. In the past few years, ADP has been widely used to solve

optimal control problems [18–22] and differential games [23–36].

The most commonly used ADP method for differential games is policy iteration (PI) [23–37], which is

based on a successive approximation technology [38]. PI involves two parts: (1) policy evaluation and (2)

policy improvement. Hence, it is an iterative method for solving the coupled HJB equations (nonzero-

sum game) or Hamilton-Jacobi-Isaacs (HJI) equation (zero-sum game) by constructing a sequence of

admissible control policies [39] that will converge to the Nash equilibrium. An offline PI algorithm with

two iteration loops was proposed for zero-sum differential games with constrained control input in [7].

The authors of [29] proposed a model-based PI algorithm to determine the mixed optimal control pairs for

nonlinear zero-sum differential games. In [24], a partially model-free PI algorithm based on integral RL

(IRL) was proposed to determine the Nash equilibrium solutions of linear zero-sum quadratic differential

games. Two data-driven PI algorithms were proposed in [25,26] for nonlinear zero-sum differential games

with unknown dynamics. In [27], a model-free PI algorithm based on off-policy RL was developed to

solve the H-infinity control of discrete-time systems.

Compared with zero-sum games [7, 23–27], nonzero-sum games are more difficult to solve, because

one needs to solve multiple coupled HJB equations or AREs. A partially model-free PI algorithm was

proposed to solve linear nonzero-sum quadratic differential games in [36]. In [39], a novel PI algorithm

called synchronous PI was proposed to solve nonlinear nonzero-sum differential games online, where

two neural network (NN) structures, i.e., critic NNs and actor NNs, are introduced to approximate the

Nash equilibrium and the value functions, respectively, and the critic NNs and actor NNs are tuned

synchronously in an adaptive way. Further, the authors of [29] proposed a synchronous PI algorithm

that just contains critic NNs. In [30], a synchronous PI algorithm was presented to solve discrete-time

nonzero-sum games. Algorithms in [28–30, 39] require full knowledge of system dynamics. To remove

PI’s dependence on system model, the authors of [32–34] introduced system identification technology;

however, adding an identifier NN increases the computational burden and the identification error cannot

be eliminated. In [35], a model-free PI algorithm based on off-policy RL was proposed to solve nonzero-

sum differential games, however, the input matrices of all players were assumed to be the same. In

addition, most of the PI algorithms above are based on on-policy RL [13], because the experience data

used for learning is generated by the control policies that are learned about. One of the main drawbacks

of on-policy RL is the insufficient exploration ability to the state space. To ensure the convergence of PI

algorithms, one should inject exploratory signals or probing noises into the controllers to meet certain

persistence of excitation (PE) conditions [39], which may cause deviations from the Nash equilibrium [27].

Q-learning is another powerful tool for solving optimal control problems [40–47] and Nash games

[31,48–50]. For discrete-time systems, Q-learning belongs to off-policy RL, that is, the agent can use the

experience data generated by behavior policies to learn the target behaviors (i.e., the optimal control

policy or Nash equilibrium); thus, Q-learning has better exploration ability to the state space than on-

policy PI algorithms. In addition, Q-learning is completely model-free. Many Q-learning methods have

been proposed to solve the optimal control problems of discrete-time systems [18,40–43,45,46] and zero-

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:3

sum games of linear discrete-time systems [49,50]. However, there are very few studies on continuous-time

systems, because it is difficult to construct the Q-functions for continuous-time systems. In [44], a Q-

learning method was developed for infinite-horizon discounted cost linear quadratic regulator problems.

The author of [31] proposed a model-free synchronous PI algorithm for linear nonzero-sum quadratic

differential games by constructing a Q-function for each player. Further, a cooperative Q-learning method

was proposed to solve multi-agent differential graphical games in [47]. In fact, the Q-learning methods

in [31, 44, 47] belongs to on-policy RL, which has the drawback of insufficient exploration to the state

space. Thus, to ensure the convergence to the Nash equilibrium, one should inject probing noises into

the controllers to meet certain PE conditions, however, the effect of the probing noises on convergence

has not been analyzed in [31, 50].

Inspired by off-policy RL, we develop a novel off-policy Q-learning algorithm to solve linear nonzero-

sum quadratic differential games online in this study. The main contributions of this study are threefold.

First, the proposed Q-learning algorithm is completely model-free and runs online just using the data

sets of the implemented behavior policies and the corresponding system state, and the data sets can be

used repeatedly, which is computationally efficient. Second, as the proposed Q-learning algorithm utilizes

off-policy RL, it has better exploration ability to the state space compared with the on-policy Q-learning

methods in [31, 50]. Third, the convergence of the proposed Q-learning algorithm is proved under the

mild rank condition which can be easily met by choosing appropriate probing noises, and the probing

noises will cause no deviations from the Nash equilibrium.

The rest of this paper is organized as follows. In Section 2, some preliminaries on linear nonzero-sum

quadratic differential games are presented. In Section 3, a model-based offline PI algorithm is proposed.

In Section 4, a model-free Q-learning algorithm based on off-policy RL is presented. In Section 5, two

simulation examples are given to demonstrate the effectiveness of the proposed Q-learning algorithm. In

Section 6, conclusion is drawn, and future studies are presented.

Notations. R
n denotes n-dimensional Euclidean space. R

n×m is the set of all real n × m matrices.

In denotes the n-dimensional identity matrix. Z+ denotes a set of positive integers. ⊗ stands for

the Kronecker product. vec(·) is the vectorization operator for a matrix that converts the matrix into

a column vector. For x ∈ R
n, x̄ := [x21, x1x2, . . . , x1xn, x

2
2, . . . , x2xn, . . . , xn−1xn, x

2
n]

T. For symmetric

matrixM ∈ R
n×n, Θ(M) is a column vector that stacks the elements of a diagonal and the upper triangle

part where the off-diagonal elements are taken as Mij +Mji. For a time-varying signal θ(t) : R → R
n×m,

θt := θ(t) and θ|t2t1 := θt2 − θt1 . ‖A‖ = (tr(ATA))1/2 is the Frobenius norm of matrix A.

2 Problem statement

Consider the following infinite horizon linear nonzero-sum quadratic differential game:

ẋ(t) = Ax(t) +

N
∑

j=1

Bjuj(t), x(0) = x0, t > 0, (1)

where x ∈ R
n is the system state vector, uj ∈ R

mj , j ∈ Γ := {1, 2, . . . , N} is the control input of player

j, and Γ is the set of players. A ∈ R
n×n, Bj ∈ R

n×mj are the plant and input matrices that are assumed

to be unknown in this study. Each player i has a cost function Ji to be optimized:

Ji(x(0);u1, . . . , uN) =
1

2

∫ ∞

0



xTMix+

N
∑

j=1

uTj Rijuj



dt, ∀i ∈ Γ, (2)

whereMi > 0, Rij > 0, ∀i, j ∈ Γ are user defined matrices of appropriate dimensions. For fixed stabilizing

control inputs (u1, . . . , uN), the value function Vi that evaluates the performances of player i from time

t is defined as

Vi(x(t);u1, . . . , uN) =
1

2

∫ ∞

t



xTMix+
N
∑

j=1

uTj Rijuj



dt, ∀i ∈ Γ. (3)

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:4

Definition 1 (Admissible policies [39]). A set of feedback control policies u(x) = (u1(x), . . . , uN (x)) is

defined as admissible, if ui(x) is continuous, ui(0) = 0, u(x) stabilizes system (1), and cost function (2)

is finite, for ∀x0 ∈ R
n.

The objective of the differential game is to find a set of admissible policies called the feedback Nash

equilibrium (u∗1, . . . , u
∗
N) [1], such that the following inequalities are satisfied simultaneously:

V ∗
i (x(t);u

∗
i , u

∗
−i) 6 Vi(x(t);ui, u

∗
−i), ∀ui ∈ R

mi , ∀i ∈ Γ, (4)

where u∗−i = (u∗1, . . . , u
∗
i−1, u

∗
i+1, . . . , u

∗
N). Inequalities (4) imply that all the players will cooperate to

implement the Nash equilibrium (u∗1, . . . , u
∗
N), because the profit of the player who changes the control

policy unilaterally will be damaged.

According to the definition of the feedback Nash equilibrium, solving the differential game above is

equivalent to solving the following coupled optimal control problems:

V ∗
i (x(t);ui, u

∗
−i) := min

ui

∫ ∞

t

1

2



xTMix+ uTi Riiui +
∑

j 6=i

u∗Tj Riju
∗
j



 dt,

s.t. ẋ = Ax +Biui +
∑

j 6=i

Bju
∗
j , ∀i ∈ Γ.

(5)

Define the following Hamiltonian functions:

Hi

(

x, ui, u
∗
−i,

∂V ∗
i

∂x

)

=

(

∂V ∗
i

∂x

)T

(Ax +Biui +
∑

j 6=i

Bju
∗
j)

+
1

2



xTMix+ uTi Riiui +
∑

j 6=i

u∗Tj Riju
∗
j



 , ∀x, ui, ∀i ∈ Γ. (6)

Employing Bellman’s principle of optimality leads to the following HJB equations:

0 = argmin
ui

Hi

(

x, ui, u
∗
−i,

∂V ∗
i

∂x

)

, ∀i ∈ Γ. (7)

Using stationarity condition, we can obtain

∂Hi

∂ui

∣

∣

u∗
i
= 0 ⇒ u∗i = −R−1

ii B
T
i

∂V ∗
i

∂x
, ∀i ∈ Γ. (8)

Considering that system (1) is linear time-invariant, we can represent the value function V ∗
i (x), ∀i ∈ Γ

as a quadratic form of the state, i.e., V ∗
i (x) = 1

2x
TPix, where Pi ∈ R

n×n is the positive definite value

matrix. Then, Eq. (8) can be rewritten as

u∗i (x) = −R−1
ii B

T
i Pix, ∀i ∈ Γ. (9)

Substituting (9) into (7), the HJB equations reduce to the following coupled AREs:



A−
N
∑

j=1

BjR
−1
jj B

T
j Pj





T

Pi + Pi



A−
N
∑

j=1

BjR
−1
jj B

T
j Pj





+

N
∑

j=1

PjBjR
−1
jj RijR

−1
jj B

T
j Pj +Mi = 0, ∀i ∈ Γ. (10)

According to [1], if there exist positive definite matrices P1, . . . , PN satisfying the coupled AREs in

(10), pair (A−∑j 6=iBjR
−1
jj B

T
j Pi, Bi) is stabilizable and pair



A−
∑

j 6=i

BjR
−1
jj B

T
j Pi,Mi +

∑

j 6=i

PjBjR
−1
jj RijR

−1
jj B

T
j Pj





Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:5

is detectable for each i ∈ Γ. The control polices in (9) constitute a feedback Nash equilibrium and

stabilize system (1).

To obtain the feedback Nash equilibrium in (9), one should solve the N coupled AREs in (10), which

are nonlinear matrix equations. Moreover, Eqs. (9) and (10) contain the information of the system

dynamics A and B1, . . . , BN , which are assumed to be unknown. In Section 4, we will propose a novel

model-free Q-learning method to solve the linear nonzero-sum quadratic differential game.

3 Offline PI for linear nonzero-sum quadratic differential games

Before deriving the Q-learning algorithm, we first give an offline PI algorithm that will be useful in

Section 4. The offline PI algorithm is motivated by Bellman’s method of successive approximation [38],

which transforms the nonlinear matrix equations in (10) into linear Lyapunov equations. The detailed

algorithm is as Algorithm 1.

Algorithm 1 Model-based offline PI algorithm

Step 1: (Initialization) Start with a set of initially stabilizing feedback gains K1
1
, . . . ,K1

N
.

Step 2: (Policy evaluation) For a given set of stabilizing feedback gains Kl
1
, . . . ,Kl

N
, solve for the positive definite

matrices P l
1, . . . , P

l
N using the following Lyapunov equations:



A−
N
∑

j=1

BjK
l
j





T

P l
i + P l

i



A−
N
∑

j=1

BjK
l
j



+Mi +
N
∑

j=1

KlT
j RijK

l
j = 0, ∀i ∈ Γ. (11)

Step 3: (Policy updating) Update the feedback gains as follows:

Kl+1

i
= R−1

ii
BT

i P l
i , ∀i ∈ Γ. (12)

Stop if ‖Kl
i −Kl−1

i ‖ 6 ε, i ∈ Γ, where ε is a small positive threshold, otherwise set l = l+ 1 and go to Step 2.

Algorithm 1 is similar with the algorithm developed in [51], which is used to solve the infinite horizon

linear quadratic regulator problems for continuous-time systems. It has been proved that the algorithm

in [51] is convergent by selecting any initially stabilizing feedback gain. Compared with the algorithm

in [51], the convergence analysis of Algorithm 1 is much more complicated, because there exist N coupled

value functions, and the sequence of P l
i for each i ∈ Γ is not necessarily monotonous due to the coupling

among matrices P l
1, . . . , P

l
N . To overcome this problem, the authors of [9] proposed an offline Lyapunov

iterative algorithm to solve the infinite horizon linear nonzero-sum quadratic differential game, and proved

that P l
i will converge to Pi for each i ∈ Γ by means of Lyapunov’s second method and Bellman’s successive

approximation. Next, we will prove that Algorithm 1 is equivalent to the algorithm in [9] by choosing

K1
i = R−1

ii B
T
i P

0
i , ∀i ∈ Γ, where P 0

1 , . . . , P
0
N are the solutions of the following N AREs:

P 0
1A+ATP 0

1 +M1 − P 0
1B1R

−1
11 B

T
1 P

0
1 = 0,

P 0
2 (A− S1P

0
1) + (A− S1P

0
1)

T
P 0
2+(M2 + P 0

1Z21P
0
1)− P 0

1 S2P
0
1 = 0,

...

P 0
N



A−
N−1
∑

j=1

SjP
0
j



+



A−
N−1
∑

j=1

SjP
0
j





T

P 0
N+



MN +

N−1
∑

j=1

P 0
j ZNjP

0
j



− P 0
NSNP

0
N = 0,

(13)

with Si = BiR
−1
ii B

T
i , Zij = BjR

−1
jj RijR

−1
jj B

T
j , i, j = 1, . . . , N, i 6= j, l = 0, 1,

According to the optimal control theory, solving the AREs in (13) is equivalent to solving the following

N infinite horizon linear quadratic regulator (IHLQR) problems successively:

1

2
xT0 P

0
1 x0 = min

u1

1

2

∫ ∞

0

xTM1x+ uT1R11u1dt s.t. ẋ = Ax+B1u1,

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:6

...

1

2
xT0 P

0
Nx0 =min

uN

1

2

∫ ∞

0

xT



MN +

N−1
∑

j=1

P 0
j ZNjP

0
j



 x+ uTNRNNuNdt

s.t. ẋ =



A−
N−1
∑

j=1

SjP
0
j



x+BNuN .

Remark 1. In fact, the simulation study shows that Algorithm 1 will converge under any initially

stabilizing feedback gains. We choose K1
i = R−1

ii B
T
i P

0
i , ∀i ∈ Γ for the sake of the following convergence

analysis. The IHLQR problems above can be solved by using existing model-free ADP methods, such as

the PI algorithms in [21, 22] or the Q-learning methods in [47], and these methods are computationally

efficient. Besides, obtaining K1
1 , . . . ,K

1
N sequentially lowers the difficulty of initialization compared with

existing trial and error methods.

Lemma 1. If the initial feedback gains are selected asK1
i = R−1

ii B
T
i P

0
i for each i ∈ Γ, where P 0

1 , . . . , P
0
N

are the solutions of AREs (13), Algorithm 1 is equivalent to the algorithm proposed in [9]. Thus,

liml→∞ P l
i = Pi, liml→∞K l

i = R−1
ii B

T
i Pi for each i ∈ Γ.

Proof. As triples (A,Bi,
√
Mi) are assumed to be stabilizable-detectable for each i ∈ Γ, and Mi +

∑i−1
j=1 P

0
j ZijP

0
j are positive definite, there exists a unique positive definite solution to every ARE in (13).

In Algorithm 1, by setting K1
i = R−1

ii B
T
i P

0
i and substituting K l

i = R−1
ii B

T
i P

l−1
i into (11), we can obtain

P l
i



A−
N
∑

j=1

BjR
−1
jj B

T
j P

l−1
j



+



A−
N
∑

j=1

BjR
−1
jj B

T
j P

l−1
j





T

P l
i

= −Mi −
N
∑

j=1

(R−1
jj B

T
j P

l−1
j)

T
RijR

−1
jj B

T
j P

l−1
j

= −Mi −
N
∑

j=1

P l−1
j BjR

−1
jj RijR

−1
jj B

T
j P

l−1
j

= −



Mi + P l−1
i SiP

l−1
i +

∑

j 6=i

P l−1
j ZijP

l−1
j



 . (14)

Note that Si = BiR
−1
ii B

T
i , ∀i ∈ Γ. We can therefore obtain

P l
i



A−
N
∑

j=1

BjR
−1
jj B

T
j P

l−1
j



+



A−
N
∑

j=1

BjR
−1
jj B

T
j P

l−1
j





T

P l
i

=



A−
N
∑

j=1

SjP
l−1
j





T

P l
i + P l

i



A−
N
∑

j=1

SjP
l−1
j



 . (15)

Combining (14) and (15) yields

P l
i



A−
N
∑

j=1

SjP
l−1
j



+



A−
N
∑

j=1

SjP
l−1
j





T

P l
i =−



Mi + P l−1
i SiP

l−1
i +

∑

j 6=i

P l−1
j ZijP

l−1
j



 . (16)

From (16), we can know that Algorithm 1 is equivalent to the algorithm in [9]; thus, liml→∞ P l
i = Pi,

liml→∞K l
i = R−1

ii B
T
i Pi, ∀i ∈ Γ.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:7

Remark 2. Compared with the coupled AREs (10), which are nonlinear matrix equations, Algorithm 1

and the algorithm proposed in [9] operate on the reduced-order linear matrix equations (Lyapunov equa-

tions), which reduce the computational difficulty. However, as these algorithms are both offline, they

cannot be applied to online controllers. Besides, to run these algorithms, one needs to have accurate

knowledge of system matrix A and input matrices B1, . . . , BN , which makes these algorithms sensitive

to changes in system dynamics.

4 Q-learning method based on off-policy RL

To remove the dependence on system model and increase the exploration ability to state space, in this

section, we propose a model-free online Q-learning algorithm based on off-policy RL. First, we implement

a set of behavior polices to system (1) to generate sufficient experience data (i.e., input-state data); then,

we use the experience data to learn the target policies (i.e., the Nash equilibrium).

First, we provide some properties of the Kronecker product: (i) vec(ABC) = (CT ⊗ A)vec(B),

(ii) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (iii) (A⊗B)−1 = A−1 ⊗ B−1, where A, B, C and D are ma-

trices of appropriate dimensions. In addition, let λ1, . . . , λn be the eigenvalues of A, and µ1, . . . , µm be

the eigenvalues of B. Then the eigenvalues of A⊗ B are λiµj , i = 1, . . . , n, j = 1, . . . ,m.

To derive the off-policy Q-learning algorithm, we first give the following Q-functions for each i ∈ Γ:

Ql
i(x, ui, u−i) := V l

i +Hi

(

x, ui, u−i,
∂V l

i

∂x

)

=
1

2
xTP l

ix+
1

2
xTMix+

1

2

N
∑

j=1

uTj Rijuj +
1

2
xTP l

i



Ax+Biui +
∑

j 6=i

Bjuj





+
1

2



Ax+Biui +
∑

j 6=i

Bjuj





T

P l
ix, ∀x, ui, u−i, ∀i ∈ Γ, (17)

where V l
i = 1

2x
TP l

ix is the value function obtained from (11), u−i = (u1, . . . , ui−1, ui+1, . . . , uN), and

Hi(x, ui, u−i,
∂V l

i

∂x) is the Hamiltonian function defined as

Hi

(

x, ui, u−i,
∂V l

i

∂x

)

=
1

2
xTMix+

1

2

N
∑

j=1

uTj Rijuj +

(

∂V l
i

∂x

)T


Ax+

N
∑

j=1

Bjuj



 , ∀x, ui, u−i, ∀i ∈ Γ.

(18)

Let Zi = [xT, uTi , u
T
−i]

T for each i ∈ Γ, with uT−i =
[

uT1 , . . . , u
T
i−1, u

T
i+1, . . . , u

T
N

]

. Then Ql
i(x, ui, u−i) can

be expressed as the following quadratic form:

Ql
i(x, ui, u−i) :=

1

2
ZiT





















Si,l
xx Sl

xui
Si,l
xu1

· · · Si,l
xuN

Sl
uix Sl

uiui
Sl
uiu1

· · · Sl
uiuN

Si,l
u1x Sl

u1ui
Si,l
u1u1

· · · Si,l
u1uN

...
...

...
. . .

...

Si,l
uNx Sl

uNui
Si,l
uNu1

· · · Si,l
uNuN





















Zi, (19)

where Si,l
xx := P l

i + P l
iA + ATP l

i + Mi, S
l
xui

:= (Sl
uix)

T = P l
iBi, S

i,l
xuj

:= (Si,l
ujx)

T = P l
iBj , ∀j 6= i,

Sl
uiui

:= Rii, S
i,l
ukuj

:= 0, ∀j, k 6= i, and Sl
uiuj

:= (Sl
ujui

)T = 1
2Rij , ∀j 6= i.

According to the definition of Sl
i, we can know that the information available to player i is Sl

uiui
and

Sl
uiuj

, and the knowledge of A, Bi and P l
i are embedded in Si,l

xx, S
l
xui

and Si,l
xuj

. If we can obtain the

accurate Q-function Ql
i, Eq. (12) can be rewritten as K l+1

i = (Sl
uiui

)−1Sl
uix, which requires no knowledge

of system dynamics. Next, we will employ the off-policy RL technology to solve Ql
i or S

l
i for each i ∈ Γ.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:8

Implementing behavior policies (ũ1(t), . . . , ũN (t)) to system (1) yields

ẋ =



A−
N
∑

j=1

BjK
l
j



x(t) +

N
∑

j=1

Bj(ũj(t) +K l
jx(t)), (20)

where the behavior policies are selected as ũj(t) = −K̃jx(t) + ej(t) for each j ∈ Γ, (K̃1, . . . , K̃N) are

feedback gains such that A−∑N
j=1 BjK̃j is Hurwitz and (e1(t), . . . , eN(t)) are the injected probing noises

used to increase the exploratory ability to the state space. (−K l
1x, . . . ,−K l

Nx) are the target policies to

be learned about.

Substituting the values of behavior policies and the corresponding system state at time t into Ql
i gives

Ql
i(xt, ũit, ũ−it) =

1

2
xTt P

l
ixt +

1

2

N
∑

j=1

ũTjtRij ũjt +
1

2
xTt Mixt

+
1

2
xTt P

l
i



A−
N
∑

j=1

BjK
l
j



xt +
1

2
xTt



A−
N
∑

j=1

BjK
l
j





T

P l
ixt

+ xTt

∑

j 6=i

P l
iBj(ũj(t) +K l

jxt) + xTt P
l
iBi(ũit +K l

ixt), ∀i ∈ Γ. (21)

According to (11) and (12), Eq. (21) can be rewritten as

Ql
i(xt, ũit, ũ−it) =

1

2
xTt P

l
ixt +

1

2

N
∑

j=1

ũTjtRij ũjt −
1

2
xTt





N
∑

j=1

K lT
j RijK

l
j



 xt

+
∑

j 6=i

(ũj(t) +K l
jxt)

T
BT

j P
l
ixt + (ũit +K l

ixt)
TRiiK

l+1
i xt, ∀i ∈ Γ. (22)

As B1, . . . , BN are unknown, we define the auxiliary variables T l
ij as T l

ij = BT
j P

l
i for each j 6= i. By

letting Zi′ = [xT, ũTi , ũ
T
−i]

T and using the Kronecker product representations, Eq. (22) becomes

1

2
(Z̄i′

t)
TΘ(Sl

i)−
1

2

N
∑

j=1

(ũTjt ⊗ ũTjt)vec(Rij) +
1

2
(xTt ⊗ xTt)

N
∑

j=1

vec(K lT
j RijK

l
j)

−
(

(xTt ⊗ ũTit) (In ⊗Rii) + (xTt ⊗ xTt) ×(In ⊗ (K lT
i Rii))

)

× vec(K l+1
i)

−
∑

j 6=i

(

xTt ⊗ ũTjt + (xTt ⊗ xTt)(In ⊗K lT
j)
)

× vec(T l
ij) = V l

i (xt), ∀i ∈ Γ. (23)

As V l
i in (23) is not available, we need to eliminate it. Note that

V l
i (xt+∆t)− V l

i (xt) =

∫ t+∆t

t

V̇ l
i (xτ)dτ, ∆t > 0, (24)

along the system trajectory generated by (20). It follows that

∫ t+∆t

t

V̇ l
i (x)dτ =

1

2

∫ t+∆t

t

xT(P l
iAl +AT

l P
l
i)xdτ

+

∫ t+∆t

t

(ũi +K l
ix)

T
RiiK

l+1
i xdτ +

∑

j 6=i

∫ t+∆t

t

(ũj +K l
jx)

T
T l
ijxdτ , (25)

where Al = A−∑N
j=1 BjK

l
j. According to (11), we have

∫ t+∆t

t

xT(P l
iAl +AT

l P
l
i)xdτ = −

∫ t+∆t

t

xT



Mi +

N
∑

j=1

K lT
j RijK

l
j



xdτ. (26)

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:9

Using Kronecker product representations, Eqs. (24)–(26) yield

V l
i (xt+∆t)− V l

i (xt) =− 1

2

∫ t+∆t

t

xT ⊗ xTdτ × vec



Mi +
N
∑

j=1

K lT
j RijK

l
j





+

(

∫ t+∆t

t

xT ⊗ ũidτ(In ⊗Rii) +

∫ t+∆t

t

xT ⊗ xTdτ(In ⊗ (K lT
i Rii))

)

× vec(K l+1
i) +

∑

j 6=i

(

∫ t+∆t

t

xT ⊗ ũidτ +

∫ t+∆t

t

xT ⊗ xTdτ(In ⊗K lT
j)

)

vec(T l
ij).

(27)

Using (27), we can eliminate V l
i in (23), and then we obtain

(Z̄i′

t+∆t − Z̄i′

t)
TΘ(Sl

i)− Λi,l
t vec(K l+1

i) +
∑

j 6=i

ξ
j,l
t vec(T l

ij) = Πi,l
t , ∀i ∈ Γ, (28)

where Λi,l
t , ξj,lt , and Πi,l

t are defined as follows:

Λi,l
t =− 2

(

xT ⊗ xT

∣

∣

∣

∣

∣

t+∆t
t +

∫ t+∆t

t

xT ⊗ xTdτ

)

×
(

In ⊗ (K lT
i Rii)

)

−2
(

xT ⊗ ũTi
∣

∣

t+∆t
t +

∫ t+∆t

t

xT ⊗ ũTi dτ

)

(In ⊗Rii),

ξ
j,l
t =− 2

(

xT ⊗ xT

∣

∣

∣

∣

∣

t+∆t
t +

∫ t+∆t

t

xT ⊗ xTdτ

)

× (In ⊗K lT
j)− 2

(

xT ⊗ ũTj
∣

∣

t+∆t
t +

∫ t+∆t

t

xT ⊗ ũTj dτ

)

, ∀j 6= i,

and

Πi,l
t =

N
∑

j=1

(

ũTj ⊗ ũTj
∣

∣

t+∆t
t

)

vec(Rij) +
(

xT ⊗ xT
∣

∣

t+∆t
t

)

N
∑

j=1

vec(K lT
j RijK

l
j)

−
(

∫ t+∆t

t

xT ⊗ xTdτ

)

vec



Mi +

N
∑

j=1

K lT
j RijK

l
j



 .

It can be seen that Eq. (28) is a system of linear equations with respect to Θ(Sl
i), vec(K

l+1
i) and T l

ij for

each i ∈ Γ, j 6= i. In each linear equation, there exist

n

N
∑

j=1

mj +
(1 + n+

∑N
j=1mj)(n+

∑N
j=1mj)

2

unknown parameters. Thus, to obtain Θ(Sl
i), vec(K

l+1
i) and T l

ij , we need to construct at least

n

N
∑

j=1

mj +
(1 + n+

∑N
j=1mj)(n+

∑N
j=1mj)

2

linear equations for each i ∈ Γ. This can be achieved by collecting data sets along the system trajectory

generated by (20). Define the sampling time as tk := t0 + k∆t, k ∈ Z+, where ∆t > 0 is the sampling

interval.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:10

Define the following data sets for each i ∈ Γ:

Φl
i =























(Z̄i′

t1 − Z̄i′

t0)
T

Λi,l
t1 ξ

i,l
t1

...
...

...

(Z̄i′

tk
− Z̄i′

tk−1
)
T

Λi,l
tk ξ

i,l
tk

...
...

...

(Z̄i′

ts − Z̄i′

ts−1
)
T

Λi,l
ts ξ

i,l
ts























, Πl
i =





















Πi,l
t1
...

Πi,l
tk
...

Πi,l
ts





















,

where ξi,ltk = [ξ1,ltk , . . . , ξ
i−1,l
tk , ξ

i+1,l
tk , . . . , ξ

N,l
tk].

Thus, we can obtain the following N group of systems of linear equations:

Φl
i

[

(Θ(Sl
i))

T
, vecT(K l+1

i), vecT(T l
i)
]T

= Πl
i, ∀i ∈ Γ, (29)

for each i ∈ Γ, data set vec(T l
i) = [vecT(T l

i1), . . . , vec
T(T l

ii−1), vec
T(T l

ii+1), . . . , vec
T(T l

iN)]T. According to

the definition of Φl
i and Πl

i, we can obtainK l+1
i , ∀i ∈ Γ without using any knowledge of A and B1, . . . , BN ,

if Eq. (29) is solvable. To ensure that each equation in (29) has a unique solution, the total sampling

number s should be larger than

n

N
∑

j=1

mj +
(1 + n+

∑N
j=1mj)(n+

∑N
j=1mj)

2

and Φl
i should have full column rank for each i ∈ Γ and l ∈ Z+. If Φl

i has a full column rank, ΦlT
i Φl

i is

invertible and Θ(Sl
i), vec(K

l+1
i) and T l

ij can be obtained directly as follows:









Θ(Sl
i)

vec(K l+1
i)

vec(T l
i)









=
(

ΦlT
i Φl

i

)−1
(Φl

i)
TΠl

i, ∀i ∈ Γ. (30)

Next, we will give a sufficient condition under which Φl
i has full column rank for each i ∈ Γ and l ∈ Z+.

Lemma 2. If there exist a positive integer s0 and probing noises (e1(t), . . . , eN(t)) such that the following

condition:

rank(H) = n

N
∑

j=1

mj +
(1 + n+

∑N
j=1mj)(n+

∑N
j=1mj)

2

is satisfied for all positive integers s > s0, Φ
l
i has full column rank for each i ∈ Γ and l ∈ Z+, where

H = [HZ̄′ , Hxe1 , . . . , HxeN], Z ′ = [xT, ũT1 , . . . , ũ
T
k , . . . , ũ

T
N]T, HZ̄′ = [Z̄ ′

t1 − Z̄ ′
t0 , . . . , Z̄

′
ts − Z̄ ′

ts−1
]T and

Hxei = [
∫ t1
t0
x⊗ eidτ, . . . ,

∫ ts
ts−1

x⊗ eidτ]
T, ∀i ∈ Γ.

Proof. First, we define the following data sets:

Hxx =























xT ⊗ xT
∣

∣

t1
t0

...

xT ⊗ xT
∣

∣

∣

tk
tk−1

...

xT ⊗ xT
∣

∣

∣

ts
ts−1























, H ′
xx =





















∫ t1
t0
xT ⊗ xTdτ

...
∫ tk
tk−1

xT ⊗ xTdτ

...
∫ ts
ts−1

xT ⊗ xTdτ





















,

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:11

Hxũi
=























xT ⊗ ũTi
∣

∣

t1
t0

...

xT ⊗ ũTi

∣

∣

∣

tk
tk−1

...

xT ⊗ ũTi

∣

∣

∣

ts
ts−1























, ∀i ∈ Γ, Hũmũn
=























ũTm ⊗ ũTn
∣

∣

t1
t0

...

ũTm ⊗ ũTn

∣

∣

∣

tk
tk−1

...

ũTm ⊗ ũTn

∣

∣

∣

ts
ts−1























, ∀m,n ∈ Γ.

Define matrices H̃ and Φ̂l
i as H̃ = [Hxx, Hxũ1 , . . . , HxũN

, Hũ1ũ1 , . . . , HũN ũN
, Hxe1 , . . . , HxeN] and Φ̂l

i =

[Hxx, Hxũ1 , . . . , HxũN
, Hũ1ũ1 , . . . , HũN ũN

,Λl
i, ξ

l
i], where Λl

i = [(Λi,l
t1)

T, . . . , (Λi,l
ts)

T]T and ξli = [(ξi,lt1)
T, . . . ,

(ξi,lts)
T]T. Using the definitions of H̃ and Φ̂l

i, we can obtain that rank(H) = rank(H̃) and rank(Φl
i) =

rank(Φ̂l
i). Thus, we just need to prove that rank(H̃) = rank(Φ̂l

i) for each i ∈ Γ and l ∈ Z+.

First, we give one useful property of the rank of partitioned matrix. Let S = [S1, . . . , Si, . . . , SM]

be a partitioned matrix with Si ∈ R
p×qi . Then the rank of S will not change under the following two

operations: (i) post-multiplying an arbitrary block Si by a invertible matrix Ui with Ui ∈ R
qi×qi and (ii)

adding an arbitrary block Sj post-multiplied by a matrix Vj to block Si with Vj ∈ R
qj×qi , and Vj is not

necessarily invertible. Define

Λ̃l
i = −2





















∫ t1
t0
xT ⊗ xTdτ (In ⊗ (K lT

i Rii))

+
∫ t1
t0
xT ⊗ ũTi dτ (In ⊗Rii)

...
∫ ts
ts−1

xT ⊗ xTdτ (In ⊗ (K lT
i Rii))

+
∫ ts
ts−1

xT ⊗ ũTi dτ (In ⊗Rii)





















, ∀i ∈ Γ

and

ξ̃lj = −2





















∫ t1
t0
xT ⊗ xTdτ (In ⊗K lT

j)

+
∫ t1
t0
xT ⊗ ũTj dτ

...
∫ ts
ts−1

xT ⊗ xTdτ (In ⊗K lT
j)

+
∫ ts
ts−1

xT ⊗ ũTj dτ





















, ∀j 6= i.

Let ξ̃lj = [ξ̃l1, . . . , ξ̃
l
i−1, ξ̃

l
i+1, . . . , ξ̃

l
N]. We can obtain

Λ̃l
i = Λl

i +Hxũi
(2Is ⊗ (In ⊗Rii)) +Hxx(2Is ⊗ (In ⊗ (K lT

i Rii))) (31)

and

ξ̃lj = ξlj +Hxũj
(2Is ⊗ (In ⊗ Inmj

)) +Hxx(2Is ⊗ (In ⊗K lT
j)). (32)

Let Φ̃l
i = [Hxx, Hxũ1 , . . . , HxũN

, Hũ1ũ1 , . . . , HũN ũN
, Λ̃l

i, ξ̃
l
i]. Eqs. (31) and (32) imply that Φ̃l

i can be

obtained from Φ̂l
i under operation (i), which means that rank(Φ̂l

i) = rank(Φ̃l
i).

Observe that

xT ⊗ xT
∣

∣

∣

tk
tk−1

=

∫ tk

tk−1

ẋT ⊗ xTdτ +

∫ tk

tk−1

xT ⊗ ẋTdτ. (33)

Along with (20), Eq. (33) becomes

xT ⊗ xT
∣

∣

∣

tk
tk−1

=

∫ tk

tk−1

(xTÂT)⊗ xTdτ +

∫ tk

tk−1

xT ⊗ (xTÂT)dτ

+

N
∑

j=1

∫ tk

tk−1

(eTj B
T
j)⊗ xTdτ +

N
∑

j=1

∫ tk

tk−1

xT⊗(eTj B
T
j)dτ , (34)

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:12

where Â = A −∑N
j=1 BjK̃j. Considering that eTj ⊗ xT and xT ⊗ eTj are row vectors, there exists an

invertible matrix W j ∈ R
nmj×nmj for each j ∈ Γ such that

∫ tk
tk−1

eTj ⊗ xTdτ =
∫ tk
tk−1

xT⊗eTj dτW j . Thus,

Eq. (34) can be rewritten as

xT ⊗ xT
∣

∣

∣

tk
tk−1

=

∫ tk

tk−1

xT ⊗ xTdτÃ+

N
∑

j=1

∫ tk

tk−1

xT⊗eTj dτ B̃j, (35)

where Ã = ÂT ⊗ In + In ⊗ ÂT and B̃j =W j(BT
j ⊗ In) + In ⊗BT

j . According to (35), it follows that

Hxx = H ′
xx(Is ⊗ Ã) +

N
∑

j=1

Hexj
(Is ⊗ B̃j). (36)

Next, we will prove that matrix Ã is invertible by proof of contradiction. Assuming that Ã is not invertible,

then (ÂT ⊗ In + In ⊗ ÂT)X = 0 has a nontrivial solution X1 6= 0. Thus, (In2 + (ÂT ⊗ In)
−1(Â−T ⊗

ÂT))X1 = 0. Using the Kronecker product, we can obtain (In2 + Â−T ⊗ ÂT)X1 = 0. It can be seen that

none of the eigenvalues of matrix In2 + Â−T⊗ ÂT is zero, which means that In2 + Â−T⊗ ÂT is invertible

and X1 = 0. This contradicts with the assumption, so Ã is invertible. As Ã is invertible, Eq. (36) yields

H ′
xx =



Hxx −
N
∑

j=1

Hexj
(Is ⊗ B̃j)



 (Is ⊗ Ã)−1. (37)

Let H̃ ′ = [H ′
xx, Hxũ1 , . . . , HxũN

, Hũ1ũ1 , . . . , HũN ũN
, Hxe1 , . . . , HxeN]. Eq. (37) implies that H̃ ′ can be

obtained from H̃ under operations (i) and (ii), which means rank(H̃ ′) = rank(H̃). As ũj(t) = −K̃jx(t)+

ej(t), ∀j ∈ Γ, we have

∫ tk

tk−1

xT⊗ũTj dτ =

∫ tk

tk−1

xT⊗eTj dτ −
∫ tk

tk−1

xT⊗xTdτ(In ⊗ K̃T
j). (38)

According to the definitions of Λ̃l
i and ξ̃

l
j , we can obtain

Λ̃l
i = Hxei(−2Is ⊗ (In ⊗Rii)) +H ′

xx(2Is ⊗ (In ⊗ (K̃T
i −K lT

i Rii))), (39)

and

ξ̃lj = Hxej (−2Is ⊗ In) +H ′
xx(2Is ⊗ (In ⊗ (K̃T

j −K lT
j))). (40)

Obviously, both −2Is ⊗ (In ⊗ Rii) and −2Is ⊗ In are invertible. Thus, Eqs. (38) and (39) imply that

Φ̃l
i can be obtained from H̃ ′ under operations (i) and (ii); thus rank(Φ̃l

i) = rank(H̃ ′). We have proved

that rank(Φl
i) = rank(Φ̂l

i) = rank(Φ̃l
i) and rank(H) = rank(H̃) = rank(H̃ ′); thus rank(Φl

i) = rank(H) =

n
∑N

j=1mj +
(1+n+

∑N
j=1 mj)(n+

∑N
j=1 mj)

2 . The proof is completed.

Remark 3. According to Lemma 2, we can conclude that, once the rank condition in Lemma 2 is

satisfied, the exact Q-function Ql
i or S

l
i can be obtained from (30) for each i ∈ Γ at each iteration. The

rank condition in Lemma 2 is more relaxed than the PE condition. In addition, the rank condition can be

satisfied by choosing appropriate probing noises (e.g., harmonic signals containing sufficient frequencies

or random signals).

Now, we present the complete off-policy Q-learning algorithm.

Remark 4. Though the initially admissible feedback gains K1
i = R−1

ii B
T
i P

0
i , ∀i ∈ Γ in Step 2 contain

information on B1, . . . , BN , they can be obtained using existing methods [21, 22], without using any

information on B1, . . . , BN . Thus, Algorithm 2 is completely model-free (data-driven) and robust to

the inaccuracy in system modeling. Note that once the rank condition is met, the data of the state

and behavior polices can be used repeatedly, which is more computationally efficient than the existing

Q-learning methods [41, 44, 48, 49], for which new experience data must be regenerated in each new

iteration.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:13

Algorithm 2 Model-free off-policy Q-learning algorithm

Step1: (Data collection) Apply control inputs (i.e., behavior policies) ũj(t) = −K̃jx(t) + ej(t), j ∈ Γ to system (1) and

store the values of the state and behavior policies from t0 to ts.

Step2: (Initialization) Solve the N decoupled IHLQR problems corresponding to AREs (13) to obtain the initially

admissible feedback gains K1
i = R−1

ii BT
i P 0

i for each i ∈ Γ.

Step3: (Policy updating) Given a set of admissible feedback gains Kl
1, . . . , K

l
N , solve for Sl

i, K
l+1

i and T l
ij for each i ∈ Γ,

j 6= i using (30).

Stop if ‖Kl
i −Kl−1

i ‖ 6 ε for all i ∈ Γ, where ε is a small positive threshold; otherwise set l = l+ 1 and go to Step 3.

Theorem 1. Let the rank condition in Lemma 2 be satisfied. Then Algorithm 2 is equivalent to

Algorithm 1; thus the target policies (−K l
ix, . . . ,−K l

Nx) obtained from Algorithm 2 will converge to the

Nash equilibrium, that is, liml→∞K l
i = R−1

ii B
T
i Pi, ∀i ∈ Γ.

Proof. Let K l
1, . . . ,K

l
N be the admissible feedback gains at the lth iteration in Algorithm 1 and

K1
i = R−1

ii B
T
i P

0
i for each i ∈ Γ. As A−∑N

i=1 BiK
l
i is Hurwitz, P

l
1, . . . , P

l
N are the unique solutions of the

Lyapunov equations (11), which means K l+1
1 , . . . ,K l+1

N are uniquely determined by K l+1
i = R−1

ii B
T
i P

l
i

for each i ∈ Γ. From the definition of Ql
i and the derivation of Algorithm 2, we can know that K l

i , P
l
i ,

and K l+1
i satisfy (30) for each i ∈ Γ (K l

i is embedded in Φl
i and Πl

i, and P
l
i is embedded in Sl

i). If the

rank condition in Lemma 2 is satisfied, Eq. (30) has a unique solution [(ψl
i)

T, (χl
i)

T, (ζli)
T]T for each

i ∈ Γ, where

ψl
i ∈ R

(1+n+
∑N

j=1 mj)(n+
∑N

j=1 mj)

2 , χl
i ∈ R

nmi

and ζli ∈ R
n
∑

j 6=i mj . Thus, we have χl
i = vec(K l+1

i). Using the result in Lemma 1, we can obtain

liml→∞K l
i = R−1

ii B
T
i Pi, ∀i ∈ Γ.

Employing Algorithm 2, we can obtain the Nash equilibrium (u∗1, . . . , u
∗
N), but the corresponding value

matrices (P1, . . . , PN) are still unknown. Next, we will turn to obtaining the value matrices Pi, ∀i ∈ Γ.

Define the following optimal Q-functions:

Q∗
i (x, u

∗
i , u

∗
−i) := V ∗

i +Hi

(

x, u∗i , u
∗
−i,

∂V ∗
i

∂x

)

, ∀x, ∀i ∈ Γ, (41)

where the Hamiltonian Hi(x, u
∗
i , u

∗
−i,

∂V ∗
i

∂x) is defined as

Hi(x, u
∗
i , u

∗
−i,

∂V ∗
i

∂x
) :=

1

2
xTMix+

1

2

N
∑

j=1

u∗Tj Riju
∗
j+

(

∂V ∗
i

∂x

)T


Ax+

N
∑

j=1

Bju
∗
j



 , ∀x, ∀i ∈ Γ. (42)

Obviously, Q∗
i (x, u

∗
i , u

∗
−i) can be obtained after the Nash equilibrium is obtained. By substituting

(u∗1, . . . , u
∗
N) into (42) and using AREs (10), we have Hi(x, u

∗
i , u

∗
−i,

∂V ∗
i

∂x) = 0, ∀x, ∀i ∈ Γ. Thus,

Q∗
i (x, u

∗
i , u

∗
−i) = V ∗

i =
1

2
xTPix, ∀x, ∀i ∈ Γ. (43)

Let {x(t), t > 0} be the system trajectory generated by (20); then we can obtain

Q∗
i (xtk , u

∗
itk , u

∗
−itk)−Q∗

i (xtk−1
, u∗itk−1

, u∗−itk−1
) =

1

2
x̄TtkΘ(Pi)−

1

2
x̄Ttk−1

Θ(Pi), ∀i ∈ Γ. (44)

Let Q̃∗
i = [Q∗

i (xt1 , u
∗
it1 , u

∗
−it1) − Q∗

i (xt0 , u
∗
it0 , u

∗
−it0), . . . , Q

∗
i (xts , u

∗
its , u

∗
−its) − Q∗

i (xts−1 , u
∗
its−1

, u∗−its−1
)]T

and X̃ = [x̄t1 − x̄t0 , . . . , x̄ts − x̄ts−1]
T. If the rank condition in Lemma 2 is satisfied, we can easily verify

that matrix X̃ has full column rank. Thus, we have

Θ(Pi) = 2(X̃TX̃)−1X̃TQ̃∗
i , ∀i ∈ Γ. (45)

Now, the value matrices (P1, . . . , PN) corresponding to the Nash equilibrium (u∗1, . . . , u
∗
N) are obtained.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:14

5 Simulation study

In this section, two simulation examples are provided to show the effectiveness of Algorithm 2.

Example 1 (Government debt stabilization game [11]). In this game, it is assumed that government

debt accumulation, ḋ, is the sum of interest payments on government debt, rd(t), and primary fiscal

deficits, f(t), minus the seignorage, m(t):

ḋ(t) = rd(t) + f(t)−m(t), d(0) = d0. (46)

The objective of the fiscal authority is to minimize the sum of time profiles of the primary fiscal deficit,

base-money growth, and government debt:

J1 =

∫ ∞

0

{

(

f(t)− f̄
)2

+ η(m(t)− m̄)
2
+λ
(

d(t)− d̄
)2
e−δt

}

dt, (47)

whereas the monetary authorities set the growth of base money so as to minimize the loss function:

J2 =

∫ ∞

0

{

(m(t)− m̄)2 +κ
(

d(t)− d̄
)2
e−δt

}

dt, (48)

where f̄ , m̄ and d̄ are assumed to be fixed targets that are given a priori.

Introducing the auxiliary variables x1(t) :=
(

d(t)− d̄
)

e−
1
2 δt, x2(t) :=

(

rd̄ + f̄ − m̄
)

e−
1
2 δt, u1(t) :=

(

f(t)− f̄
)

e−
1
2 δt and u2(t) := (m(t)− m̄) e−

1
2 δt, the author of [11] shows that the game above can be

rewritten as the following differential game:

ẋ = Ax+B1u1 +B2u2, (49)

with A = [
r − 1

2
δ 1

0 − 1
2
δ
], B1 = [1

0
], B2 = [−1

0
], δ = 0.04, r = 0.06 and x0 = [−1.4 0.2]T.

The cost functions (47) and (48) become

J1 =

∫ ∞

0

λx21(t) + u21(t) + ηu22(t)dt, (50)

and

J2 =

∫ ∞

0

κx21(t) + ηu22(t)dt, (51)

with η = 0.02, λ = κ = 1, M1 = diag(λ, 0), M2 = diag(κ, 0), R11 = 1, R12 = η, R22 = κ and R21 = 0.

Employing the algorithm proposed in [9], we obtain the solutions of the AREs:

P1 =

[

0.6295 0.4082

0.4082 10.8105

]

, P2 =

[

0.5713 0.2863

0.2863 6.4225

]

.

The Nash equilibrium feedback gains are

K∗
1 =

[

0.6295 0.4082
]

, K∗
2 =

[

−0.5713 −0.2863
]

.

Now we implement Algorithm 2 to solve this differential game. We can obtain the initial admissible

feedback gains: K1
1 = [1.0408 1.0196], K1

2 = [−0.4140 0.0057]. The behavior policies are selected

as ũ1(t) = −K1
1x(t) + e1(t) and ũ2(t) = −K1

2x(t) + e2(t), where e1(t) = 6
∑40

n=1 sin(nt) and e2(t) =

sin(3t) + 6 sin(4t3) + sin(6t) + sin(10t) are the injected probing noises to maintain the rank condition in

Lemma 2. During the learning process, data of the state and behavior policies are collected over intervals

of 0.1 s, i.e., ∆t = 0.1, and the number of sampling intervals is s = 15. After twelve iterations, the

feedback gains K l
1, K

l
2 converge with

K13
1 =

[

0.6283 0.4101
]

, K13
2 =

[

−0.5730 −0.2851
]

.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:15

1 2 3 4 5 6 7 8 9 10 11 12
0.62

0.67

0.72

0.76

K
1
,2

K
1
,1

K
2
,2

K
2
,1

1 2 3 4 5 6 7 8 9 10 11 12
0.40

0.55

0.70

0.80

Iteration steps l

K 1,1
l+1

K 1,2
l+1

(a)

1 2 3 4 5 6 7 8 9 10 11 12
−0.60

−0.53

−0.46

−0.40

1 2 3 4 5 6 7 8 9 10 11 12
−0.30

−0.15

0

0.10

Iteration steps l

K 2,2
l+1

K 2,1
l+1

(b)

Figure 1 (Color online) Convergence of feedback gains for both players. (a) The convergence of feedback gains Kl
1 to

K∗

1
, where Kl+1

1
= [Kl+1

1,1 ,Kl+1
1,2]; (b) the convergence of feedback gains Kl

2
to K∗

2
, where Kl+1

2
= [Kl+1

2,1 , Kl+1
2,2].

0 25 50 75 100 125 150
−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

S
ta

te

0.4

Time (s)

x1

x2

Figure 2 (Color online) State evolution of system (49) by implementing u1(t) = −K13
1

x(t) and u2(t) = −K13
2

x(t).

By substituting u1 = −K13
1 x and u2 = −K13

2 x into (45), we can obtain the value matrices

P 13
1 =

[

0.6289 0.4105

0.4105 10.8216

]

, P 13
2 =

[

0.5704 0.2893

0.2893 6.3941

]

.

The feedback gain errors ‖K13
1 −K∗

1‖ = 0.0022, ‖K13
2 −K∗

2‖ = 0.0021, and the value matrix errors

‖P 13
1 − P1‖ = 0.0116, ‖P 13

2 − P2‖ = 0.0287.

Figure 1 shows that feedback gains K l
1 and K l

2 will converge to the Nash equilibrium feedback gains

K∗
1 and K∗

2 . Figure 2 shows that u1(t) = −K13
1 x(t) and u2(t) = −K13

2 x(t) stabilize the system (49).

Example 2. Consider a more complicated linear nonzero-sum quadratic differential game with two

players [8]:

ẋ = Ax+B1u1 +B2u2, (52)

with

A =













−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.2855 −0.707 1.3229

0 0 1 0













, B1 =













0.4422

3.0447

−5.52

0













, B2 =













0.1761

−7.5922

4.99

0













, x(0) =













10

20

15

5













.

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:16

The cost functions are

J1 =
1

2

∫ ∞

0

(xTM1x+ uT1R11u1 + uT2R12u2)dt (53)

and

J2 =
1

2

∫ ∞

0

(xTM2x+ uT2R22u2 + uT1R21u1)dt, (54)

where M1 = diag(3.5, 2, 4, 5), M2 = diag(1.5, 6, 3, 1), R11 = 1, R12 = 0.25, R21 = 0.6, and R22 = 2.

Employing the algorithm proposed in [9], we obtain the solutions of the AREs:

P1 =













7.6566 0.6438 0.6398 −3.0811

0.6438 0.2878 0.2855 −0.0945

0.6398 0.2855 0.5620 0.2270

−3.0811 −0.0945 0.2270 6.6987













, P2 =













3.4579 0.1568 0.2047 −1.8480

0.1568 0.6235 0.2889 −0.0711

0.2047 0.2889 0.4020 0.0729

−1.8480 −0.0711 0.0729 3.7850













.

The Nash equilibrium feedback gains are

K∗
1 =

[

1.8151 −0.4150 −1.9501 −2.9041
]

,

K∗
2 =

[

0.2200 −1.6323 −0.0772 0.2891
]

.

Now we implement Algorithm 2 to solve the differential game above. We can obtain the initially admis-

sible feedback gains: K1
1 =[1.5621 0.6371 −1.8146 −3.6510] and K1

2 =[0.1446 −1.5486 −0.0681 0.4211].

The behavior policies are chosen as ũ1(t) = −K1
1x(t) + e1(t) and ũ2(t) = −K1

2x(t) + e2(t), where

e1(t) = 6
∑50

n=1 sin(nt) and e2(t) = sin(3t) + 6sin(7t) + cos(5t) + 6cos(11t) are probing noises to meet

the rank condition in Lemma 2. During the learning process, data of the state and behavior policies are

collected over intervals of 0.1s, i.e., ∆t = 0.1 and the number of sampling intervals is s = 30. After seven

iterations, the feedback gains K l
1 and K l

2 converge with

K8
1 =

[

1.8164 −0.4130 −1.9611 −2.9090
]

,

K8
2 =

[

0.2185 −1.6303 −0.0780 0.2885
]

.

By substituting u1 = −K8
1x and u2 = −K8

2x into (45), we can obtain the value matrices

P 8
1=













7.6662 0.6433 0.6382 −3.0911

0.6433 0.2884 0.2862 −0.0926

0.6382 0.2862 0.5648 0.2314

−3.0911 −0.0926 0.2314 6.7120













, P 8
2=













3.4574 0.1560 0.2032 −1.8552

0.1560 0.6238 0.2904 −0.0681

0.2032 0.2904 0.4032 0.0757

−1.8552 −0.0681 0.0757 3.8063













.

The feedback gain errors are ‖K8
1 −K∗

1‖ = 0.0123 and ‖K8
2 −K∗

2‖ = 0.0027. The value matrix errors

are ‖P 8
1 − P1‖ = 0.0206 and ‖P 8

2 − P2‖ = 0.0276.

Figure 3 shows that feedback gains K l
1 and K l

2 will converge to the Nash equilibrium feedback gains

K∗
1 and K∗

2 . Figure 4 shows that u1(t) = −K8
1x(t) and u2(t) = −K8

2x(t) stabilize the system (52).

6 Conclusion

This paper proposes an online Q-learning algorithm based on off-policy RL to solve infinite horizon

linear nonzero-sum quadratic differential games with completely unknown dynamics. By selecting a

set of appropriate initially admissible control policies, we prove the equivalence between the Q-learning

algorithm and an offline PI algorithm. A rank condition on probing noises is established to ensure the

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:17

1 2 3 4 5 6 7

1.80

1.82

1 2 3 4 5 6 7

−0.4

−0.3

1 2 3 4 5 6 7

−1.94

−1.92

1 2 3 4 5 6 7
−2.95
−2.90
−2.85

Iteration steps l

(a)

1 2 3 4 5 6 7
0.10

0.15
0.20

1 2 3 4 5 6 7

−1.6

−1.5

1 2 3 4 5 6 7
−0.08

−0.07

1 2 3 4 5 6 7

0.3

0.4

Iteration steps l

(b)

K 2,1
l+1

K 2,3
l+1

K 2,4
l+1

K 2,2
l+1

K 1,4
l+1

K 1,3
l+1

K 1,2
l+1

K 1,1
l+1

K
1
,2

K
1
,1

K
1
,4

K
1
,3

K
2
,2

K
2
,1

K
2
,4

K
2
,3

Figure 3 (Color online) Convergence of feedback gains for both players. (a) The convergence of feedback gains Kl
1

to K∗

1
, where Kl+1

1
= [Kl+1

1,1 ,Kl+1
1,2 ,Kl+1

1,3 , Kl+1
1,4]; (b) the convergence of feedback gains Kl

2
to K∗

2
, where Kl+1

2
=

[Kl+1

2,1 ,Kl+1

2,2 ,Kl+1

2,3 , Kl+1

2,4].

0 1 2 3 4 5 6 7 8 9
−5

0

5

10

15

20

Time (s)

x1

x2

x3

x4

S
ta

te

Figure 4 (Color online) State evolution of system (52) by implementing u1(t) = −K8
1x(t) and u2(t) = −K8

2x(t).

convergence of the proposed Q-learning method. The simulation study shows the effectiveness of the

proposed Q-learning algorithm. In the future studies, we will focus on developing off-policy Q-learning

methods to solve nonlinear nonzero-sum Nash differential games with unknown dynamics.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 61203078)

and the Key Project of Shenzhen Robotics Research Center NSFC (Grant No. U1613225).

References

1 Basar T, Olsder G J. Dynamic Noncooperative Game Theory (Classics in Applied Mathematics). 2nd ed. Philadelphia:

SIAM, 1999

2 Falugi P, Kountouriotis P A, Vinter R B. Differential games controllers that confine a system to a safe region in the

state space, with applications to surge tank control. IEEE Trans Automat Contr, 2012, 57: 2778–2788

3 Zha W Z, Chen J, Peng Z H, et al. Construction of barrier in a fishing game with point capture. IEEE Trans Cybern,

2017, 47: 1409–1422

4 Lin F H, Liu Q, Zhou X W, et al. Towards green for relay in InterPlaNetary Internet based on differential game model.

Sci China Inf Sci, 2014, 57: 042306

5 Luo B, Wu H N, Huang T. Off-policy reinforcement learning for H∞ control design. IEEE Trans Cybern, 2015, 45:

65–76

6 Bea R W. Successive Galerkin approximation algorithms for nonlinear optimal and robust control. Int J Control, 1998,

71: 717–743

7 Abu-Khalaf M, Lewis F L, Huang J. Neurodynamic programming and zero-sum games for constrained control systems.

IEEE Trans Neural Netw, 2008, 19: 1243–1252

8 Freiling G, Jank G, Abou-Kandil H. On global existence of solutions to coupled matrix Riccati equations in closed-loop

https://doi.org/10.1109/TAC.2012.2194335
https://doi.org/10.1109/TCYB.2016.2546381
https://doi.org/10.1109/TCYB.2014.2319577
https://doi.org/10.1080/002071798221542
https://doi.org/10.1109/TNN.2008.2000204

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:18

Nash games. IEEE Trans Automat Contr, 1996, 41: 264–269

9 Li T Y, Gajic Z. Lyapunov iterations for solving coupled algebraic riccati equations of nash differential games and alge-

braic riccati equations of zero-sum game. In: New Trends in Dynamic Games and Applications. Boston: Birkhäuser,

1995. 333–351

10 Possieri C, Sassano M. An algebraic geometry approach for the computation of all linear feedback Nash equilibria in

LQ differential games. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, 2015. 5197–5202

11 Engwerda J C. LQ Dynamic Optimization and Differential Games. New York: Wiley, 2005

12 Mylvaganam T, Sassano M, Astolfi A. Constructive ǫ-Nash equilibria for nonzero-sum differential games. IEEE Trans

Automat Contr, 2015, 60: 950–965

13 Sutton R S, Barto A G. Reinforcement Learning: an Introduction. Cambridge: MIT Press, 1998

14 Werbos P J. Approximate dynamic programming for real-time control and neural modeling. In: Handbook of Intelligent

Control. New York: Van Nostrand, 1992

15 Bertsekas D P, Tsitsiklis J N. Neuro-Dynamic Programming. Belmont: Athena Scientific, 1996

16 Werbos P J. The elements of intelligence. Cybernetica, 1968, 11: 131

17 Doya K. Reinforcement learning in continuous time and space. Neural Computation, 2000, 12: 219–245

18 Wei Q L, Lewis F L, Sun Q Y, et al. Discrete-time deterministic Q-learning: a novel convergence analysis. IEEE Trans

Cyber, 2016, 47: 1–14

19 Wang D, Mu C X. Developing nonlinear adaptive optimal regulators through an improved neural learning mechanism.

Sci China Inf Sci, 2017, 60: 058201

20 Vrabie D, Pastravanu O, Abu-Khalaf M, et al. Adaptive optimal control for continuous-time linear systems based on

policy iteration. Automatica, 2009, 45: 477–484

21 Jiang Y, Jiang Z P. Computational adaptive optimal control for continuous-time linear systems with completely

unknown dynamics. Automatica, 2012, 48: 2699–2704

22 Luo B, Wu H N, Huang T W, et al. Data-based approximate policy iteration for affine nonlinear continuous-time

optimal control design. Automatica, 2014, 50: 3281–3290

23 Zhang H G, Wei Q L, Liu D R. An iterative adaptive dynamic programming method for solving a class of nonlinear

zero-sum differential games. Automatica, 2011, 47: 207–214

24 Vrabie D, Lewis F L. Adaptive dynamic programming for online solution of a zero-sum differential game. J Control

Theor Appl, 2011, 9: 353–360

25 Zhu Y H, Zhao D B, Li X G. Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game

based on online data. IEEE Trans Neural Netw Learn Syst, 2017, 28: 714–725

26 Modares H, Lewis F L, Jiang Z P. H∞ tracking control of completely unknown continuous-time systems via off-policy

reinforcement learning. IEEE Trans Neural Netw Learn Syst, 2015, 26: 2550–2562

27 Kiumarsi B, Lewis F L, Jiang Z P. H∞ control of linear discrete-time systems: off-policy reinforcement learning.

Automatica, 2017, 78: 144–152

28 Vamvoudakis K G, Lewis F L, Hudas G R. Multi-agent differential graphical games: Online adaptive learning solution

for synchronization with optimality. Automatica, 2012, 48: 1598–1611

29 Zhang H G, Cui L L, Luo Y H. Near-optimal control for nonzero-sum differential games of continuous-time nonlinear

systems using single-network ADP. IEEE Trans Cybern, 2013, 43: 206–216

30 Zhang H G, Jiang H, Luo C M, et al. Discrete-time nonzero-sum games for multiplayer using policy-iteration-based

adaptive dynamic programming algorithms. IEEE Trans Cybern, 2017, 47: 3331–3340

31 Vamvoudakis K G. Non-zero sum Nash Q-learning for unknown deterministic continuous-time linear systems. Auto-

matica, 2015, 61: 274–281

32 Zhao D B, Zhang Q C, Wang D, et al. Experience replay for optimal control of nonzero-sum game systems with

unknown dynamics. IEEE Trans Cybern, 2016, 46: 854–865

33 Johnson M, Kamalapurkar R, Bhasin S, et al. Approximate N-player nonzero-sum game solution for an uncertain

continuous nonlinear system. IEEE Trans Neural Netw Learn Syst, 2015, 26: 1645–1658

34 Liu D R, Li H L, Wang D. Online synchronous approximate optimal learning algorithm for multi-player non-zero-sum

games with unknown dynamics. IEEE Trans Syst Man Cybern Syst, 2014, 44: 1015–1027

35 Song R Z, Lewis F L, Wei Q L. Off-policy integral reinforcement learning method to solve nonlinear continuous-time

multiplayer nonzero-sum games. IEEE Trans Neural Netw Learn Syst, 2017, 28: 704–713

36 Vrabie D, Lewis F L. Integral reinforcement learning for online computation of feedback Nash strategies of nonzero-sum

differential games. In: Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, 2010: 3066–3071

37 Vamvoudakis K G, Modares H, Kiumarsi B, et al. Game theory-based control system algorithms with real-time

reinforcement learning: how to solve multiplayer games online. IEEE Control Syst, 2017, 37: 33–52

38 Leake R J, Liu R W. Construction of suboptimal control sequences. SIAM J Control, 1967, 5: 54–63

39 Vamvoudakis K G, Lewis F L. Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton-

Jacobi equations. Automatica, 2011, 47: 1556–1569

40 Watkins C, Dayan P. Q-Learning. Mach Learn, 1992, 8: 279–292

41 Bradtke S J, Ydstie B E, Barto A G. Adaptive linear quadratic control using policy iteration. In: Proceedings of

American Control Conference, Baltimore, 1994. 3475–3479

42 Chen C L, Dong D Y, Li H X, et al. Hybrid MDP based integrated hierarchical Q-learning. Sci China Inf Sci, 2011,

54: 2279–2294

43 Wei Q L, Liu D R. A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems. Sci

https://doi.org/10.1109/9.481532
https://doi.org/10.1109/TAC.2014.2362334
https://doi.org/10.1162/089976600300015961
https://doi.org/10.1007/s11432-016-9022-1
https://doi.org/10.1016/j.automatica.2008.08.017
https://doi.org/10.1016/j.automatica.2012.06.096
https://doi.org/10.1016/j.automatica.2014.10.056
https://doi.org/10.1016/j.automatica.2010.10.033
https://doi.org/10.1007/s11768-011-0166-4
https://doi.org/10.1109/TNNLS.2016.2561300
https://doi.org/10.1109/TNNLS.2015.2441749
https://doi.org/10.1016/j.automatica.2016.12.009
https://doi.org/10.1016/j.automatica.2012.05.074
https://doi.org/10.1109/TSMCB.2012.2203336
https://doi.org/10.1109/TCYB.2016.2611613
https://doi.org/10.1016/j.automatica.2015.08.017
https://doi.org/10.1109/TCYB.2015.2488680
https://doi.org/10.1109/TNNLS.2014.2350835
https://doi.org/10.1109/TSMC.2013.2295351
https://doi.org/10.1109/TNNLS.2016.2582849
https://doi.org/10.1109/MCS.2016.2621461
https://doi.org/10.1137/0305004
https://doi.org/10.1016/j.automatica.2011.03.005
https://doi.org/10.1007/s11432-011-4332-6

Li X X, et al. Sci China Inf Sci May 2019 Vol. 62 052204:19

China Inf Sci, 2015, 58: 122203

44 Palanisamy M, Modares H, Lewis F L, et al. Continuous-time Q-learning for infinite-horizon discounted cost linear

quadratic regulator problems. IEEE Trans Cybern, 2015, 45: 165–176

45 Yan P F, Wang D, Li H L, et al. Error bound analysis of Q-function for discounted optimal control problems with

policy iteration. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1207–1216

46 Luo B, Liu D R, Wu H N, et al. Policy gradient adaptive dynamic programming for data-based optimal control. IEEE

Trans Cybern, 2017, 47: 3341–3354

47 Vamvoudakis K G. Q-learning for continuous-time linear systems: a model-free infinite horizon optimal control ap-

proach. Syst Control Lett, 2017, 100: 14–20

48 Vamvoudakis K G, Hespanha J P. Cooperative Q-learning for rejection of persistent adversarial inputs in networked

linear quadratic systems. IEEE Trans Automat Contr, 2018, 63: 1018–1031

49 Rizvi S A A, Lin Z L. Output feedback Q-learning for discrete-time linear zero-sum games with application to the

H-infinity control. Automatica, 2018, 95: 213–221

50 Li J N, Chai T Y, Lewis F L, et al. Off-policy Q-learning: set-point design for optimizing dual-rate rougher flotation

operational processes. IEEE Trans Ind Electron, 2018, 65: 4092–4102

51 Kleinman D. On an iterative technique for Riccati equation computations. IEEE Trans Automat Contr, 1968, 13:

114–115

https://doi.org/10.1109/TCYB.2014.2322116
https://doi.org/10.1109/TSMC.2016.2563982
https://doi.org/10.1109/TCYB.2016.2623859
https://doi.org/10.1016/j.sysconle.2016.12.003
https://doi.org/10.1109/TAC.2017.2734840
https://doi.org/10.1016/j.automatica.2018.05.027
https://doi.org/10.1109/TIE.2017.2760245
https://doi.org/10.1109/TAC.1968.1098829

	Introduction
	Problem statement
	Offline PI for linear nonzero-sum quadratic differential games
	Q-learning method based on off-policy RL
	Simulation study
	Conclusion

