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Abstract This paper considers the system identification problem for FIR (finite impulse response) systems

with set-valued and precise observations received from multiple sensors. A fusion estimation algorithm based

on some suitable identification algorithms for different types of observations is proposed. In particular, least

square method is chosen for FIR systems with precise observations, while empirical measure method and

EM algorithm are chosen for FIR systems with set-valued observations in the cases of periodic and general

system inputs, respectively. Then, the quasi-convex combination estimator (QCCE) fusing the two different

estimators by a linear combination with appropriate weights is constructed. Furthermore, the convergence

properties are theoretically analyzed in terms of strong consistency and asymptotic efficiency. The fused

estimator QCCE is proved to achieve the Cramér-Rao (CR) lower bound asymptotically under periodic

inputs. Extensive numerical simulations validate the superiority of the fusion estimation algorithm under

both periodic and general inputs.
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1 Introduction

System identification aims to build the mathematical models of dynamical systems based on observed

system input and output data [1] and mainly consists of model structure identification and parameter

estimation. Data, models and criterions are three basic elements of system identification. Specifically, the

model structure is determined beforehand through some priori knowledge and the unknown parameters

are estimated based on input-output data in terms of a certain criterion. The finite impulse response

(FIR) model structure is favorable and widely used owing to its simplicity in dealing with the parame-

ter estimation problem. With different measuring instruments and methods, we could collect different

types of observations such as precise and set-valued (or quantized), which induce different identification

algorithms.

The traditional system identification has been studied extensively on the basis of precise observations

in the past several decades. Especially in the linear models (e.g., FIR models), a large number of ma-

ture identification algorithms and theories have been constructed and developed gradually [2]. Classical

methods, such as least square (LS) method [3], maximum likelihood (ML) estimation method [4], state
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estimation of Kalman filter [5], and Bayesian estimation [6], are applied widely in various fields. Fur-

thermore, LS method and its extended algorithms attract our attention due to their excellent convergent

properties including unbiasedness, strong consistency, asymptotic normality and efficiency [7].

System identification with set-valued observations was first investigated for sensor systems [8]. Com-

pared with conventional system identification, set-valued observations offer very limited information on

system outputs and consequently introduce new challenges. Recently, a number of set-valued identifica-

tion algorithms have been developed. They can be classified roughly from system models, e.g., for linear

systems, there are FIR models [9–14]; for nonlinear systems, there are Wiener [15] and Hammerstein [16]

models. Besides, they can also be categorized in terms of the quantization schemes, e.g., fixed-level

quantizer and uniform quantizer. In particular, for FIR models with finite quantization levels, there are

empirical measure approach [9, 17] which has good properties of unbiasedness and strong consistency,

EM algorithm [10, 11] which has a exponent convergent speed under certain conditions, kernel-based

method [12], and quadratic programming-based method [13].

With the development of modernization and informatization, different types of input-output data

can be obtained simultaneously for a certain system or some systems with same structures. Here we

consider two types of system output data: precise and set-valued. In the system identification community,

researchers focus on the identification problem based on a single type of input-output data. In order to get

a better estimate effect, those approaches only using the precise data require higher accuracy measuring

instruments which cost much, and those only using the set-valued data need more practical samples.

Different from the former ones, the current problem is how to improve the estimation based on the

available mixed data.

The difficulties of this problem lie in: (1) It is not easy to find an identification algorithm that is

suitable to both precise and set-valued data; e.g., LS method can be used for precise data but not be

well applied in set-valued data. (2) In general, the identification problem can be transformed into an

optimization problem such as the ML method. But it is difficult to deal with the joined likelihood

function of the probability density function for precise data and the cumulative distribution function

for set-valued data. (3) Though some methods are appropriate for each type of data, how to fuse their

respect identification results is troublesome. Ref. [14] studied the blind identification of multi-channel

FIR systems using precise and quantized observations. But they could only deal with multiple channel

data of same type by giving a special algorithm. Fortunately, information fusion in multi-sensor systems

may provide a tool to solve this problem.

Information fusion is a multidisciplinary research area borrowing ideas from many diverse fields such as

signal processing, information theory, statistical estimation and inference, and artificial intelligence, which

has no universally accepted definition so far [18–20]. In [20], the authors took a review and discussion of

many information fusion definitions and give a principled definition: Information fusion is the study of

efficient methods for automatically or semi-automatically transforming information from different sources

and different points in time into a representation that provides effective support for human or automated

decision making. As one of the most fundamental information fusion technologies, fusion estimation has

been an ongoing research issue in multi-sensor information fusion. And information fusion algorithms

play a pivotal role in the fusion estimation framework. In general, there are two fundamental methods

to deal with the information from multiple sensors [21]. One is the centralized fusion, where all the

observed data from different sensors are communicated to a fusion center for processing. The other is

the distributed fusion, which consists of local estimation and estimation fusion. In the local estimation

stage, individual sensors give local estimates based on their own observed data according to all kinds of

estimation criteria such as ML estimation criterion [4], minimum means square error [22], and weight

least square [23]. In the estimation fusion stage, these local estimates are gathered to the fusion center

to produce an optimal or suboptimal estimate in terms of a certain fusion strategy such as optimal linear

estimation fusion [24], Kalman filter method [25], and covariance intersection (CI) fusion method [26].

Considering that the data types of observations received from multiple sensors are different, namely

precise and set-valued, it is not suitable to process the mixed data using the centralized fusion method.

Thus, distributed fusion method makes it clear that firstly we find the corresponding optimal identification
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algorithm for each sensor and then fuse the local estimates according to a certain fusion criterion. Finally

and most importantly, how to choose the fusion criterion? An easy and effective approach is to take a

linear combination by giving appropriate weights to each estimate. Thus, the question is transformed

into how to choose the weights for each local estimate. In general, we evaluate the parameter estimates

in terms of their convergence properties such as unbiasedness, strong consistency, and efficiency. The

Cramér-Rao (CR) lower bound means a lower bound on the variance of any (asymptotically) unbiased

estimators [27]. An intuitive view is that we should give larger weights to the estimates with smaller

variances as they can provide more accurate information. Furthermore, the fusion algorithm can be

constructed based on some identification algorithms for different types of observation data.

In this paper, the FIR systems with set-valued and precise observations received from multiple sensors

are considered. For the FIR systems with set-valued observations, we use the empirical measure method

under periodic inputs and EM algorithm under general inputs to estimate the model parameters. While

for the FIR systems with precise observations, LS method is used to estimate the model parameters

regardless of which type of inputs. Then, the quasi-convex combination estimator (QCCE) [9] based

on fusing the two kinds of estimators by a linear combination with appropriate weights is constructed.

Furthermore, we mainly analyze the convergence properties of the QCCE in terms of strong consistency

and asymptotic efficiency under periodic inputs. Because there is no analytical solution under general

inputs, we have to adopt an iterative algorithm — EM algorithm, which leads to unavailable analysis of

the convergence properties of fused estimator QCCE from a theoretical point of view. However, extensive

Monte-Carlo simulation will be conducted to show the performance of fusion estimation algorithm.

The contributions of this paper can be summarized as follows:

• On the basic of the traditional identification algorithms for different types of multiple sensors, a

fusion estimation algorithm for FIR systems with set-valued and precise observations is constructed.

• The fused estimator QCCE is proved to be optimal by giving suitable weights under periodic inputs,

which indicates that the optimal QCCE has strong consistency and asymptotic efficiency, namely that it

can achieve asymptotically the CR lower bound.

• The proposed fusion estimation algorithm can also be applied to the case of general inputs and other

identification algorithms for different types of multiple sensors.

The rest of the paper is organized as follows. Section 2 introduces the FIR systems with set-valued and

precise observations from multiple sensors and the problem formulation. Section 3 constructs a fusion

estimation algorithm for the model parameters and gives a detailed illustration under both periodic and

general inputs. Section 4 derives the convergence properties of the fused estimator under periodic inputs

according to strong consistency and asymptotic efficiency. Section 5 demonstrates the superiority of

the fusion estimation algorithm through extensive numerical simulations. Section 6 concludes the paper

briefly and discusses related future topics.

2 Problem formulation

Consider the FIR system

y
(l)
k =

(

φ
(l)
k

)T
θ + d

(l)
k , l = 1, . . . , L, k = 1, . . . , Nl, (1)

where k is the time index, l is the FIR system index with a same structure, i.e., the same unknown but

time-invariance model parameter θ and Nl is the data length of the system with index l; φ
(l)
k , y

(l)
k and

d
(l)
k are the system input, output and noise from the system with index l at time k, respectively. For the

system whose index is no more than L0 (L0 < L), the corresponding output can be exactly measured. But

for each of the rest systems, the output data is unknown and only measured by a quantized sensor. What

can be obtained is the set-valued information denoted by s
(l)
k that represents the comparison between the

output y
(l)
k and one or more thresholds.

s
(l)
k = Q

(

y
(l)
k

)

=
M
∑

i=1

qiI{c(l)
i

6y
(l)
k

<c
(l)
i+1}

, l = L0 + 1, . . . , L, k = 1, . . . , Nl, (2)
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where c
(l)
i (i = 1, . . . ,M + 1) are the fixed thresholds of the quantized sensor for FIR system with index

l and −∞ = c
(l)
1 < c

(l)
2 < · · · < c

(l)
M < c

(l)
M+1 = +∞. I{·} is the indicator function, which is 1 if the

condition holds and otherwise 0, and qi represents the set-value with respect to the set [c
(l)
i , c

(l)
i+1). For

the convenience and uniformness in the formulation, the overall systems can be expressed as














y
(l)
k =

(

φ
(l)
k

)T
θ + d

(l)
k ,

s
(l)
k =

{

y
(l)
k , l = 1, . . . , L0, k = 1, . . . , Nl,

Q
(

y
(l)
k

)

, l = L0 + 1, . . . , L, k = 1, . . . , Nl.

(3)

In fact, s
(l)
k (l = 1, . . . , L0) can be seen as the measurements by a “precise” sensor, which is equivalent

to y
(l)
k . In order to introduce the system identification problem, some assumptions are needed.

Assumption 1. The system input follows the condition that

Nl
∑

k=1

φ
(l)
k

(

φ
(l)
k

)T
> 0, l = 1, . . . , L. (4)

Assumption 2. For l = 1, 2, . . . , L, {d(l)k , k > 1} is a sequence of independent and identically distributed

(i.i.d) variables and d
(l)
1 is a normally distributed random variable with mean 0 and known covariance

σ2
l . The cumulative distribution and probability density function of d

(l)
1 are denoted by Fσl

(·) and fσl
(·),

respectively.

Remark 1. Assumption 1 is the mathematical description of persistent excitation condition, which is

a typical assumption in the research of system identification [2]. Under Assumption 2, the noises d
(l)
k

(k > 1, l = L0+1, . . . , L) for set-valued observations can be generalized into the symmetrically distributed

random variable whose cumulative distribution function is second order continuous derivable with mean

0 and known covariance.

Without loss of generality, we assume that L0 = 1 and L = 2, i.e., only one FIR system with precise

observations and one FIR system with set-valued observations are considered in this paper. The goal

of the paper is to estimate the unknown parameter θ using the input φ
(l)
k and precise and set-valued

observations s
(l)
k based on all the FIR systems with different types of sensors.

3 Fusion estimation algorithm

In this section, we first propose a fusion estimation algorithm for parameter θ and then discuss the specific

algorithm process under periodic inputs and general inputs, respectively.

Before giving the fusion estimation algorithm, we first introduce the concepts of QCCE and the optimal

QCCE [9].

Definition 1. Assuming that θ1N1
, . . . , θmNm

are m asymptotically unbiased estimators of a single pa-

rameter θ, define β = [β1, . . . , βm]T such that β1 + · · ·+ βm = 1. One can construct an estimator θ̂Q of

θ by

θ̂Q =

m
∑

i=1

βiθ
i
Ni

= βTΘ,

where Θ = [θ1N1
, . . . , θmNm

]T and βi need not be nonnegative. θ̂Q is called a QCCE. The estimator that

minimizes the asymptotical variance of the estimation error θ̂Q − θ is called the optimal QCCE.

Remark 2. What is different in [9] is that the m asymptotically unbiased estimators are denoted by

θ1N , . . . , θmN , which means the sample size is same for each estimator. But the definition of QCCE can be

extended to the case in different sample sizes.

Because θiNi
is asymptotically unbiased, k = 1, . . . ,m, θ̂Q is an asymptotically unbiased estimate of θ.

Define the covariance matrix of the estimation error Θ− 1θ as

V (Θ) = E(Θ − 1θ)(Θ− 1θ)T.
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Thus, the optimal QCCE can be figured out from

β = arg min
βT1=1

E(θ̂Q − θ)2 = arg min
βT1=1

βTV (Θ)β. (5)

Similarly, the concepts of QCCE and optimal QCCE are directly extended to the case of multi-

dimensional parameter θ.

Definition 2. Assuming that θ1N1
, . . . , θmNm

are m asymptotically unbiased estimators of multi dimen-

sional parameter θ, define m matrixes Π1, . . . ,Πm such that Π1 + · · · + Πm = I. One can construct an

estimator θ̂Q of θ by

θ̂Q =

m
∑

i=1

Πiθ
i
Ni
,

where Πi (1 6 i 6 m) need not be positive definite. θ̂Q is called a QCCE.

As for the concept of optimal QCCE in the multi-dimensional case, there are two criterias can be

chosen in terms of the covariance matrix of θ̂Q, which is defined as

Σ(θ̂Q) = E(θ̂Q − θ)(θ̂Q − θ)T.

One is to compare the covariance matrix Σ(θ̂Q) with CR lower bound. If there exist a group of matrixes

Π = {Π1, . . . ,Πm} so that Σ(θ̂Q) can achieve the CR lower bound, θ̂Q is called the optimal QCCE.

The other is to mimic the approach of single parameter to compare the sum of each component’s

variance of θ, namely, the sum of diagonal elements of the covariance matrix Σ(θ̂Q), in case that CR

lower bound cannot be achieved. Thus, the optimal QCCE can be obtained from

Π = arg min
Π1+···+Πm=I

E(θ̂Q − θ)T(θ̂Q − θ).

Remark 3. It can be seen easily that the optimal QCCE under CR low bound must be the one whose

sum of the diagonal elements of the covariance matrix is the smallest.

The fusion estimation algorithm is presented as follows:

Step 1 (Precise identification). For the FIR system with index 1, based on the inputs φ
(1)
k and

precise observations s
(1)
k (k = 1, 2, . . . , N1), the estimator θ̂N1 of parameter θ is obtained by an appropriate

precise identification algorithm (e.g., LS method).

Step 2 (Set-valued identification). For the FIR system with index 2, based on the inputs φ
(2)
k

and set-valued observations s
(2)
k (k = 1, 2, . . . , N2), the estimator θ̂N2 of parameter θ is obtained by an

appropriate set-valued identification algorithm.

Step 3 (QCCE infusion). According to the definition of the QCCE, two weight matrixes Π1 and

Π2 (Π1 + Π2 = I) are designed to fuse the estimators θ̂N1 and θ̂N2 by a linear combination. The fused

estimator is denoted by θ̂Q:

θ̂Q = Π1θ̂N1 +Π2θ̂N2 . (6)

θ̂Q is the optimal QCCE if the estimation error θ̂Q − θ can achieve the CR lower bound or its sum of the

diagonal elements of the covariance matrix is the smallest.

3.1 Algorithms for periodic inputs

In this subsection, we will give the specific algorithm process under periodic inputs. The FIR systems

with precise and binary-valued sensors are firstly considered. The model can be rewritten as















y
(l)
k =

(

φ
(l)
k

)T
θ + d

(l)
k , l = 1, 2,

s
(1)
k = y

(1)
k , k = 1, . . . , N1,

s
(2)
k = I

{y
(2)
k

6c}
, k = 1, . . . , N2.

(7)
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To investigate the fusion estimation problem, we start with the simplest model with a single parameter

θ. Assume that the system input is a constant for any FIR system, i.e.,

φ
(1)
k ≡ u1, k = 1, 2, . . . , N1; φ

(2)
k ≡ u2, k = 1, 2, . . . , N2.

The LS estimator using the LS method based on the precise observations s
(1)
k and inputs φ

(1)
k ≡ u1

(k = 1, 2, . . . , N1) is

θ̂N1 =
1

N1

N1
∑

k=1

s
(1)
k /u1. (8)

The set-valued estimator using the empirical measure method based on the set-valued observations

s
(2)
k and inputs φ

(2)
k ≡ u2 (k = 1, 2, . . . , N2) is

θ̂N2 = Fσ2

(

c− 1

N2

N2
∑

k=1

s
(2)
k

)

/u2. (9)

Remark 4. The ML method and moment estimation method can be also applied for set-valued iden-

tification, which can derive a same estimator (9).

Because the parameter θ is scalar, the weights matrixes Π1 and Π2 degenerate to two real numbers.

Then, we can figure out the optimal QCCE by solving the optimization problem (5).

Now, we consider the model when the parameter is multi-dimensional. In fact, the estimation problem

in multi-dimensional periodic inputs can be transformed into the one in one-dimensional periodic inputs.

Assumption 3. For l = 1, 2, the FIR system inputs have an nl-periodic form, that is, ∀ k > 1, φ
(l)
k =

φ
(l)
k+nl

. The number of observations Nl is divisible by nl, which satisfies the equation Nl/nl = N̄l.

Define the input matrixes of two FIR systems and two parameters γ = (γ1, . . . , γn1)
T and β =

(β1, . . . , βn2)
T as follows:

Φ1 =
(

φ
(1)
1 , φ

(1)
2 , . . . , φ(1)

n1

)T
, Φ2 =

(

φ
(2)
1 , φ

(2)
2 , . . . , φ(2)

n2

)T
,

γ = Φ1 · θ =









(φ
(1)
1 )T

...

(φ
(1)
n1 )

T









· θ =









(φ
(1)
1 )Tθ
...

(φ
(1)
n1 )

Tθ









=









γ1
...

γn1









, (10)

β = Φ2 · θ =









(φ
(2)
1 )T

...

(φ
(2)
n2 )

T









· θ =









(φ
(2)
1 )Tθ
...

(φ
(2)
n2 )

Tθ









=









β1

...

βn2









. (11)

Under Assumption 1, ΦT
1 Φ1 and ΦT

2 Φ2 are both reversible. If the estimates of parameters γ and β

denoted by γ̂ and β̂ can be obtained, we can compute the estimates of θ for FIR systems with precise

and set-valued observations, respectively.

θ̂N1 = (ΦT
1 Φ1)

−1ΦT
1 γ̂N̄1

, (12)

θ̂N2 = (ΦT
2 Φ2)

−1ΦT
2 β̂N̄2

. (13)

Remark 5. Because the estimate of each component of parameter γ or β is only relevant to N̄1 or N̄2

observations, we adopt the more accurate representations γ̂N̄1
or β̂N̄2

.

Thus, we only need to solve the estimation problem of parameters γ and β. Actually, each component

of γ or β can be regarded as the single parameter in the one-dimensional model aforementioned.
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For the i-th (1 6 i 6 N̄1) component γi of parameter γ, the LS estimator using the LS method based

on the precise observations s
(1)
k and inputs φ

(1)
k (k = 1, 2, . . . , N1) is

γ̂i,N̄i
=

1

N̄1

N̄1
∑

k=1

s
(1)
(k−1)n1+i

. (14)

For the i-th (1 6 i 6 N̄2) component βi of parameter β, the set-valued estimator using the empirical

measure method based on the binary-valued observations s
(2)
k and inputs φ

(2)
k (k = 1, 2, . . . , N2) is

β̂i,N̄i
= Fσ2



c− 1

N̄2

N̄2
∑

k=1

s
(2)
(k−1)n2+i



. (15)

For the convenience of description, we rewrite the estimate equations of γ and β in the form of vector.

Firstly define the observations in the form of vector as follows:

Y
(1)
i =

(

s
(1)
(i−1)n1+1, . . . , s

(1)
in1

)T
, i = 1, . . . , N̄1, (16)

Y
(2)
i =

(

s
(2)
(i−1)n2+1, . . . , s

(2)
in2

)T
, i = 1, . . . , N̄2. (17)

And then, the estimators γ̂N̄1
and β̂N̄2

can be expressed as

γ̂N̄i
=

1

N̄1

N̄1
∑

k=1

Y
(1)
i , (18)

β̂N̄i
= Fσ2



c− 1

N̄2

N̄2
∑

k=1

Y
(2)
i



. (19)

In consequence, the estimators θ̂N1 and θ̂N2 are

θ̂N1 =
1

N̄1
(ΦT

1 Φ1)
−1ΦT

1

N̄1
∑

k=1

Y
(1)
i , (20)

θ̂N2 = (ΦT
2 Φ2)

−1ΦT
2 Fσ2



c− 1

N̄2

N̄2
∑

k=1

Y
(2)
i



. (21)

The remaining task is to fuse the two estimators to obtain the optimal QCCE by selecting the corre-

sponding appropriate weight matrixes Π1 and Π2 in terms of two criterions as mentioned earlier.

Now, we consider the FIR systems with precise and multi-valued observations. The LS estimator θ̂N1 for

precise identification has no changes. The only difference from the previous problem is how to figure out

the set-valued estimator θ̂N2 based on the multi-valued observations instead of binary-valued observations

for set-valued identification. Actually, the multi-valued sensor with many thresholds is equivalent to many

binary-valued sensors with one threshold. Then, the scalar observation s
(2)
k can be represented by a vector

S
(2)
k = [s

(2)
k (1), . . . , s

(2)
k (M−1)]T of (M−1) dimensions, where s

(2)
k (i) = I

{−∞<y
(2)
k

6ci+1}
, i = 1, . . . ,M−1.

Thus, we obtain M −1 set-valued estimators of parameter θ and then fuse them to form a new set-valued

estimator θ̂N2 that is what we want in the light of the idea of QCCE. Furthermore, it can be proved that

its optimality can be achieved by giving some special weights [9].

Remark 6. Owing to space constraints, this paper does not give the detailed derivation process for

set-valued identification with multi-valued observations, which can be found in [9]. The subsequent

processing about fusion estimation is the same as that in the case of binary-valued observations.
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3.2 Algorithms for general inputs

In this subsection, we will discuss the specific algorithm process under general inputs. LS method is

still the reasonable choice for the FIR system identification with precise observations. As for the FIR

system identification with set-valued observations, we adopt the ML method. However, as there is no

explicit solution of ML estimate that exists under periodic inputs, we have to choose certain iterative

algorithms for solving the ML problem. Here we adopt the EM algorithm that has been proved to achieve

a convergent rate of exponent in [11].

Similar to the case under periodic inputs, the FIR systems (7) with precise and binary-valued obser-

vations are firstly considered. Define the input matrixes and observation vectors of two FIR systems as

follows:

Ψ1 =
(

φ
(1)
1 , . . . , φ

(1)
N1

)T
, S1 =

(

s
(1)
1 , . . . , s

(1)
N1

)T
,

Ψ2 =
(

φ
(2)
1 , . . . , φ

(2)
N2

)T
, S2 =

(

s
(2)
1 , . . . , s

(2)
N2

)T
,

where ΨT
1 Ψ1 and ΨT

2 Ψ2 are both reversible according to the Assumption 1.

The LS estimator using the LS method based on the inputs φ
(1)
k and precise observations s

(1)
k (k =

1, 2, . . . , N1) is

θ̂N1 = (ΨT
1 Ψ1)

−1ΨT
1 S1. (22)

The ML estimator using the EM algorithm based on the inputs φ
(2)
k and binary-valued observations

s
(2)
k (k = 1, 2, . . . , N2) is

θ̂N2(t+ 1) = θ̂N2(t)−
(

N2
∑

k=1

φ
(2)
k

(

φ
(2)
k

)T

)−1(
N2
∑

k=1

σ2
2φ

(2)
k · fσ2

(

c−
(

φ
(2)
k

)T
θ̂N2(t)

)

[

I
{s

(2)
k

=1}

Fσ2

(

c− (φ
(2)
k )Tθ̂N2(t)

)
−

I
{s

(2)
k

=0}

1− Fσ2

(

c− (φ
(2)
k )Tθ̂N2(t)

)

])

, (23)

and the matrix form is

θ̂N2(t+ 1) = θ̂N2(t)− (ΨT
2 Ψ2)

−1ΨT
2 Ŝ2(t), (24)

where t represents the iteration time and

Ŝ2(t) = σ2
2























fσ2

(

c−
(

φ
(2)
1

)T
θ̂N2(t)

)

[

I
{s

(2)
1 =1}

Fσ2

(

c− (φ
(2)
1 )Tθ̂N2(t)

)

−
I
{s

(2)
1 =0}

1− Fσ2

(

c− (φ
(2)
1 )Tθ̂N2(t)

)

]

...

fσ2

(

c−
(

φ
(2)
N2

)T
θ̂N2(t)

)

[

I
{s

(2)
N2

=1}

Fσ2

(

c− (φ
(2)
N2

)Tθ̂N2(t)
)

−
I
{s

(2)
N2

=0}

1− Fσ2

(

c− (φ
(2)
N2

)Tθ̂N2(t)
)

]























. (25)

Furthermore, the EM algorithm can be easily extended to the case of multi-valued observations [28].

Consider the FIR systems (3), the iteration estimation process is as follows:

θ̂N2(t+ 1)= θ̂N2(t)−
(

N2
∑

k=1

φ
(2)
k

(

φ
(2)
k

)T

)−1




N2
∑

k=1

σ2
2φ

(2)
k ·





M
∑

j=1

I
{s

(2)
k

=qj}
· fσ2(k, j+1)−fσ2(k, j)

Fσ2 (k, j+1)−Fσ2(k, j)







, (26)

where fσ2(k, j) = fσ2(cj − (φ
(2)
k )Tθ̂N2(t)), Fσ2(k, j) = Fσ2(cj − (φ

(2)
k )Tθ̂N2(t)) and then the matrix form

can be written as

θ̂N2(t+ 1) = θ̂N2(t)− (ΨT
2 Ψ2)

−1ΨT
2 S̃2(t), (27)



Zhang H, et al. Sci China Inf Sci May 2019 Vol. 62 052203:9

S̃2(t) = σ2
2





















M
∑

j=1

I
{s

(2)
1 =qj}

· fσ2

(

1, j + 1
)

− fσ2

(

1, j
)

Fσ2

(

1, j + 1
)

− Fσ2

(

1, j
)

...
M
∑

j=1

I
{s

(2)
N2

=qj}
· fσ2

(

N2, j + 1
)

− fσ2

(

N2, j
)

Fσ2

(

N2, j + 1
)

− Fσ2

(

N2, j
)





















. (28)

Similarly, the key point of the proposed fusion estimation algorithm lies in choosing two suitable weight

matrixes for the QCCE so as to achieve the optimality as far as possible. However, the iteration algorithm

makes it not easy to solve this problem, which we will talk about in Section 4.

Remark 7. In the set-valued identification algorithms mentioned above, it is tacitly approved that all

the thresholds of the quantization sensor are known constants. In some situations, the thresholds are not

available.

In fact, for the binary-valued sensor, even if the threshold c is unknown, we can still detect it by a simple

transformation process. We replace the input φ̌
(2)
k = ((φ

(2)
k )T,−1)T and parameter θ̌ = (θT, c)T. Thus,

the new threshold is fixed as 0 and c can be estimated together with parameter θ by the corresponding

set-valued algorithm.

As for the multi-valued sensor, if all the thresholds c2, . . . , cM are unknown, we can adopt the same

method for the binary-valued sensor under periodic inputs because the algorithm is essentially to split the

multi-valued observations into binary-valued observations and fuse all the binary-valued estimators. But

under general inputs, we have to take steps to estimate the thresholds at the iteration process, such as

firstly estimating model parameter θ based on the EM algorithm (27) and then estimating the thresholds

using the gradient descent method [28].

4 Convergence property

In this section, we will evaluate the fusion estimation algorithm in terms of strong consistency and

asymptotic efficiency given the weight matrixes.

Theorem 1 (Strong consistency). Consider the FIR systems (7) under periodic inputs. Under As-

sumptions 1–3, the fused estimate θ̂Q given by the fusion estimation algorithm that consist of (6), (20)

and (21) is strongly consistent in that

θ̂Q → θ, w.p.1, N1 → ∞, N2 → ∞.

Proof. As is known to all, the LS method has the strong consistency under Assumptions 1 and 2, i.e.,

θ̂N1 → θ, w.p.1, N1 → ∞.

In reference to Theorem 3.5 in [9], the set-valued estimator θ̂N1 is strongly consistent under Assump-

tions 1–3, i.e.,

θ̂N2 → θ, w.p.1, N2 → ∞.

Thus, on the condition that Π1 +Π2 = I and the strong consistency of θ̂N1 and θ̂N2 , it is easy to prove

that

θ̂Q = Π1θ̂N1 +Π2θ̂N2 → Π1θ +Π2θ = Iθ = θ, w.p.1, N1 → ∞, N2 → ∞.

The assertion is proved.

Theorem 2 (CR lower bound). Consider the FIR systems (7). Under Assumptions 1 and 2, the

following conclusions hold:

(i) For periodic inputs, under Assumption 3, the CR lower bound of parameter θ based on the precise

and binary-valued observations and the corresponding inputs is

ΣCR =

(

N̄1

σ2
1

ΦT
1 Φ1 + N̄2Φ

T
2 ΛΦ2

)−1

. (29)
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In particular, when the two FIR systems have the same inputs, the CR lower bound of parameter θ

can be simplified as

ΣCR =
1

N̄1

(

ΦT
1

[

1

σ2
1

I + Λ

]

Φ1

)−1

, (30)

where I represents the n2 × n2 identity matrix, and Λ is an n2 × n2 diagonal matrix as follows:

Λ =



















f2
σ2

(

c− (φ
(2)
1 )Tθ

)

Fσ2

(

c− (φ
(2)
1 )Tθ

)[

1− Fσ2

(

c− (φ
(2)
1 )Tθ

)]
· · · 0

...
...

0 · · · f2
σ2

(

c− (φ
(2)
n2 )

Tθ
)

Fσ2

(

c− (φ
(2)
n2 )Tθ

)[

1− Fσ2

(

c− (φ
(2)
n2 )Tθ

)]



















. (31)

(ii) For general inputs, the CR lower bound of parameter θ based on precise and binary-valued obser-

vations and the corresponding inputs is

Σ∗
CR =

(

1

σ2
1

ΨT
1 Ψ1 +ΨT

2 Λ
∗Ψ2

)−1

. (32)

In particular, when the two FIR systems have the same inputs, the CR lower bound of parameter θ

can be simplified as

Σ∗
CR =

(

ΨT
1

[

1

σ2
1

I∗ + Λ∗

]

Ψ1

)−1

, (33)

where I∗ represents the N2 ×N2 identity matrix, and Λ∗ is an N2 ×N2 diagonal matrix as follows:

Λ∗=



















f2
σ2

(

c− (φ
(2)
1 )Tθ

)

Fσ2

(

c− (φ
(2)
1 )Tθ

)[

1− Fσ2

(

c− (φ
(2)
1 )Tθ

)]
· · · 0

...
...

0 · · ·
f2
σ2

(

c− (φ
(2)
N2

)Tθ
)

Fσ2

(

c− (φ
(2)
N2

)Tθ
)[

1− Fσ2

(

c− (φ
(2)
N2

)Tθ
)]



















. (34)

Proof. (i) Under the condition that periodic inputs φ
(1)
k (k = 1, . . . , N1) and φ

(2)
k (k = 1, . . . , N2)

and the noises d
(1)
k (k = 1, . . . , N1) and d

(2)
k (k = 1, . . . , N2) are i.i.d, the joint conditional probability

distribution function (i.e., likelihood function) of the precise observations s
(1)
k (k = 1, . . . , N1) and binary-

valued observations s
(2)
k (k = 1, . . . , N2) is

L(θ) =

N1
∏

k=1

P
(

s
(1)
k |θ, φ(1)

k

)

N2
∏

k=1

P
(

s
(2)
k |θ, φ(2)

k

)

=

n1
∏

k=1

N̄1
∏

i=1

P
(

s
(1)
(i−1)n1+k

|θ, φ(1)
k

)

n2
∏

k=1

N̄2
∏

k=1

P
(

s
(2)
(i−1)n2+k

|θ, φ(2)
k

)

=

n1
∏

k=1

N̄1
∏

i=1

fσ1

(

s
(1)
(i−1)n1+k

−
(

φ
(1)
k

)T
θ
)

·
n2
∏

k=1

N̄2
∏

k=1

[

I
{s

(2)

(i−1)n2+k
=1}

Fσ2

(

c−
(

φ
(2)
k

)T
θ
)

+ I
{s

(2)

(i−1)n2+k
=0}

(

1− Fσ2

(

c−
(

φ
(2)
k

)T
θ
))

]

.

Then the log-likelihood function is

l(θ) =

n1
∑

k=1

N̄1
∑

i=1

log
[

fσ1

(

s
(1)
(i−1)n1+k

−
(

φ
(1)
k

)T
θ
)]
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+

n2
∑

k=1

N̄2
∑

k=1

log

[

I
{s

(2)

(i−1)n2+k
=1}

Fσ2

(

c−
(

φ
(2)
k

)T
θ
)

+ I
{s

(2)

(i−1)n2+k
=0}

(

1− Fσ2

(

c−
(

φ
(2)
k

)T
θ
))

]

= −N1 log(
√
2πσ1) +

n1
∑

k=1

N̄1
∑

i=1

− 1

2σ2
1

(

s
(1)
(i−1)n1+k

− (φ1
k)

Tθ
)2

+

n2
∑

k=1

N̄2
∑

k=1

s
(2)
(i−1)n2+k

logFσ2

(

c−
(

φ
(2)
k

)T
θ
)

+
(

1− s
(2)
(i−1)n2+k

)

log
(

1− Fσ2

(

c−
(

φ
(2)
k

)T
θ
))

.

The first partial derivative of l(θ) is

∂l(θ)

∂θ
= − 1

σ2
1

n1
∑

k=1

N̄1
∑

i=1

(

s
(1)
(i−1)n1+k

−
(

φ
(1)
k

)T
θ
)

φ
(1)
k

+

n2
∑

k=1

N̄2
∑

k=1

[

s
(2)
(i−1)n2+k

−fσ2

(

c− (φ
(2)
k )Tθ

)

Fσ2

(

c− (φ
(2)
k )Tθ

)

+
(

1− s
(2)
(i−1)n2+k

) fσ2

(

c− (φ
(2)
k )Tθ

)

1− Fσ2

(

c− (φ
(2)
k )Tθ

)

]

φ
(2)
k .

We continue the partial process to obtain the second partial derivative of l(θ):

∂2l(θ)

∂θ2
=− 1

σ2
1

n1
∑

k=1

N̄1
∑

i=1

φ
(1)
k

(

φ
(1)
k

)T

+

n2
∑

k=1

N̄2
∑

k=1

[

s
(2)
(i−1)n2+k

(

−∂fσ2

(

c− (φ
(2)
k )Tθ

)

/∂θ

Fσ2

(

c− (φ
(2)
k )Tθ

)

− ∂f2
σ2

(

c− (φ
(2)
k )Tθ

)

/∂θ

F 2
σ2

(

c− (φ
(2)
k )Tθ

)

)]

φ
(2)
k

(

φ
(2)
k

)T

−
n2
∑

k=1

N̄2
∑

k=1

[

(

1−s
(2)
(i−1)n2+k

)

(

∂fσ2

(

c−(φ
(2)
k )Tθ

)

/∂θ

1−Fσ2

(

c−(φ
(2)
k )Tθ

)
+

∂f2
σ2

(

c−(φ
(2)
k )Tθ

)

/∂θ
(

1−F 2
σ2

(

c−(φ
(2)
k )Tθ

))2

)]

φ
(2)
k

(

φ
(2)
k

)T
.

Notice that Es
(2)
(i−1)n2+k

= Fσ2(c− (φ
(2)
k )Tθ), 1 6 i 6 N̄2, 1 6 k 6 n2. As a result, the CR lower bound

can be calculated as

ΣCR = −
(

E
∂2l(θ)

∂θ2

)−1

=

(

N̄1

σ2
1

n1
∑

k=1

φ
(1)
k

(

φ
(1)
k

)T
+ N̄2

n2
∑

k=1

f2
σ2

(

c− (φ
(2)
k )Tθ

)

Fσ2

(

c− (φ
(2)
k )Tθ

)[

1− Fσ2

(

c− (φ
(2)
k )Tθ

)]

φ
(2)
k

(

φ
(2)
k

)T

)−1

,

and then, the matrix form can be expressed as

ΣCR =

(

N̄1

σ2
1

ΦT
1 Φ1 + N̄2Φ

T
2 ΛΦ2

)−1

.

In particular, the inputs of two FIR systems are same, i.e., Φ1 = Φ2, N̄1 = N̄2, so it is not difficult to

obtain (30).

(ii) For the case of general inputs, the proof process is similar to that in (i).

Theorem 3 (Asymptotic efficiency). Consider the FIR systems (7) under periodic inputs. Under

Assumptions 1–3, define two matrixes Σ1 and Σ2 as follows:

Σ1 =
σ2
1

N̄1
(ΦT

1 Φ1)
−1, Σ2 =

1

N̄2
(ΦT

2 ΛΦ2)
−1, (35)

where Λ is defined in Theorem 2. By selecting two weight matrixes

Π1 = (Σ−1
1 +Σ−1

2 )−1Σ−1
1 , Π2 = (Σ−1

1 +Σ−1
2 )−1Σ−1

2 , (36)

the fused estimate θ̂Q is the optimal QCCE in that it is asymptotically efficient, namely,

Σ−1
CR

[

E(θ̂Q − θ)(θ̂Q − θ)T − ΣCR

]

→ 0, N2 → ∞. (37)
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Proof. In fact, Σ1 and Σ2 are the CR lower bound of parameter θ based on the only precise observations

and the only binary-valued observations, respectively. And it can be easily proved that LS estimator θ̂N1

can achieve the CR lower bound Σ1 and the set-valued estimator θ̂N2 is asymptotically efficient, that is

to say,

E(θ̂N1 − θ)(θ̂N1 − θ)T = Σ1, E(θ̂N2 − θ)(θ̂N2 − θ)T → Σ2, N2 → ∞.

Then, we have

E(θ̂Q − θ)(θ̂Q − θ)T = E
(

Π1θ̂N1 +Π1θ̂N2 − (Π1 +Π2)θ)(Π1 θ̂N1 +Π1θ̂N2 − (Π1 +Π2)θ
)T

= Π1E(θ̂N1 − θ)(θ̂N1 − θ)TΠT
1 +Π2E(θ̂N2 − θ)(θ̂N2 − θ)TΠT

2

+Π1E(θ̂N1 − θ)(θ̂N2 − θ)TΠT
2 +Π2E(θ̂N2 − θ)(θ̂N1 − θ)TΠT

1 .

Because the noises d
(1)
k (1 6 k 6 N1) and d

(2)
k (1 6 k 6 N2) are i.i.d and the LS estimator θ̂N1 is

unbiased, we can obtain that

Π1E(θ̂N1 − θ)(θ̂N2 − θ)TΠT
2 = Π1E(θ̂N1 − θ)E(θ̂N2 − θ)TΠT

2 = 0,

Π2E(θ̂N2 − θ)(θ̂N1 − θ)TΠT
1 = Π2E(θ̂N2 − θ)E(θ̂N1 − θ)TΠT

1 = 0.

Thus,

E(θ̂Q − θ)(θ̂Q − θ)T = Π1E(θ̂N1 − θ)(θ̂N1 − θ)TΠT
1 +Π2E(θ̂N2 − θ)(θ̂N2 − θ)TΠT

2

→ (Σ−1
1 +Σ−1

2 )−1Σ−1
1 Σ1Σ

−1
1 (Σ−1

1 +Σ−1
2 )−1

+ (Σ−1
1 +Σ−1

2 )−1Σ−1
2 Σ2Σ

−1
2 (Σ−1

1 +Σ−1
2 )−1 (N2 → ∞)

= (Σ−1
1 +Σ−1

2 )−1 , ΣCR.

Until now, the proof is completed.

For the case of general inputs, we also choose the two weight matrixes Π∗
1 and Π∗

2 for LS estimator and

set-valued estimator in terms of their own CR lower bound, i.e.,

Π∗
1 = (Σ−1

1∗ +Σ−1
2∗ )

−1Σ−1
1∗ , Π∗

2 = (Σ−1
1∗ +Σ−1

2∗ )
−1Σ−1

2∗ ,

where Σ1∗ and Σ2∗ are defined as

Σ1∗ =

(

1

σ2
1

ΨT
1 Ψ1

)−1

, Σ2∗ = (ΨT
2 Λ

∗Ψ2)
−1.

Because the fusion estimation algorithm is based on the EM iterative algorithm for set-valued identi-

fication, we cannot analyze its convergence properties from a theoretical point of view and decide if the

fused QCCE is the optimal QCCE. However, extensive numerical simulations will be conducted to show

its performance.

5 Simulation

In this section, we will conduct extensive simulations in different situations that include input sources

(same or different) and input types (periodic or general) to evaluate the convergent properties of the

proposed fusion estimation algorithm.

Consider the FIR systems (7). The goal is to estimate the parameter θ based on all the precise

observations and set-valued observations and the corresponding inputs. For periodic inputs, the fusion

estimation algorithm that is consisted of (6), (20) and (21) is adopted. As for general inputs, the fusion

estimation algorithm that is consisted of (6), (22) and (24) is adopted.
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Figure 1 (Color online) Two FIR systems have same periodic inputs. (a) The estimation results of parameter θ including

θ̂N1
(LS), θ̂N2

(set-value) and θ̂Q (QCCE); (b) the asymptotic efficiency of estimation error of the QCCE by the evaluation

criterion E(θ̂Q − θ)T(θ̂Q − θ) with 500 replicated simulations.

5.1 Periodic inputs

(i) Same inputs. Let θ = (−1, 0, 1)T and c = 1. The system noises d
(1)
k and d

(2)
k , k > 1 satisfy

Assumption 2 with σ1 = 3 and σ2 = 2, respectively. The two input matrixes are

Φ1 = Φ2 = (φ1, φ2, φ3)
T =









1 0 2

1 1 0

2 3 1









.

By varying sample size N̄1(= N̄2) from 50 to 500, we compare the performance of the QCCE θ̂Q with

the set-valued estimate θ̂N2 and the LS estimate θ̂N1 (see Figure 1).

(ii) Different inputs. Let θ = (−1, 0, 1)T and c = 1. The system noises d
(1)
k and d

(2)
k , k > 1 satisfy

Assumption 2 with σ1 = 1 and σ2 = 2, respectively. The two input matrixes are

Φ1 = (φ1
1, φ

1
2, φ

1
3)

T =









1 0 2

1 1 0

2 3 1









, Φ2 = (φ2
1, φ

2
2, φ

2
3)

T =









1 2 1

0 1 1

2 1 0









.

We fix N̄1 = 30 and vary N̄2 from 10 to 300, and then compare the performance of the QCCE θ̂Q with

the set-valued estimate θ̂N2 (see Figure 2).

In general, when two systems have same periodic inputs, which indicates that the total samples are

same, the identification effect based on the precise observations is better than that based on the set-

valued observations. But the system noise variance or SNR (signal to noise ratio) is also not neglected.

Figures 1(a) and 2(a) show the fused QCCE can converge to the true value faster than only utilizing LS

method for precise identification or empirical measurement method for set-valued identification regardless

of the noise and input source. And Figure 2(a) also shows the identification effect will have a significant

improvement based on some set-valued observations by adding few precise observations. It can be inferred

from Figures 1(b) and 2(b) that the fused QCCE is optimal and asymptotic in that its estimation error

can achieve the CR lower bound.

5.2 General inputs

(i) Same inputs. Let θ = (1, 3)T and c = 4. The system noises d
(1)
k and d

(2)
k , k > 1 satisfy Assumption 2

with σ1 = 3 and σ2 = 2, respectively. The input matrix is randomly generated from a uniform distribution

in the interval [0,2]. Similarly, by varying sample size N̄1(= N̄2) from 20 to 300, we compare the

performance of the QCCE θ̂Q with the set-valued estimate θ̂N2 and the LS estimate θ̂N1 (see Figure 3).
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Figure 2 (Color online) Two FIR systems have different periodic inputs and the sample size of precise observations is

fixed. (a) The estimation results of parameter θ including θ̂N2
(set-value) and θ̂Q (QCCE); (b) the asymptotic efficiency of

estimation error of the QCCE by the evaluation criterion E(θ̂Q − θ)T(θ̂Q − θ) with 500 replicated simulations.
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Figure 3 (Color online) The estimation results of param-

eter θ including θ̂N1
(LS), θ̂N2

(set-value) and θ̂Q (QCCE)

when two FIR systems have same general inputs.

Figure 4 (Color online) The estimation results of param-

eter θ including θ̂N2
(set-value) and θ̂Q (QCCE) when two

FIR systems have different general inputs and the sample

size of precise observations is fixed.

(ii) Different inputs. Let θ = (1, 3)T and c = 2. The system noises d
(1)
k and d

(2)
k , k > 1 satisfy

Assumption 2 with σ1 = 2 and σ2 = 2, respectively. The two input matrixes are both randomly generated

from a uniform distribution in the intervals [0,2] and [−2,2], respectively. Similarly, We fix N̄1 = 50 and

vary N̄2 from 20 to 300, and then compare the performance of the QCCE θ̂Q with the set-valued estimate

θ̂N2 (see Figure 4).

Figures 3 and 4 display the estimation results when two FIR systems have same and different general

inputs, respectively. We can obtain the similar conclusion that the fused QCCE can converge to the

true value faster than only utilizing LS method for precise identification or EM method for set-valued

identification. Furthermore, the QCCE can get twice the result with half the effort only depending on

few precise observations and some set-valued observations.

In short, the QCCE for the fusion estimation algorithm has a faster convergent speed and certain

robustness for system noises by making full use of both advantages of identification methods for precise

and set-valued observations.
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6 Summary

This paper proposed a fusion estimation algorithm for the system identification problem of FIR systems

with set-valued and precise observations received from multiple sensors. According to the principle of

distributed fusion, individual sensors give their local estimates based on their own observations of different

data types by some excellent identification algorithms in the local estimation stage, respectively. Then,

we fuse the two estimators by a linear combination with appropriate weights to obtain the QCCE. In

addition, it is proved theoretically that the fusion estimation algorithm that makes full use of all the

available information has better convergent properties than a single system identification algorithm using

only the observations received from single sensor under periodic inputs. Furthermore, extensive numerical

simulations show the good performance of the fusion estimation algorithm even under general inputs.

Generally speaking, given the model structure, the effect of parameter estimation mainly depends

on the available data and the identification algorithm. Different identification algorithms correspond

to different types of data. In the system identification community, researchers’ attention is focused on

developing the effective identification algorithms with single data type of observations. Information fusion

theory provides us a unified framework for obtaining better parameter estimation with all the available

data of different types utilized fully, which brings a new perspective for system identification problems.

Furthermore, sample size and data accuracy are two main factors taken into account when analyzing

the data. In order to get a good estimation effect, a certain number of samples are needed for precise

observations but more samples are necessary for set-valued observations due to the limitation of less

accurate information. The proposed fusion estimation algorithm in this paper can absorb the advantages

of the two identification algorithms. That is to say, it can achieve a better estimation effect with just a

few precise and many set-valued observations. In addition, though the paper only considers the system

identification problem for FIR systems, the framework of the proposed estimation fusion algorithm can

be easily extended to other systems. How to find out the corresponding algorithms for each sensor in

the local estimation stage and how to choose an appropriate fusion strategy are the problems of great

significance and worthy of further research.
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