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Abstract In this paper, we consider the decentralized optimal control problem for linear discrete-time

systems with multiple input channels. First, under centralized control, the optimal feedback gains are given

in terms of two algebraic Riccati equations. A reduced order observer is then designed using only the

local input and output information. By selecting an appropriate initial value for the observer, we derive

an observer-based decentralized optimal controller where the feedback gain is the same as that obtained

in the centralized optimal control problem. Last but not least, we study the optimal control problem of

non-homogeneous multi-agent systems as an application. A suboptimal decentralized controller is obtained

and the difference between the suboptimal cost and the optimal one is given.
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1 Introduction

Control problems for large scale systems consisting of a number of subsystems appear in many fields,

such as engineering, social, economic and biological systems [1–8]. Centralized control of these systems

requires a central station and a communication network to transfer information between subsystems and

the central station. This may prevent the implementation of the centralized control due to physical

constraints such as high cost of cabling and limited communication bandwidth. It is thus preferred to

design a decentralized control scheme using the available local input and output information. Power

systems, communication networks and economic systems are examples where decentralized control is

used.

A large number of scholars have tried to solve the decentralized control problem [9–15]. The main idea

behind designing decentralized controllers is the use of local information to achieve some desired global

performance. In [16], a reduced-order observer was proposed to implement decentralized control. A

decentralized networked control system was studied in [17] where the decentralized and networked control

are combined with the control loops closed through a network. Ref. [6] studied the decentralized H2

control problem for multi-channel linear time-invariant stochastic systems governed by an Itô’s differential

equation in terms of a stochastic algebraic Riccati equation (ARE) and a linear matrix inequality. Large

scale systems with time delay have been studied in [18]. For a multi-agent system, Ref. [14] designed

an observer-based distributed control protocol and derived the necessary and sufficient condition for

consensusability under this control protocol. In [19], distributed controllers were designed based on the

*Corresponding author (email: juanjuanxu@sdu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9617-0&domain=pdf&date_stamp=2019-4-3
https://doi.org/10.1007/s11432-018-9617-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9617-0
https://doi.org/10.1007/s11432-018-9617-0


Xu J J, et al. Sci China Inf Sci May 2019 Vol. 62 052202:2

topological structure of the system and suboptimal feedback gain matrices of the distributed controllers

were obtained by using an ‘averaged’ optimization approach. For more related studies on distributed

control, please refer to [6, 20, 21] and the references therein. Note that the multi-agent systems in the

literature are mostly homogeneous and the study for nonhomogeneous one is much more involved.

This paper considers the decentralized optimal control problem for linear systems with multiple input

channels. First, under centralized control, the optimal feedback gains are given in terms of the solutions

of two AREs. It is noted that the calculation of the feedback gains is computation saving than the

augmentation technique. Second, we design a reduced order observer using only the local input and

output information which is available to each subsystem. It is shown that the observer-based decentralized

controller is optimal by selecting an appropriate initial value for each local state observer and using the

same feedback gain as the one obtained in the centralized optimal control. As an application, we study the

optimal control problem for multi-agent systems which are non-homogenous. A suboptimal decentralized

control is presented by using the reduced order observer.

The rest of this paper is organized as follows. The problem is formulated in Section 2. Section 3 presents

the optimal feedback gains by considering the centralized optimal control problem. The decentralized

optimal control problem is studied in Section 4 by a reduced order observer approach. A suboptimal

control problem for multi-agent systems is considered in Section 5. One numerical example is given in

Section 6. Some concluding remarks are drawn in Section 7.

2 Problem formulation

Consider the system with multiple inputs channels

x(k + 1) = Ax(k) +

N
∑

i=1

Biui(k), (1)

yi(k) = Cix(k), i = 1, 2, . . . , N, (2)

where x ∈ R
n is the state, ui ∈ R

mi and yi ∈ R
ri , i = 1, . . . , N are the i-th control input and measurement

output of the system, respectively. A ∈ R
n×n, Bi ∈ R

n×mi , i = 1, . . . , N are constant matrices. The

initial condition is given by x(0) = x0. In particular, it is assumed without loss of generality that

Ci = [Iri 0], where Iri is an identity matrix of dimension ri. Note that any full row rank matrix can be

transformed into this form by an orthogonal transformation matrix [16] and it means that there is no

redundant measurement in the output which is the case for many real applications. The cost function is

defined by

J =

∞
∑

k=0

[

x′(k)Qx(k) +

N
∑

i=1

u′
i(k)Riui(k)

]

, (3)

where Q, Ri, i = 1, . . . , N are positive semi-definite matrices with compatible dimensions. Superscript

“ ′ ” represents transposition.

We define the admissible set of controllers as

U1
ad × · · · × UN

ad = {(u1, . . . , uN) ∈ l2 × · · · × l2, such that the associated state x ∈ l2},

where l2 denotes the set of square summable functions.

The main feature of decentralized control is that it uses only local information to produce control laws.

We thus assume that the only information available to the i-th control input in system (1) is the local

output yi. Our aim is to design decentralized optimal controllers ui(k) to minimize the cost function J

subject to (1) and (2) using only information available to the i-th control input.
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3 Centralized optimal control problem

Before designing the decentralized optimal controllers, we first consider the centralized control problem

minuN
· · ·minu1 J from which the decentralized controller gains are derived. For the solvability of the

centralized optimal control problem, we make two assumptions which aim to guarantee the stabilizability

of the system and the solvability of a standard ARE.

Assumption 1. (A1) (A,B1) is stabilizable; (A2) (A,Q) is observable.

Define the AREs

P = A′PA+Q−A′PB1Γ
−1
1 B′

1PA, (4)

and

L = A′Υ′
1Υ

′
2 · · ·Υ

′
NL(I +ΦN−1L)

−1ΥN · · ·Υ2Υ1A−A′Υ′
1ΨN−1Υ1A, (5)

where

Γ1 = R1 +B′
1PB1, Υ1 = I −B1Γ

−1
1 B′

1P, Γ2 = R2 +B′
2PΥ1B2,

Υ2 = I −Υ1B2Γ
−1
2 B′

2P, Γ3 = R3 +B′
3PΥ2Υ1B3, Υ3 = I −Υ2Υ1B3Γ

−1
3 B′

3P,

...

ΓN = RN +B′
NPΥN−1 · · ·Υ1BN , ΥN = I −ΥN−1 · · ·Υ1BNΓ−1

2 B′
NP,

Φ1 = B1Γ
−1
1 B′

1 +Υ1B2Γ
−1
2 B′

2Υ1, Ψ1 = PB2Γ
−1
2 B′

2P,

...

ΦN−1 = B1Γ
−1
1 B′

1 +Υ1B2Γ
−1
2 B′

2Υ1 + · · ·+ΥN−1 · · ·Υ1BNΓ−1
N B′

NΥ′
1 · · ·Υ

′
N−1,

ΨN−1 = PB2Γ
−1
2 B′

2P +Υ′
2PB3Γ

−1
3 B′

3PΥ2 + · · ·+Υ′
2 · · ·Υ

′
N−1PBNΓ−1

N B′
NPΥN−1 · · ·Υ2.

Based on the above denotations, we obtain the necessary and sufficient condition for the solvability of

problem minuN
· · ·minu1 J .

Theorem 1. Under Assumption 1, the optimization problem minuN
· · ·minu1 J s.t. (1) has a unique

solution if and only if the following statements hold:

(i) ARE (4) has a solution such that Γ1 > 0, . . . ,ΓN > 0;

(ii) ARE (5) has a solution such that the matrix (I +ΦN−1L)
−1Υ2Υ1A is stable.

In this case, the centralized optimal controllers are given by ui(k) = Kix(k), i = 1, . . . , N , where

Ki = −Γ−1
i B′

iΥ
′
1 · · ·Υ

′
i−1Υ

′
i+1 · · ·Υ

′
N [P + L(I +ΦN−1L)

−1ΥN · · ·Υi+1Υi−1 · · ·Υ1]A. (6)

Proof. The proof is presented in Appendix A.

Remark 1. By letting B = [B1 · · · BN ], R = diag{R1, . . . , RN} and u(k) = [u′
1(k) · · · u′

N (k)]′, the

optimal solution can also be given as u(k) = −(R+ B′PB)−1B′PAx(k), where P is the solution to the

standard Riccati equation P = A′PA+Q−A′PB(R+B′PB)−1B′PA. The above is commonly referred

to as augmentation approach which has more expensive computation than the presented approach, espe-

cially when the number of the input channels and/or the dimension of the inputs are large. In fact, if we

apply the augmentation approach to the problem, a Riccati equation with an inversion of a matrix with

dimension
∑N

i=1 mi is to be solved and thus the operation number (the total number of multiplication and

division) can be roughly estimated as O((
∑N

i=1 mi)
3)+O(n2

∑N

i=1 mi) +O(n(
∑N

i=1 mi)
2) +O(n3). If we

apply the presented approach in this paper, we need to solve the two Riccati equations, in which the com-

putation cost can be roughly computed as O(n3)+Q(n2
∑N

i=1 mi)+Q(n(
∑N

i=1 mi)
2)+Q(

∑N

i=1 m
3
i ). It is

easy to know thatO((
∑N

i=1 mi)
3)+O(n2

∑N

i=1 mi)+O(n(
∑N

i=1 mi)
2)+O(n3) ≫ O(n3)+Q(n2

∑N

i=1 mi)+

Q(n(
∑N

i=1 mi)
2) +Q(

∑N

i=1 m
3
i ) when

∑N

i=1 mi is large.
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4 Decentralized optimal control problem

We now consider the decentralized control problem. Introduce the reduced order observer

ẑi(k + 1) = Eiẑi(k) + Liyi(k) +MiBiui(k), (7)

x̂i(k) = Viẑi(k) +Wiyi(k), (8)

where Ei ∈ R
si×si , Li ∈ R

si×ri , Mi ∈ R
si×n, Vi ∈ R

n×si , Wi ∈ R
n×ri are constant matrices to be

determined with Ei stable, and the following equalities hold:

MiBj = 0 (j = 1, . . . , N, j 6= i), (9)

MiA− EiMi = LiCi, ViMi +WiCi = I. (10)

Note that the solvability of (9) and (10) is the key for the design of the observer (7) and (8). By a

similar procedure in [16], Eqs. (9) and (10) can be solved if (m −mi)si + (n − ri)si + (n − ri)n 6 sin

where m =
∑N

i=1 mi or mi + ri > m and si >
(n−ri)n

mi+ri−m
. However, the exact solution may not always be

found. An alternative procedure for solving matrices Mi and Li has been proposed in [16]. The details

are omitted here to avoid duplications. However, it is noted that a stability bound condition is needed

in [16] to ensure the stability of the closed-loop system under the alternative matrices. To this end, a

suboptimal algorithm will be given in Section 5.

4.1 Stability analysis

Let the decentralized controllers be

ui(k) = K̂ix̂i(k), i = 1, . . . , N, (11)

where K̂i are constant matrices such that A+B1K̂1+ · · ·+BNK̂N are stable. We then have the stability

of the closed-loop system (1) with the controllers (11).

Lemma 1. Considering the system (1) and the control law (11), it holds that

lim
k→∞

x(k) = lim
k→∞

x̂i(k) = 0, i = 1, . . . , N. (12)

Proof. Let zi(k) = Mix(k); then

zi(k + 1) = MiAx(k) +MiBiui(k) = Eizi(k) + Liyi(k) +MiBiui(k). (13)

Denote ei(k) = zi(k) − ẑi(k); then ei(k + 1) = Eiei(k). Using the stability of the matrix Ei, we have

limk→∞ ei(k) = 0. Combining with (10) and (8), it yields

lim
k→∞

[x(k) − x̂i(k)] = lim
k→∞

[ViMix(k) +WiCix(k)− Viẑi(k)−Wiyi(k)]

= lim
k→∞

[ViMix(k) − Viẑi(k)] = lim
k→∞

[Viei(k)] = 0. (14)

In addition, applying the controller (11) to (1) yields that

x(k + 1) =

[

A+
N
∑

i=1

BiK̂i

]

x(k) +
N
∑

i=1

BiK̂i[x̂i(k)− x(k)].

From the stability of A+
∑N

i=1 BiK̂i and (14), one has limk→∞ x(k) = 0. The proof is now completed.

Remark 2. In [11], it has been obtained that there exist decentralized linear time-invariant local control

laws with dynamic compensation to stabilize a given system if and only if the system has no unstable fixed

modes which correspond to the uncontrollable modes and unobservable modes in the usual centralized

control case. In Lemma 1, the above conditions hold. On one hand, the feedback gains K̂i are selected

such that A + B1K̂1 + · · · + BNK̂N is stable which implies that the uncontrollable modes are stable.

On the other hand, the reduced order observer (7) and (8) satisfying (9) and (10) with Ei being stable

implies that the unobservable modes are stable. Hence, the system can be stabilized by a decentralized

control.
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4.2 Decentralized optimal controllers

Design the decentralized controllers

ui = Kix̂i(k), i = 1, . . . , N, (15)

where the feedback gains Ki as given by (6). We now show the decentralized controllers (15) is optimal.

Theorem 2. Consider system (1) and (2) satisfying Assumption 1. The decentralized controllers (15)

are optimal in minimizing the cost function (3) if the initial values of the reduced order observers (7) and

(8) are given by

ẑi(0) = Mix(0), i = 1, . . . , N. (16)

Proof. From zi(k) = Mix(k) and (10), we have x(k) = [Vi Wi][
zi(k)

yi(k)
]. Using again (10) yields that

[

zi(k)

yi(k)

]

=

[

Mi

Ci

]

x(k).

Assume that (16) holds; then zi(0) = ẑi(0). From the fact that zi(k + 1)− ẑi(k + 1) = Ei[zi(k)− ẑi(k)],

we have zi(k)− ẑi(k) = 0, ∀k > 0. This implies that x̂i(k) = x(k), i = 1, . . . , N for all k > 0. Combining

with Theorem 1, the proof is now completed.

5 Application to multi-agent systems

As an application, we now consider the multi-agent system with the dynamic of the i-th agent given by

xi(k + 1) = Aixi(k) +Biui(k), (17)

yi(k) = Cixi(k), i = 1, . . . , N, (18)

where xi ∈ R
n, ui ∈ R

mi , yi ∈ R
ri . By stacking all xi into one variable x(k) = [x1(k) · · · xN (k)]′, we

have

x(k + 1) = Āx(k) + B̄1u1(k) + · · ·+ B̄NuN(k), (19)

yi(k) = C̄ix(k),

with Ā = diag{A1, . . . , AN}, B̄i = [0 · · · 0 Bi 0 · · · 0]′, C̄i = [0 · · · Ci · · · 0]. The cost function of the

system is defined as the general quadratic form

J̄ =

∞
∑

k=0

[

x′(k)Q̄x(k) +

N
∑

i=1

u′
i(k)R̄iui(k)

]

, (20)

where Q̄ > 0, R̄i > 0, i = 1, . . . , N . Similar to Assumption 1, we make Assumption 2 for the multi-agent

system.

Assumption 2. System (Ai, Bi), i = 1, . . . , N is stabilizable.

Denote B̄ = [B̄1 · · · B̄N ]. Then, the system (Ā, B̄) is stabilizable. This implies that the following

Riccati equation admits a nonnegative definite solution:

P̄ = Ā′P̄ Ā+ Q̄− Ā′P̄ B̄(diag{R̄1, . . . , R̄N}+ B̄′P̄ B̄)−1B̄′P̄ Ā.

Denote

[K̄ ′
1 · · · K̄ ′

N ]′ = −(diag{R̄1, . . . , R̄N}+ B̄′P̄ B̄)−1B̄′P̄ Ā. (21)

Note that Eqs. (9) and (10) are unsolvable for the multi-agent system (17). We thus modify the

observer as follows:

ẑi(k + 1) = Eiẑi(k) + Liyi(k) +MiB̄iui(k), (22)
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x̂i(k) = Viẑi(k) +Wiyi(k), (23)

where

Mi =









0 · · · 0 mi1 0 · · · 0
...

0 · · · 0 misi 0 · · · 0









∈ R
siN×nN ,

and Ei is stable. Different from (10), the matrices are assumed to satisfy MiĀ− EiMi = LiC̄i and that

Ā+
∑N

i=1 B̄iK̄i(ViMi +WiC̄i) is stable. Then, the result for multi-agent system is stated as follows.

Theorem 3. Consider system (17) and (18) satisfying Assumption 2 and the associated optimization

problem of minimizing J̄ . A suboptimal decentralized controller is given by

ui(k) = K̄ix̂i(k), i = 1, . . . , N, (24)

where x̂i(k) is defined by the observer (22) and (23) with the initial value ẑi(0) = [mi1 · · · misi ]
′xi(0)

and the feedback gain K̄i is given by (21). The suboptimal cost is given by

J∗
sub = x′(0)Υx(0), (25)

where Υ =
∑∞

k=0[(Ã
k)′(Q̄+

∑N

i=1(ViMi+WiC̄i)
′K̄ ′

iR̄iK̄i(ViMi+WiC̄i))Ã
k] and Ã = Ā+

∑N

i=1 B̄iK̄i(ViMi

+WiC̄i).

Proof. Reformulating (19), it yields that x(k + 1) = Āx(k) + B̄ū(k) where ū(k) = [u1(k) · · · uN (k)]′.

Thus, the optimal controllers can be given by ui(k) = K̄ix(k) with K̄i given by (21). On the other hand,

applying similar procedures to the proof of Theorem 2 and letting zi(k) = Mix(k), we have zi(k + 1) =

Eizi(k)+Liyi(k)+MiB̄iui(k). Note that the initial value of the observer ẑi(0) = [mi1 · · · misi ]
′xi(0). By

combining with the structure of the matrix Mi, we have ẑi(0) = Mix(0). This implies that ẑi(0) = zi(0).

Together with ẑi(k + 1) − zi(k + 1) = Ei[ẑi(k) − zi(k)], it yields that ẑi(k) = z(k). From (23), it is

obtained that

x̂i(k) = (ViMi +WiC̄i)x(k). (26)

Applying the decentralized control (24), the system becomes x(k + 1) = Āx(k) +
∑N

i=1 B̄iK̄ix̂i(k) =

Ãx(k), where the matrix Ã is stable as designed in the observer. Thus, the corresponding suboptimal

cost function (25) follows. The proof is now completed.

Remark 3. It is noted that the controller (24) with the observer (22) and (23) is suboptimal rather

than optimal as stated in Theorem 3. The difference between the suboptimal cost (25) and the optimal

cost is given by ∆J = x′(0)(Υ − P̄ )x(0). This is due to the fact that (9) and (10) are unsolvable for the

system (19), that is, x̂i(k) is no longer equal to x(k). Instead, we select the matrices Ei, Mi, Li, Vi, Wi

such that Ã is stable and (26) holds. This gives rise to a suboptimal controller.

6 Numerical example

Consider a modular system existing in teams of vehicles flying in formation which is governed by g1(k +

1) = g1(k)+ū1(k), g2(k+1) = 2g2(k)+ū2(k), g3(k+1) = 3g3(k)+ū3(k). The input is ūi(k) and the output

is given by ȳi(k) = gi(k) for i = 1, 2, 3. To guarantee the subsystems maintain a special formulation, i.e.,

g1(k) → 1, g2(k) → 2, g1(k) → 3 for k → ∞, we denote x1(k) = g1(k) − 1, x2(k) = g2(k) − 2,

x3(k) = g3(k)− 3, u1(k) = ū1(k), u2(k) = ū2(k) + 2, u3(k) = ū3(k) + 6. Then the system is reformulated

as x1(k + 1) = x1(k) + u1(k), x2(k + 1) = 2x2(k) + u2(k), x3(k + 1) = 3x3(k) + u3(k), where the input

is ui(k) and the output is given by yi(k) = xi(k) for i = 1, 2, 3. Consider the cost function (20) with the

weighting matrices selected as

Q̄ =









2 −1 −1

−1 1 0

−1 0 1









,
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Figure 1 (Color online) The state trajectories with suboptimal distributed controller.

R̄1 = 4, R̄2 = 2, R̄3 = 3. Design the observer (22) and (23) with Ei = [ 0.5 0.3
1 −0.5 ], i = 1, 2, 3 and

L1 = [0.7 − 0.5]′, L2 = [−1.5 24]′, L3 = [2 33]′,

M1 =

[

2 0 0

1 0 0

]

, M2 =

[

0 1 0

0 10 0

]

, M3 =

[

0 0 2

0 0 10

]

,

V1 =









2 −1

0 0

0 0









, V2 =









0 0

1.8 −0.01

0 0









, V3 =









0 0

0 0

0.1 0.1









,

W1 = [−1 0 0]′, W2 = [0 − 0.5 0]′, W3 = [0 0 − 0.2]′.

According to Theorem 3, the suboptimal decentralized controller is chosen by ui(k) = K̄ix̂i(k) where

K̄1 = [−0.4795 0.0730 0.0502], K̄2 = [0.0730 −1.5561 0.0082], K̄3 = [0.0223 0.0036 −2.6775]. In this case,

the dynamic of the augmented system is x(k+1) = diag{0.0409, 0.1326, 0.3225}x(k). The corresponding

state trajectories with the initial value [0.5 0.2 1]′ are illustrated in Figure 1 which converge to zero for

all the agents, that is, g1(k) → 1, g2(k) → 2, g3(k) → 3 for k → ∞.

Following Theorem 3, the suboptimal cost is 254.1311. Noting that the multi-agent systems studied

in [14,19,20] are homogeneous, the method therein can not be applied. To make a comparison, we derive

the optimal cost by using the centralized optimal control as 245.9306. It is seen that the gap between

the derived suboptimal cost and the optimal cost is tiny. This indicates the effectiveness of the proposed

algorithm.

7 Conclusion

In this paper, we studied the decentralized optimal control problem for linear systems with multiple

input channels. The centralized optimal controller was first given in terms of two AREs. By introducing

an observer involving only the available information to the subsystem, an observer-based decentralized

optimal controller was derived by an appropriate initial state and using the same feedback gain as the

one obtained in the centralized optimal control problem. We also obtained a suboptimal decentralized

controller by applying the reduced order observer for multi-agent systems. The difference between the

suboptimal cost and the optimal one was given.



Xu J J, et al. Sci China Inf Sci May 2019 Vol. 62 052202:8

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61403235,

61573221, 61633014, 61873332) and Qilu Youth Scholar Discipline Construction Funding from Shandong University.

References

1 Bellman R. Large systems. IEEE Trans Autom Control, 1974, 19: 464–465

2 Lavaei J, Aghdam A G. Overlapping control design for multi-channel systems. Automatica, 2009, 45: 1326–1331

3 Lamperski A, Lessard L. Optimal decentralized state-feedback control with sparsity and delays. Automatica, 2015,

58: 143–151

4 Lessard L. A separation principle for decentralized state-feedback optimal control. In: Proceedings of the 51st Annual

Allerton Conference, Illinois, 2013. 528–534

5 Nishio Y, Murata Y, Yamaya Y, et al. Optimal calibration scheme for map-based control of diesel engines. Sci China

Inf Sci, 2018, 61: 070205

6 Mukaidani H, Xu H, Dragan V. Decentralized H2 control for multi-channel stochastic systems. IEEE Trans Autom

Control, 2015, 60: 1080–1086

7 Li T, Zhang J F. Asymptotically optimal decentralized control for large population stochastic multiagent systems.

IEEE Trans Autom Control, 2008, 53: 1643–1660

8 Pindyck R. Optimal economic stabilization policies under decentralized control and conflicting objectives. IEEE Trans

Autom Control, 1977, 22: 517–530

9 Bakule L. Decentralized control: an overview. Annu Rev Control, 2008, 32: 87–98

10 Sandell N, Varaiya P, Athans M, et al. Survey of decentralized control methods for large scale systems. IEEE Trans

Autom Control, 1978, 23: 108–128

11 Wang S H, Davison E. On the stabilization of decentralized control systems. IEEE Trans Autom Control, 1973, 18:

473–478

12 Wang Z J, Li H J, Xu Z. Real-world traffic analysis and joint caching and scheduling for in-RAN caching networks.

Sci China Inf Sci, 2017, 60: 062302

13 Xu D B, Ugrinovskii V. Decentralized measurement feedback stabilization of large-scale systems via control vector

Lyapunov functions. Syst Control Lett, 2013, 62: 1187–1195

14 You K Y, Xie L H. Coordination of discrete-time multi-agent systems via relative output feedback. Int J Robust

Nonlinear Control, 2011, 21: 1587–1605

15 Zhai G, Ikeda M, Fujisaki Y. Decentralized H∞ controller design: a matrix inequality approach using a homotopy

method. Automatica, 2001, 37: 565–572

16 Ha Q P, Trinh H. Observer-based control of multi-agent systems under decentralized information structure. Int J Syst

Sci, 2004, 35: 719–728

17 Elmahdi A, Taha A F, Sun D. Observer-based decentralized control scheme for stability analysis of networked systems.

In: Proceedings of the 11th IEEE International Conference on Control and Automation, Taiwan, 2014. 857–862

18 Shu S L, Lin F. Decentralized control of networked discrete event systems with communication delays. Automatica,

2015, 50: 2108–2112

19 Zhang F F, Wang W, Zhang H S. The design of distributed suboptimal controller for multi-agent systems. Int J Robust

Nonlinear Control, 2015, 25: 2829–2842

20 Cao Y C, Ren W. Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans Syst Man Cybern B, 2010,

40: 819–830

21 Rotkowitz M, Lall S. A characterization of convex problems in decentralized control. IEEE Trans Autom Control,

2006, 51: 274–286

Appendix A Proof of Theorem 1

We firstly prove the case of N = 2, i.e., under Assumption 1, the optimization problem minu2 minu1 J s.t. (1) with N = 2

has a unique solution if and only if ARE (4) has a solution such that Γ1 > 0 and Γ2 > 0, and ARE

L = A′Υ′

1Υ
′

2L[I + Φ1L]
−1Υ2Υ1A−A′Υ′

1Ψ1Υ1A (A1)

has a solution such that the matrix (I +Φ1L)−1Υ2Υ1A is stable. In this case, the centralized optimal controllers are given

by u1(k) = K1x(k) and u2(k) = K2x(k) where

K1 = −Γ−1
1 B′

1Υ
′

2[P + L(I + Φ1L)
−1Υ2Υ1]A, (A2)

K2 = −Γ−1
2 B′

2Υ
′

1[P + L(I + Φ1L)
−1Υ2Υ1]A. (A3)

“Necessity”. The proof of the necessity mainly relies on the maximum principle, that is, the optimal controller satisfies

0 = R1u1(k) +B′

1λ(k), where λ(k) is the solution of the backward adjoint system

λ(k − 1) = A′λ(k) +Qx(k). (A4)

The detailed proof is divided into four parts. Firstly, we consider the LQR problem with u2 = 0 which shows that ARE

(4) has a solution P > 0 such that Γ1 > 0. Secondly, the case of u2 6= 0 is discussed by introducing a new costate. Thirdly,

the positive definiteness of Γ2 is given. Lastly, we obtain the solvability of ARE (A1) and establish the relationship between

the new costate and the original state.
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(i) The unique solvability of minu2 minu1 J s.t. (1) implies that minu1 J1 s.t. (1) with u2 = 0 has a unique solution.

Together with Assumption 1, there exists a solution P > 0 to the ARE (4) such that Γ1 > 0 and the matrix A−Γ−1
1 B′

1PA

is stable. In this case, it holds that λ(k) = Px(k + 1). The detailed proof is referred to literature1).

(ii) In the case of u2 6= 0, the relationship becomes nonhomogeneous, that is, there exists ζ(k) such that λ(k) = Px(k+1)+

ζ(k). Substituting the relationship into 0 = R1u(k)+B′

1λ(k) yields that 0 = Γ1u1(k)+B′

1PAx(k)+B′

1PB2u2(k)+B′

1ζ(k).

Using the fact that Γ1 > 0, one has

u1(k) = −Γ−1
1 [B′

1PAx(k) +B′

1PB2u2(k) + B′

1ζ(k)]. (A5)

Then the dynamic of the state becomes

x(k + 1) = Υ1Ax(k) + Υ1B2u2(k)− B1Γ
−1
1 B′

1ζ(k). (A6)

By combining with λ(k) = Px(k + 1) + ζ(k) and (A4), we have

λ(k − 1) = A′PΥ1Ax(k) +A′PΥ1B2u2(k)− A′PB1Γ
−1
1 B′

1ζ(k) + A′ζ(k) +Qx(k)

= Px(k) + A′Υ′

1ζ(k) + A′PΥ1B2u2(k),

where P satisfying ARE (4) has been used in the derivation of the last equality. Accordingly, λ(k) = Px(k+1)+ ζ(k) holds

where the dynamic of ζ is given by

ζ(k − 1) = A′Υ′

1ζ(k) +A′PΥ1B2u2(k). (A7)

We now calculate the cost function. In view of (1) and (A4), it yields that

x′(k)λ(k − 1) − x′(k + 1)λ(k) = x′(k)Qx(k)− u′

1(k)B
′

1λ(k)− u′

2(k)B
′

2λ(k)

= x′(k)Qx(k) + u′

1(k)R1u1(k) − u′

2(k)B
′

2λ(k),

where 0 = R1u(k)+B′

1λ(k) has been inserted in the last equality. Taking summation from 0 to N and letting N tend to ∞

yields that x′(0)λ(−1) =
∑

∞

k=0[x
′(k)Qx(k) + u′

1(k)R1u1(k)− u′

2(k)B
′

2λ(k)]. The cost function (3) is then reformulated as

J = x′(0)λ(−1) +
∞
∑

k=0

[u′

2(k)R2u2(k) + u′

2(k)B
′

2λ(k)]. (A8)

(iii) Consider the problem minu2 J s.t. (A6) and (A7) where J is given in (A8). Using again the maximum principle,

the optimal controller u2 satisfies that

0 = (R2 +B′

2PΥ1B2)u2(k) +B′

2PΥ1Ax(k) +B′

2Υ
′

1ζ(k). (A9)

It is now shown that Γ2 = R2 +B′

2PΥ1B2 is invertible. Let u2(k) = 0, k > 0; from (A6) and (A7), one has ζ(k− 1) = 0

and x(k+ 1) = Υ1Ax(k) for k > 0. Noting that the matrix Υ1A is stable, the zero controller u2(k) = 0 is stabilizing. Now

consider the case of x(0) = 0; the optimal controller must be u2(k) = 0, k > 0 with the corresponding optimal cost of 0.

Selecting u2(s) = 0, s > 0 and u2(0) 6= 0 which is arbitrarily chosen to be stabilizing, then ζ(k) = 0, k > 0 and the optimal

cost can be rewritten from (A8) as J = u′

2(0)Γ2u2(0) which is strictly positive. This implies that Γ2 > 0. Accordingly, from

(A9), we have

u2(k) = −Γ−1
2 [B′

2PΥ1Ax(k) +B′

2Υ
′

1ζ(k)]. (A10)

Substituting (A10) into (A6) and (A7) yields the Hamiltonian-Jacobi system

x(k + 1) = Υ2Υ1Ax(k)−Φ1ζ(k), (A11)

ζ(k − 1) = A′Υ′

1Υ
′

2ζ(k)−A′Υ′

1Ψ1Υ1Ax(k). (A12)

(iv) From the existence and uniqueness of the optimal solution to problem minu2 minu1 J s.t. (1), it holds that the

system (A11) and (A12) has a unique solution. In view of the stability of the matrix Υ1A and the admissible set of u2, we

have x(k) ∈ l2. Thus, it holds that limk→∞ ζ(k) = L limk→∞ x(k+1) = 0 for any matrix L. Using the induction technique,

we assume that there exists a constant matrix L such that ζ(k) = Lx(k + 1) holds. Substituting it into (A11) yields that

(I +Φ1L)x(k+1) = Υ2Υ1Ax(k). By combining with the uniqueness of solution to (A11) and (A12), one has that I +Φ1L

is invertible and

x(k + 1) = (I + Φ1L)
−1Υ2Υ1Ax(k). (A13)

Plugging (A13) into (A12), it is obtained that

ζ(k − 1) = [A′Υ′

1Υ
′

2L(I +Φ1L)
−1Υ2Υ1A−A′Υ′

1Ψ1Υ1A]x(k).

Thus, ζ(k − 1) = Lx(k) holds where L satisfies (A1). This implies that ARE (A1) has a solution. Note that x(k) ∈ l2,

and then the matrix (I +Φ1L)−1Υ2Υ1A is stable.

“Sufficiency”. Assume that (4) has a positive semi-definite solution such that Γ1 > 0,Γ2 > 0, and then the matrix A′Υ′

1

is stable under Assumption 1. The detailed proof of the sufficiency is consisting of two steps. First, we obtain the optimal

controller u1(k) by completing the square. Second, based on the optimization of the controller u1 and the corresponding

state trajectory and cost function, we derive the optimal controller u2 by the sufficient maximum principle.

1) Tadmor G, Mirkin L. H∞ control and estimation with preview-part II: fixed-size ARE solutions in discrete time.

IEEE Trans Autom Control, 2005, 50: 29–40.
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(i) First, we derive the optimal controller u1. To this end, we introduce a new variable ζ with the following dynamic:

ζ(k − 1) = A′Υ′

1ζ(k) +A′Υ′

1PB2u2(k). (A14)

Noting that u2 ∈ l2, one has limk→∞ ζ(k) = 0. Using (1), it yields that

x′(k + 1)Px(k + 1)− x′(k)Px(k) = x′(k)(A′PA− P )x(k) + 2u′

1(k)B
′

1PAx(k) + 2u′

2(k)B
′

2PAx(k)

+ u′

1(k)B
′

1PB1u1(k) + 2u′

1(k)B
′

1PB2u2(k) + u′

2(k)B
′

2PB2u2(k).

From (1) and (A14), one has

2x′(k + 1)ζ(k) − 2x′(k)ζ(k − 1) = 2u′

1(k)B
′

1ζ(k) + 2u′

2(k)B
′

2ζ(k)

+ 2x′(k)A′PB1Γ
−1
1 B′

1ζ(k)− 2x′(k)A′Υ′

1PB2u2(k).

Then, it yields by simple calculation that

x′(k + 1)Px(k + 1) − x′(k)Px(k) + 2x′(k + 1)ζ(k) − 2x′(k)ζ(k − 1)

= −x′(k)Qx(k)− u′

1(k)R1u1(k) + [u1(k) + Γ−1
1 B′

1PAx(k) + Γ−1
1 B′

1PB2u2(k) + Γ−1
1 B′

1ζ(k)]
′

× Γ1[u1(k) + Γ−1
1 B′

1PAx(k) + Γ−1
1 B′

1PB2u2(k) + Γ−1
1 B′

1ζ(k)] + u′

2(k)B
′

2PΥ1B2u2(k)

+ 2u′

2(k)B
′

2Υ
′

1ζ(k)− ζ′(k)B1Γ
−1
1 B′

1ζ(k).

Accordingly, Eq. (3) can be reformulated as

J = x′(0)Px(0) + 2x′(0)ζ(−1) +
∞
∑

k=0

(

[u1(k) + Γ−1
1 B′

1PAx(k) + Γ−1
1 B′

1PB2u2(k)

+ Γ−1
1 B′

1ζ(k)]
′Γ1[u1(k) + Γ−1

1 B′

1PAx(k) + Γ−1
1 B′

1PB2u2(k) + Γ−1
1 B′

1ζ(k)]

+ u′

2(k)Γ2u2(k) + 2u′

2(k)B
′

2Υ
′

1ζ(k)− ζ′(k)B1Γ
−1
1 B′

1ζ(k)
)

.

In view of the fact that Γ1 > 0, the optimal controller of u1 is given by

u1(k) = −Γ−1
1 B′

1PAx(k)− Γ−1
1 B′

1PB2u2(k)− Γ−1
1 B′

1ζ(k). (A15)

(ii) We now aim to obtain the optimal u2. Considering (A15), the corresponding cost becomes

J = x′(0)Px(0) + 2x′(0)ζ(−1) +
∞
∑

k=0

(

u′

2(k)Γ2u2(k) + 2u′

2(k)B
′

2Υ
′

1ζ(k)− ζ′(k)B1Γ
−1
1 B′

1ζ(k)
)

. (A16)

Substituting (A15) into (1), we can rewrite the states as follows:

x(k + 1) = Υ1Ax(k) + Υ1B2u2(k)− B1Γ
−1
1 B′

1ζ(k). (A17)

Combining with (A14) yields that

x′(k + 1)ζ(k) − x′(k)ζ(k − 1) = u′

2(k)B
′

2Υ
′

1ζ(k)− ζ′(k)B1Γ
−1
1 B′

1ζ(k)− x′(k)A′Υ′

1PB2u2(k).

Together with the fact that limk→∞ ζ(k) = 0 and limk→∞ x(k) = 0, it is further obtained that

x′(0)ζ(−1) = −

∞
∑

k=0

(

u′

2(k)B
′

2Υ
′

1ζ(k)− ζ′(k)B1Γ
−1
1 B′

1ζ(k)− x′(k)A′Υ′

1PB2u2(k)
)

. (A18)

Plugging (A18) into (A16), one has

J = x′(0)Px(0) + x′(0)ζ(−1) +
∞
∑

k=0

(

u′

2(k)[Γ2u2(k) + B′

2Υ
′

1ζ(k) +B′

2PΥ1Ax(k)]
)

. (A19)

We then apply the sufficiency of the maximum principle and obtain that the optimal controller satisfies 0 = Γ2u2(k) +

B′

2Υ
′

1ζ(k) + B′

2PΥ1Ax(k). Combining with the assumption that Γ2 > 0, the optimal controller of u2 must be

u2(k) = −Γ−1
2 [B′

2Υ
′

1ζ(k) + B′

2PΥ1Ax(k)]. (A20)

Provided that (A1) has a stabilizing solution, then it holds that ζ(k) = Lx(k + 1). Together with (A15) and (A20), the

optimal controllers can be reformulated as u1(k) = K1x(k), u2(k) = K2x(k) where K1, K2 are defined by (A2) and (A3).

For the general case of N > 2, the fact of Γi > 0 and the derivation of L in (5) can be derived similarly to that of Γ2 > 0

in (3) and (4), respectively. The sufficiency also follows similarly to the case of N = 2. This completes the proof.
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