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Abstract This paper proposes a novel learning method of binary local features for recognition of the

finger vein. The learning methods existing in local features for image recognition intend to maximize the

data variance, reduce quantitative errors, exploit the contextual information within each binary code, or

utilize the label information, which all ignore the local manifold structure of the original data. The manifold

structure actually plays a very important role in binary code learning, but constructing a similarity matrix

for large-scale datasets involves a lot of computational and storage cost. The study attempts to learn a

map, which can preserve the manifold structure between the original data and the learned binary codes for

large-scale situations. To achieve this goal, we present a learning method using an anchor-based manifold

binary pattern (AMBP) for finger vein recognition. Specifically, we first extract the pixel difference vectors

(PDVs) in the local patches by calculating the differences between each pixel and its neighbors. Second,

we construct an asymmetric graph, on which each data point can be a linear combination of its K-nearest

neighbor anchors, and the anchors are randomly selected from the training samples. Third, a feature map is

learned to project these PDVs into low-dimensional binary codes in an unsupervised manner, where (i) the

quantization loss between the original real-valued vectors and learned binary codes is minimized and (ii) the

manifold structure of the training data is maintained in the binary space. Additionally, the study fuses the

discriminative binary descriptor and AMBP methods at the image representation level to further boost the

performance of the recognition system. Finally, experiments using the MLA and PolyU databases show the

effectiveness of our proposed methods.
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1 Introduction

Recently, finger vein recognition has attracted increasing attention from the industry and research com-

munity. This is attributed to two aspects. First, finger veins have the basic properties as biometric traits,

such as universality, distinctness, permanence, and collectability [1]. Second, the illegal use of forged and

copied finger vein patterns is not easy. Owing to their subcutaneous presence and complex structure,

finger veins can only be captured by near-infrared lights in vivo and can only be altered by surgical

intervention. Therefore, finger vein recognition will be a promising alternative for personal identification

schemes and it has attracted many efforts from different fields, such as data acquisition [2, 3], region of
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Figure 1 (Color online) Examples of LBP and various PDVs.

interest (ROI) extraction [2], image restoration [3, 4], image enhancement [5], feature extraction [6–10],

and matching [11, 12].

In the above studies, feature extraction significantly affects the performance of finger vein recognition

systems, because finger vein images captured in real-world environments are usually affected by many

factors, such as varying finger poses, unstable lighting intensity, and occlusions. These factors reduce the

similarity of finger vein images from the same finger and increase the similarity of finger vein images from

different fingers, which is one of the key challenges in finger vein recognition. Therefore, it is necessary

to design effective approaches of feature extraction to overcome these challenges.

Binary codes have successfully been applied to finger vein recognition [6–8,11] because they have several

advantages, such as robustness to small variations caused by varying illuminations, convenience in adding

prior knowledge during encoding, and low computational and storage cost owing to using the hamming

distance. Despite their success, these binary features are vulnerable to image noise or degradation [13].

For example, two operations are involved in extracting local binary patterns (LBPs) [11]. One is to

calculate the difference between the current pixel and its neighbors to obtain a pixel difference vector

(PDV). The other is to threshold the PDV with a fixed value, ultimately forming an LBP for this pixel.

The advantage of LBP is that it retains the direction information of PDV and makes the code invariant to

monotonic photometric changes. Nevertheless, LBP has two disadvantages. First, the scope of extraction

is limited. If the extraction range is extremely wide, the LBP will be extremely long. This is because the

length of LBP is equal to the length of PDV. Although a long code can exploit the rich information from

the image, the computational cost and storage requirement are increased. Second, a fixed value is used as

the threshold and the amplitude information of PDV is lost. This causes different PDVs to have the same

LBP code, and the intrinsic structure of all PDVs in the training set is not utilized during encoding. As

shown in Figure 1, various PDVs are converted to the same exact LBP code. Specifically, PDV1, PDV2,

and PDV3 in Figure 1 are significantly different, but their LBP codes are the same. However, different

PDVs may contain different information; therefore, different PDVs may have different binary codes.

Moreover, these problems also exist in other handcrafted binary code methods, such as local line binary

pattern (LLBP) [8], polydirectional local line binary pattern (PLLBP) [6], and personalized best bit map

(PBBM) [7].

To overcome the above disadvantages of handcrafted binary codes, recently, many authors use feature

learning methods to extract the local binary features from images and achieve promising results in the

field of recognition. Lu et al. [14] proposed a compact binary feature descriptor (CBFD) by learning

a hashing map to project PDVs extracted from training images into binary codes by enforcing three

constraints, namely maximizing the variance of all binary codes in the training set, making the binary

codes evenly distributed, and reducing quantitative errors. Through experiments, CBFD was found to

achieve a remarkable performance on several face databases. Most recently, Lu et al. [15] presented a

local feature learning approach for face recognition, which simultaneously learns the projection matrix

and the dictionary. Duan et al. [16] proposed a context-aware local binary feature learning for face

recognition, which learns a map by utilizing the contextual information within each binary code. Liu

et al. [17] proposed a discriminative binary descriptor (DBD) by using the label information to project
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PDVs into binary codes by learning, and it achieved a better performance on finger vein databases.

However, the above-mentioned feature learning methods either maximize the data variance, reduce

the quantitative errors, exploit the contextual information within each binary code, or utilize the label

information, but none of them captures the manifold structure of the original data. However, many

studies [18–20] prove that preserving the manifold structure of the original data is very important to

learn the binary codes. Moreover, Ref. [21] mentioned that the features extracted from a large-scale

dataset of multiple classes usually have the manifold structure in the original space and it may not

be easily separated. This comment is consistent with the characteristics of PDVs in our task. This is

because the PDVs in our work are extracted from images of multiple classes and many of them are large.

For instance, when using three samples per class as training images on the MLA database, the number

of classes is 636 and the number of PDVs is 2083536. Therefore, we doubt if preserving the manifold

structure of the original dataset during the binary feature learning will improve the performance of our

system.

To preserve the manifold structure of PDVs in the hamming space, we first need to build a similarity

matrix of the original dataset to formulate an objective function, and then seek an effective optimization

method to solve the function. However, as aforementioned, the number of PDVs in our problem is very

large, and constructing a similarity matrix for them is extremely time-consuming and memory intensive.

Moreover, the task of optimizing an objective function, which includes the constraint of the manifold for

the large-scale dataset, is a challenge. Therefore, how to use the information of the manifold structure

in large quantities of the original PDVs to obtain the binary codes is our main task.

Recently, Weiss et al. [18] proposed a spectral hashing (SH), which is aimed at keeping neighbors

in the input space as neighbors in the hamming space and making the learned binary codes balanced

and uncorrelated. For a larger-scale dataset, solving the problem of SH is a challenge. Weiss et al. [18]

assumed that the distribution of data is uniform, and a sub-optimal solution is obtained for SH. However,

this assumption is seldom satisfied in practical applications. To alleviate this problem, Liu et al. [19]

designed a method called asymmetric graph hashing (AGH) to approximate the similarity between a

pair of data points on a graph by leveraging a small number of anchors. Experiments showed that

AGH can achieve a significant performance gain in retrieving semantically similar neighbors. However,

there are two shortcomings of AGH. First, constructing the asymmetric graph uses pairwise distances

that are not robust to noise and could not always accurately capture the subspace relationship among

data points. Second, computing the hashing codes for unseen data is a problem, i.e., the out-of-sample

problem. More recently, inspired by locally linear embedding (LLE) [21], Ji et al. [20] proposed an anchor-

based discrete locality linear embedding hashing (anchor-DLLH) to preserve the manifold structure for

large-scale datasets, in which a data point in the dataset is reconstructed by a linear combination of its K-

nearest neighbors in the anchors. There are three merits of this method. One is that a reconstructed-based

method for building the asymmetric graph is robust to noise and outliers. Second is that constructing an

asymmetric graph via LLE is computationally effecient and conceptually simple. The last is that a map

that is directly learned in the training stage is used to address the out-of-sample problem.

Motivated by the above studies, in this paper, we propose an anchor-based manifold binary pattern

(AMBP) learning method for finger vein recognition. First, considering that PDVs are used widely

and successfully in the image recognition domain [14–16], we extract the PDV for each pixel from each

image in the training set. Second, to reduce the storage and computational cost of constructing the

similarity matrix for a large-scale dataset, we adopt the anchor-based mode to construct the asymmetric

graph, on which each data point is represented linearly by its K-nearest neighbor anchors. Specifically,

the constructed graph in our approach takes O(N × M × d) time complexity and O(N × M) storage

complexity, whereas SH takes O(N2 × d) time complexity and O(N2) storage complexity, where N is

the number of data, M (M ≪ N) is the number of anchors, and d is the dimension of data. Third, we

design an objective function to learn a map that projects each PDV into a binary code. In the learning

process, two main requirements are considered: (i) the quantization loss between the original PDVs and

the learned binary codes are minimized and (ii) the manifold structure in the original space is maintained

in the learned binary hamming space. These are necessary so that the learned binary codes would not
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only retain the energy of the original data, but also maintain their similarity relationship. Moreover,

it should be noted that the similarity matrix is not explicitly constructed during learning as this can

largely reduce the memory. Once the map is obtained, we could transform the PDV extracted from

each pixel in the image to a binary code. Obviously, the obtained binary codes preserve the proximity

of original data space in the binary code space. After obtaining the binary code for each pixel in the

image, considering that the bag-of-words framework has successfully been used in the field of finger

vein recognition [9, 17, 22–24], we represent each finger vein image as a histogram by the bag-of-words

framework. Finally, the experimental results on two public finger vein databases are used to compare the

performance of the proposed method to other existing finger vein recognition methods.

In addition, considering the difference between DBD and AMBP (e.g., DBD utilizes the class infor-

mation during the feature learning, whereas AMBP extracts the manifold structure of original data),

we fuse DBD and AMBP at the image representation level to boost the recognition performance, and

we compare the proposed fusion method with DBD and AMBP. The experimental results show that the

fusion method performs better than DBD and AMBP.

The rest of this paper is organized as follows. In Section 2, we review the related work. Our proposed

method is described in detail in Section 3. The experimental results that validate the proposed methods

in comparison with the conventional methods are presented in Section 4. Finally, the conclusion and

direction of future work are presented in Section 5.

2 Related work

In this section, we will briefly discuss two topics, namely finger vein image representation and construction

of similarity matrix methods, which are closely related to our work.

2.1 Finger vein image representation

Finger vein image representation can be roughly grouped into two categories: low-level representation

and high-level representation.

The methods of the low-level representation, which are directly based on the gray values in the image,

include minutia-based methods [25,26], network-based methods [12,27–29], local feature methods [6,8,30],

and holistic feature methods [31–33]. In general, there are several problems with the low-level represen-

tation of the finger vein image. First, the number of minutiae in the finger vein image is extremely small;

thus, minutia-based methods are not suitable for finger vein image representation. Second, the quality of

the captured image is usually low in the public finger vein databases. The low-quality image could affect

the performance of both network-based method and local feature-method for finger vein recognition. For

the network-based methods, the low-quality image might not be segmented properly; thus, the perfor-

mance of recognition using vein pattern segmented from these low-quality images could be degraded. For

the local feature-based methods, only original intensity comparisons are utilized; consequently, the local

features extracted from these low-quality images also result in low recognition rate, but there are many

methods [7,10,22,23] proposed to overcome the shortcomings. Third, at present, the number of samples

for each class in the public finger vein database is very small. Owing to scarcity of training samples, the

performance of holistic feature methods is not satisfactory for finger vein recognition. In summary, the

methods of low-level representation are primarily limited by the quality of the finger vein image and the

number of available training images.

To overcome the shortcomings of low-level representation, recently, methods of high-level represen-

tation for finger vein recognition are proposed. These are usually based on the low-level finger vein

representation such as superpixel-based feature [22, 23], vein textons map [24], hyperinformation fea-

ture [9], and personalized feature [7]. In general, these methods use the existing local handcrafted feature

as their base feature and the semantics are extracted from the image through a certain method. For

example, superpixel-based feature [22, 23], vein textons map [24], and hyperinformation feature [9] use

the bag-of-words framework to extract the high-level semantic from the images, and the personalized
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feature [7] draws the semantic features based on the label information of the finger vein image. Hence,

the methods of high-level representation for finger vein images are suitable to low-quality images and

they achieve a high performance on finger vein recognition. However, such methods are usually based

on local handcrafted features; thus, the shortcomings of local handcrafted features are inherited. More

recently, to tackle this issue, Liu et al. [17] proposed a local feature learning approach for finger vein

recognition, which can achieve a high performance.

Therefore, in this study, we still adopt the local feature learning method to represent the finger vein

image.

2.2 Constructing similarity matrix methods

Over the past two decades, a large amount of graph-based algorithms have been proposed with various

applications such as dimension reduction [34,35], clustering [36–40], and hashing [18,19,41]. Building the

similarity graph is a key step in these algorithms. If the graph can accurately mine the neighborhood of

each data point, the performance of the algorithms will improve even when the dataset is corrupted by

interference factors.

In general, the methods of constructing the similarity graph can roughly be divided into two categories:

pairwise distance-based method and reconstruction-based method. The pairwise distance-based method

includes the K-nearest neighbor method and ǫ ball-based method [36]. When data have noise or are

coming from multiple dependent subspaces, the quality of the similarity graph constructed by these

methods will degrade. The reconstruction-based method includes locally linear representation (LLR) [38],

sparse representation (SR) [39,42], and lower rank representation (LRR) [40]. In LLR, each data point in

the dataset can be written as a linear combination of its K-nearest neighbor data points. The advantages

of LLR are as follows: it is robust to noise, suitable to nonlinear subspaces, and easy to solve. However,

LLR suffers from the same disadvantage of pairwise distance-based method in that it is not always the

case that a point and its K-nearest neighbors are in the same subspace. Moreover, choosing the number

of nearest neighbors is challenging. These problems could be solved by SR and LRR. Different from

LLR, SR is based on the idea of reconstructing a data point as a sparse linear combination of all other

data points. SR is very robust to noise and the number of neighbors of a data point is automatically

chosen. Nonetheless, a possible disadvantage of SR is that it can be slow because it requires solving an

L1 norm optimization problem. In addition, inaccuracy in capturing the global structures of data would

be its other disadvantage because it finds the sparsest representation of each data vector individually.

To overcome the last issue of SR, LRR is proposed so that every data point can be reconstructed as the

lowest-rank representation of all other data. Similar to SR, the solution of LRR is slow because it is

necessary to solve a nuclear norm optimization problem.

From the above analysis, LLR is more robust to noise compared to pairwise distance-based method,

and it is more efficient for calculating the similarity graph and more capable of capturing the nonlinear

structure of data compared to SR and LRR. Therefore, in this study, we choose LLR to construct the

similarity graph.

3 Anchor-based manifold binary pattern

In general, most of the finger vein recognition methods based on learning include two major stages:

training stage and testing stage. The same is true for AMBP. Figure 2 illustrates the training stage and

testing stage based on AMBP. The training stage can be divided into several steps. First, PDVs are

extracted from the training images (after preprocessing). Second, a feature map is learned by our AMBP

from these PDVs. Third, the binary codes are obtained by projecting these PDVs using the feature map.

Lastly, a codebook is learned by the k-means method from the obtained binary codes. In the testing

stage, after the binary codes are extracted from an image, we pool these binary codes to the codebook as

a histogram representation for this image. Furthermore, we also propose a fusion strategy to boost the

performance of the finger vein recognition system.
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Figure 2 (Color online) Schematic of the proposed feature learning-based finger vein representation and recognition

method.
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Figure 3 (Color online) Illustration of PDV operator in our method.

In the next part, we first describe AMBP, which involves extracting PDVs and feature learning. Then,

we present the finger vein representation using AMBP and the fusion method, respectively.

3.1 Extracting pixel difference vectors

PDVs have been widely and successfully used in the image recognition domain [14–16]. Therefore, we

select PDVs as raw data for learning in the proposed method. In the following, we will introduce how to

extract PDVs from the finger vein images.

Figure 3 illustrates the extraction of PDVs from the finger vein image. Specifically, given a patch

extracted at a pixel in the finger vein image, we first calculate the difference between this pixel and its

neighbors. These differences are considered as PDVs, whose size is (2D + 1)× (2D + 1). In Figure 3, D

is selected as 1, so that there are 8 neighboring pixels selected, and in this case, PDV is an 8-dimensional

real-valued feature vector. While PDVs include a lot of information related to the patch, they are

real-valued and high-dimensional data if D is large. For example, if D is 6, the dimension of PDV is

169. In Subsection 3.2, we will introduce how to learn a discriminative map, which can project the

high-dimensional and real-valued PDVs into low-dimensional binary codes.

3.2 AMBP feature learning

Different from our previous work [17], the feature learning method in this study is unsupervised. Several

important criteria are adopted in the objective function of feature learning and an efficient technique is
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used to optimize these objective functions in the proposed method. In the following, we will describe the

objective function and the optimization method in our finger vein recognition system.

Let X = [x1, x2, . . . , xN ] ∈ R
d×N be a set ofN real-valued d-dimensional PDVs extracted from training

images; the proposed AMBP method aims to learn K-hashing functions that map each high-dimensional

real-valued PDV xi into a low-dimensional binary code bi = [b1i, b2i, . . . , bKi]
T. Let wk denote a projection

vector for the k-th hashing function; then, the binary code bki of xi can be computed by a hashing function

bki = 0.5× (sgn(wT
k xi) + 1), where sgn(h) is equal to 1 if h > 0 and −1 otherwise.

In order to make the binary codes compact and preserve the intrinsic structure of the original dataset,

the objective function is formulated as follows:

min J1(W ) = λ1‖(B − 0.5)−WTX‖2F +
1

2
λ2tr(BLBT) + λ3‖W‖2F

s.t. B ∈ {0, 1}K×N , WTW = I,

(1)

where B = [b1, b2, . . . , bN ] ∈ {0, 1}K×N is the binary code matrix; W = [w1, w2, . . . , wK ] ∈ R
d×K is the

projection matrix; L = D − S is the graph Laplacian matrix; S is an N × N similarity matrix of N

PDVs, which measures the similarity between every two data points in the training set; D = diag(S111); 111

is a column vector with N entries of 1; tr denotes the matrix trace operation, and λ1, λ2, and λ3 are the

tradeoff parameters.

The first term in (1) is the quantization error between the original PDVs and the learned binary codes,

which ensures that the learned binary codes could preserve the information of the original data. The

second term in (1) preserves the manifold structure of the original dataset in the binary space. The

last term is the regularization term ‖W‖2F , which regulates the complexity of W and is used to avoid

overfitting. Additionally, WTW = I is the orthogonal constraint.

However, as aforementioned, constructing a similarity matrix involves a lot of computational and

storage cost, e.g., constructing similarity matrix S in SH has O(N2) storage complexity and the O(d×N2)

time complexity. Fortunately, many methods of hashing and clustering use asymmetric graphs to solve

this problem. The hashing methods include AGH [19] and anchor-DLLH [20], whereas the clustering

methods include those described in [43, 44]. In [19, 43], the authors used pairwise distances to construct

asymmetric graphs, which are sensitive to noise, and to find the neighbors for a data point that may

not lie in the same space. Furthermore, this method also bring extra parameters via using a Gaussian

kernel function to calculate the similarity between a data point in the graph and another data point in

the anchors. To attain noise resistance in the dataset and avoid extra parameters, Nie et al. [44] obtained

asymmetric graphs by learning, but pairwise distances are still used. More recently, inspired by LLE [35],

Ji et al. [20] constructed the asymmetric graph by representing a data point in the graph using K-nearest

neighbors in the anchors. That is they use LLR to construct the asymmetric graph. As mentioned in the

related work part, LLR is robust to noise and easy to calculate, and more importantly, it can capture the

nonlinear manifold structure of original data. Hence, we choose LLR to construct the asymmetric graph

in AMBP.

In the following, we introduce how to use LLR to construct the asymmetric graph and we explain the

process of integrating the constructed graph into our objective function.

Given M anchors A = [a1, a2, . . . , aM ], which are randomly selected from training set X , we compute

an asymmetric similarity matrix Z ∈ R
N×M , where Zij reflects the similarity between data point xi and

anchor aj . Similar to LLE [35], we seek for an asymmetric similarity matrix Z, which minimizes the

reconstruction error

Err(Z) = min
1

2

∥

∥

∥

∥

∥

∥

xi −
∑

j

Zijaj

∥

∥

∥

∥

∥

∥

2

s.t.
∑

j

Zij = 1. (2)

According to the Lagrange multiplier, the solution to (2) can be written as (3). For the detailed
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derivation, interested readers can refer to [20].

Zij =

∑

k C
−1
ijk

∑

lm C−1
ilm

, (3)

where Ci = [Cijl] and Cijl = (xi − aj)
T(xi − al), whereas aj and al are K-nearest neighbors of xi. Then,

the original similarity matrix can be approximated by S = ZΛ−1ZT, where Λ = diag(ZT111). Having

obtained the similarity matrix, we can construct the Laplacian matrix by the following:

L = D − S = I − ZΛ−1ZT. (4)

According to [43], D = I in above equation can be derived by the following:

Dii =

n
∑

j=1

Sij =

n
∑

j=1

p
∑

l=1

ZilZjl

Λll

=

p
∑

l=1

Zil

∑n

j=1

Λll

=

p
∑

l=1

Zil = 1. (5)

By relaxing the binary constraint and substituting (4) into (1), Eq. (1) can be reformulated as follows:

min J(W ) = λ1‖(B − 0.5)−WTX‖2F +
1

2
λ2tr(W

T(XXT −XZΛ−1ZTXT)W ) + λ3tr(W
TW )

s.t. WTW = I.

(6)

By solving the above objective function, a map that captures the manifold structure of original dataset

can be obtained. Moreover, during the optimization, it is not necessary to explicitly construct the graph

Laplacian matrix. As already known, the storage complexity of the graph Laplacian matrix is at least

O(N2), which is unaffordable to construct for a large dataset. Thus, our objective function reduces the

storage cost and at the same time captures the local manifold structure.

Note that problem (6) is not convex if W and B change simultaneously, but it is convex to one of them

if the other is fixed. Based on [14], we adopt an alternate method to optimize this problem.

Fixed W and obtain B. When W is fixed, Eq. (6) can be reformulated as

min J(B) = ‖(B − 0.5)−WTX‖2F . (7)

The solution to (7) can be approximated as follows:

B =
1

2
(sgn(WTX) + 1). (8)

Fixed B and learn W . When B is fixed, we can rewrite (6) as

min J(W ) = tr(WTQW ) + λ1(tr(W
TXXTW ))− 2tr((B − 0.5)×XTW ) s.t. WTW = I, (9)

where Q = 1
2λ2(XXT −XZΛ−1ZTXT) + λ3I.

According to the gradient descent method with the curvilinear search algorithm in [45], we can solve

this problem to obtain W . We summarize the detailed procedure of the proposed AMBP method in

Algorithm 1.

3.3 Finger vein representation based on AMBP and fusion methods

After obtaining the feature map matrix W , we project all PDVs of the training dataset to the binary

codes. Then, we cluster the obtained binary codes into a codebook by the k-means method. Next, the

histogram representation of the finger vein image is acquired by pooling the binary codes extracted from

this image to the codebook.

Partitioning the finger vein image can improve the performance of the finger vein recognition system [8,

17]; thus, we divide the finger vein image into multiple non-overlapping regions and learn the feature map

matrix and codebook for each region. Therefore, a histogram representation for each region of an image



Liu H Y, et al. Sci China Inf Sci May 2019 Vol. 62 052104:9

Algorithm 1 AMBP algorithm

Require: X = training dataset, t = number of iterations, λ1, λ2, and λ3 = parameters, K = length of the binary code,

and ǫ = the convergence parameter.

Ensure: Optimized matrix W .

1: Initialize W as the top K eigenvectors of XXT, which correspond to the K largest eigenvalues; initialize t as 1;

2: repeat

3: Set t as t+ 1;

4: Obtain B with fixed W using (8);

5: Learn W with fixed B by solving (9);

6: until |W t −W t−1| < ǫ and t > 2;

7: return W .
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Figure 4 (Color online) Flowchart of AMBP-based finger vein representation and recognition method.

is obtained. To represent the whole image, we concatenate the histogram representations of each region

in this image as the histogram feature. After this, we apply a whitened principal component analysis

(WPCA) to reduce the dimension of the obtained histogram feature and compute the matching score

with cosine similarity. Figure 4 shows how to use AMBP for finger vein representation.

To further enhance the performance of the recognition system, we fuse DBD and AMBP at the image

representation level. Because DBD utilizes the class information during learning, the histogram represen-

tation based on it contains the semantic information of image. While AMBP preserves the local manifold

structure of raw data in the binary space, the histogram representation based on it extracts the intrinsic

structure of training dataset. In essence, these two representations are diverse. For example, in Figure 5,

the red and blue histograms are extracted based on AMBP and DBD for a finger vein image in the left,

respectively, and we can observe that there are significant differences between them. Additionally, we can

see from the experimental part of this paper that DBD and AMBP both have high accuracy for finger vein

recognition. Therefore, according to the principle of ensemble method [46], a good performance could be

achieved by fusing these two methods. Figure 5 illustrates our fusion strategy. Given a finger vein image,

we use DBD and AMBP to extract its histogram features (after WPCA), respectively. Then, these two
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Image

Histogram representation based on AMBP method

Histogram representation based on DBD method

Histogram representation based on

fusion of DBD and AMBP methods

Figure 5 (Color online) Finger vein representation based on fusion of DBD and AMBP methods.

histogram features are concatenated into a final fusion representation for this image. Forming the fusion

representations for other images follows the same process. After obtaining the fusion representations of

images in the database, we use these fusion representations to calculate the matching score with cosine

similarity. Briefly, we call this fusion method as DBD+AMBP hereafter.

4 Experiments and results

In this study, we implement the proposed methods in MATLAB R2003a and the experiments on a PC

with 3.60 GHz i7-4790 CPU and 16 GB RAM. We conduct a number of experiments to evaluate our

AMBP and AMBP+DBD methods on two public finger vein databases. In the following, we describe the

details of the databases and experiments.

4.1 Databases

The proposed methods are verified on two public finger vein databases. One is built by the MLA

Laboratory of Shandong University, named MLA database [47] and the other is constructed by Hong

Kong Polytechnic University, named PolyU database [27].

MLA database. This contains 3816 finger vein images of 636 fingers. Each finger has 6 samples. The

resolution of all images is 320× 240 pixels.

PolyU database. This consists of 3132 finger vein images of 312 fingers. The first 210 fingers take

12 images each, and the others take 6 images each. The resolution of all images is 513× 256 pixels.

Before the experiment, we preprocess each finger vein image from both databases by the methods

in [27, 48] and convert each image to ROI. In both databases, the ROI size for each image is 96 × 64

pixels.
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Figure 6 (Color online) Average recognition rates with various sizes of codebook on MLA database.

10 15 20 25 30 35 40 45
95

96

97

98

99

Binary code length

A
v
er

ag
e 

re
co

g
n
it

io
n

ra
te

 (
%

)

Figure 7 (Color online) Average recognition rates of binary codes with various lengths on MLA database.

4.2 Parameters determination

In this part, we investigate the best values for the codebook size, binary code length K, and number of

anchors M on the MLA database, and then, we acquire their best values to be used in the experiments.

Each experiment on the MLA database is repeated 10 times.

Figure 6 shows the average recognition rate of AMBP with various codebook sizes on the MLA database.

We can observe that the best recognition rate can be achieved when the codebook size is 600 and 750.

Therefore, considering the time consumption, we choose 600 as the codebook size.

Figure 7 shows the average recognition rate of AMBP with various binary code lengths on the MLA

database. We can observe that AMBP achieves the best recognition performance when the code length

is 15.

Figures 8 and 9 show the training time and the average recognition rates with various number of

anchors on the MLA database, respectively. In this study, the training time comprises the time interval

from inputing the training images (after preprocessing) to extracting the template representations. From

Figure 8, we find that the training time shows a slight increase as the number of anchors changes from

100 to 1050 in step of 50; however, as the number of anchor points changes from 1050 to 1100, the

training time shows a large change. As can be observed from Figure 9, there is a rising trend for the

average recognition rate as the number of anchor points increases. Obviously, there are a few fluctuations;

however, we can observe that the best average recognition rate can be obtained with the number of anchor

points being 950 and 1000. Thus, in practice, we should make a tradeoff between the recognition rate

and training time, and we choose 950 as the number of anchor points in the subsequent experiments.

4.3 Evaluation of AMBP and fusion methods

In this subsection, we investigate the effectiveness and efficiency of our AMBP in identification mode com-

pared with CBFD and DBD on the MLA and PolyU databases, while the effectiveness of DBD+AMBP

is evaluated on the two databases. The performance is evaluated using the average recognition rate and

computational time for the key operations, which are the most common benchmarks in biometrics. The

computational time includes the training time and matching time. In this study, the training time is as
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Figure 8 (Color online) Training time with various number of anchors on MLA database.
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Figure 9 (Color online) Average recognition rates with various number of anchors on MLA database.

defined in Subsection 4.2, and the matching time is the interval from the input of the test image to the

acquisition of the matching score.

On the MLA database, in order to show the major differences between our proposed methods against

CBFD and DBD, we respectively use the first one, the first two, and the first three images of each class

as training images, and we use the last three images of each class as testing images. Consequently,

there are 1908 (636×3) probes, and the number of templates is 636 (636×1), 1272 (636×2), and 1908

(636×3), respectively. In order to obtain the best recognition performance for the proposed methods, we

adjust the parameters through experiments. The lengths of PDV and binary code are set as 169 and 15,

respectively; the parameters λ1, λ2, and λ3 are set as 108, 108, and 107, respectively; the codebook size

is 600, and the partitioning style of the finger vein image is 4×1. Therefore, we represent each finger

vein image as a 2400-dimensional feature vector after using AMBP (2400=600×4×1). WPCA is used to

reduce the feature dimension. Corresponding to the first one, the first two, and the first three images of

each class as training images, the reduced dimensions are 300, 320, and 600, respectively. Finally, the

nearest neighbor classifier with cosine similarity is applied for the finger vein matching.

On the PolyU database, we separately use the first one, the first two, and the first three images of each

class as training images, and we use the last three images of each class as testing images. Consequently,

there are 936 (312×3) probes, and the number of templates is 312 (312×1), 624 (312×2), and 936 (312×3),

respectively. The parameter setting is the same as in the MLA database.

In all the above cases on the two databases, the probes are matched with all templates, and 10

experiments are repeated to obtain unbiased results. To achieve fairness, the optimal parameters for

CBFD and DBD are obtained on the MLA database. For the sake of brevity, the computational time

was calculated by only using first three samples as training set on the MLA database.

Tables 1 and 2 list the average recognition rates for the CBFD, DBD, AMBP, and DBD+AMBP

methods on the MLA and PolyU databases, respectively, and Table 3 presents the computational cost on

the MLA database for the CBFD, DBD, and AMBP methods.

Regarding the average recognition rates, the analysis results in Tables 1 and 2 reveal four aspects. First,

the average recognition rates of the four algorithms tend to increase when the number of training set per

class increases. This is because increasing the number of training samples makes the learning algorithms

acquire more characteristics of samples. At the same time, the number of templates is increased as well.



Liu H Y, et al. Sci China Inf Sci May 2019 Vol. 62 052104:13

Table 1 Average recognition rates of CBFD, DBD, AMBP, and DBD+AMBP on MLA database

Number of samples per class CBFD (%) DBD (%) AMBP (%) DBD+AMBP (%)

1 88.23 98.25 97.93 98.92

2 89.42 98.80 98.62 99.37

3 98.32 99.08 98.71 99.32

Table 2 Average recognition rates of CBFD, DBD, AMBP, and DBD+AMBP on PolyU database

Number of samples per class CBFD (%) DBD (%) AMBP (%) DBD+AMBP (%)

1 92.85 99.93 99.57 99.97

2 97.34 99.96 99.88 99.95

3 99.25 99.98 99.89 100

Table 3 Computational time of CBFD, DBD, and AMBP on MLA database

Method Training time (s) Matching time per image (ms)

CBFD 557.066 52.0

DBD 680.459 42.8

AMBP 640.735 45.0

Second, for the two unsupervised methods in Tables 1 and 2, we find that the average recognition rates

of AMBP are consistently higher than those of CBFD in all three cases on the two databases. This result

implies that it is important to consider the manifold structure when learning the local binary feature in

the unsupervised method. Furthermore, this also proves that our assumption is correct, that is, PDVs

extracted from images are located in the manifold space. Third, we observe that DBD achieves a better

performance than our AMBP in all three cases on the two databases in Tables 1 and 2 because DBD is a

supervised approach whereas our AMBP is unsupervised. In general, a supervised approach can extract

more discriminative information from PDVs than an unsupervised one. Fourth, for our combined method,

we find that DBD+AMBP obtains the best performance among all methods in all three cases on the MLA

database as indicated in Table 1, and in most cases, DBD+AMBP has a higher performance than the

other methods on the PolyU database in Table 2. This result proves that the fusion of DBD and AMBP

at the image representation level can improve the recognition performance. This also demonstrates that

the representations based on DBD and AMBP are diverse and complementary to each other.

Regarding the efficiency of AMBP, the comparison results are presented in Table 3. The analysis results

indicate two aspects. First, the matching time per image for the CBFD, DBD, and AMBP methods has

no obvious difference because the basic operation for these three methods during the testing stage is the

same. Second, the training times for DBD and AMBP are longer than those for CBFD on the MLA

database, but the difference is not very large. This is mainly because it takes a lot of time to construct

the asymmetric graph for AMBP and construct the interclass scatter matrix as well as intraclass scatter

matrix for DBD, while these operations are not required for CBFD. In addition, we can observe that

AMBP is faster than DBD during the training. This shows that it is very efficient to construct the

asymmetric matrix for large-scale datasets using AMBP.

4.4 Comparison with existing finger vein recognition methods

In this subsection, we compare the performance of the AMBP and fusion methods with that of various

state-of-the-art methods in the verification mode on the MLA and PolyU databases. The methods

compared are LBP [30], LLBP [8], local derivative pattern (LDP) [11], local directional code (LDC) [49],

PBBM [7], superpixel-based features (SPF) [22], superpixel context features (SPCF) [23], discriminative

binary code (DBC) [50], and DBD [17]. We use the equal error rate (EER) to evaluate the system

performance. EER is the value at which the false acceptance rate (FAR) is equal to the false rejection

rate (FRR). The experimental settings on the two databases are as follows.

On the MLA database, three images per class are treated as training samples, and another three

images are used as testing samples. A three-fold cross-validation is employed in the experiment. Con-
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Table 4 Comparision with different conventional methods on two databases

Method EER (MLA database) EER (PolyU database)

LBP [30] 0.1027 0.0744

LLBP [8] 0.1096 0.1577

LDP [11] 0.2289 0.2361

LDC [49] 0.0887 0.0331

PBBM [7] 0.0336 0.0278

SPF [22] 0.0262 0.0181

SPCF [23] 0.0194 0.0075

DBC [50] 0.0200 0.0132

DBD [17] 0.0088 0.0055

AMBP (Proposed) 0.0109 0.0042

DBD+AMBP (Proposed) 0.0055 0.0029

sequently, the intraclass and interclass comparisons need to be performed 5724 (636×3×3) and 3634740

(636×3×635×3) times, respectively. The other settings are the same as in the previous experiments on

the MLA database.

On the PolyU database, the experimental procedure and parameter settings are the same as in the

MLA database in this part. Because of the different number of classes between the MLA database and

PolyU database, the intraclass and interclass matching on the two databases are different. On the PolyU

database, there are 2808 (312×3×3) intraclass matching and 873288 (312×3×311×3) interclass matching.

Table 4 lists the EERs of the AMBP and DBD+AMBP methods in comparison with state-of-the-art

methods of finger vein recognition on the two databases. From this table, the following observations can

be made.

First, compared with local handcrafted feature methods such as LBP, LLBP, LDP, LDC, and PBBM,

AMBP and DBD obtain a lower EER. This is attributed to two aspects. One is that the AMBP and

DBD methods are both feature learning methods, which have more data adaptability than the handcrafted

methods. The other is that both AMBP and DBD methods utilize the bag-of-words framework, which

effectively organize the local learned features. Second, compared with the four bag-of-words methods

in Table 4, the AMBP and DBD methods achieve a better performance on the two databases than the

SPF and SPCF methods. This is because the AMBP and DBD methods use the learned feature as the

base feature, whereas the SPF and SPCF methods use the handcrafted feature. The learned feature

has a powerful ability to describe the local patches in the image than the handcrafted feature. Third,

compared with the DBC [50] learning method, the AMBP and DBD methods achieve a better performance

on both finger vein databases. These results are mainly because the binary features in DBC are learned

holistically, whereas the AMBP and DBD methods are local feature learning methods that apply the

bag-of-words framework to effectively organize the learned binary features. Therefore, the AMBP and

DBD methods are more robust to local changes in finger vein images than DBC, and they achieve a lower

EER than DBC on the two finger vein databases. Fourth, compared with DBD, the unsupervised AMBP

method performs less well than the supervised DBD method on the MLA database. Although the AMBP

outperforms DBD on the PolyU database, the difference is not significant. This result implies that the

manifold structure is important to local feature learning. Lastly, the DBD+AMBP method achieves the

lowest EER among the other methods on the two databases as presented in Table 4. This also shows

that the features extracted by AMBP are complementary to those extracted by DBD. Hence, AMBP and

DBD have different advantages and cannot be substituted for each other.

5 Conclusion and future work

This paper first proposes a local learning feature method for finger vein recognition, which is referred

to as AMBP. The proposed method can improve the finger vein recognition performance by enforcing

a local manifold constraint into the objective function for feature learning. Then, to further improve
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the performance of the recognition system, the fusion of DBD and AMBP for finger vein recognition

is proposed. In the following, we summarize the main contributions of this work. (i) This is the first

attempt to learn the local binary feature using the manifold structure of PDVs. The manifold structure

has been widely used for hashing, but as far as we know, it is still not explored for learning the local

binary feature of images. This is partly because the dataset PDVs extracted from each pixel in the

training images are large scale. Indeed, constructing the similarity matrix is the first step for using the

manifold structure of dataset, but it is difficult to construct a similarity matrix for large-scale datasets.

(ii) We adopt the approach of building the asymmetric graph to construct a similarity matrix for PDVs.

Each data point on the asymmetric graph can be linearly represented by its K-nearest neighbor anchors.

This approach of building the asymmetric graph is simple, is more robust to data noise, and has low

computational and storage costs; therefore, it is suitable to large-scale datasets. (iii) We integrate the

asymmetric graph into our objective function, and then design an effective and efficient algorithm to

optimize it. Three benefits can be obtained from this. First, there is no need to explicitly construct the

similarity matrix for large-scale data during the optimization process. Second, we adopt an alternative

and iterative algorithm to solve the objective function without having to calculate the eigenvectors of the

graph Laplacian matrix, as this is a time-consuming operation for large-scale data. Lastly, a map can

be obtained through optimizing our objective function and we can directly use it to project the PDVs

extracted from the test images. Thus, the out-of-sample problems are solved. (iv) We fuse the DBD

and AMBP methods at the representation level and we achieve the best performance on two finger vein

databases. In our future work, we plan to apply the proposed algorithms to other biometric modalities,

such as palm vein databases.
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