
 

 

Force tracking impedance control with unknown 

environment via an iterative learning algorithm 
Xiuquan Liang, Huan Zhao*, Member, IEEE, Xiangfei Li, Student Member, IEEE and Han Ding, Senior Member, IEEE  

State Key Laboratory of Digital Manufacturing Equipment and Technology 

Huazhong University of Science and Technology 

Wuhan 430074, Hubei, P.R. China 
{XiuquanLiang, huanzhao, lixiangfei, dinghan}@hust.edu.cn 

A. INTORDUCTION 

The applications of robot manipulators have evolved and broadened into many industrial fields, especially in some constrained 

tasks such as deburring, grinding, and finishing surface. Robot-constrained operations require manipulators that can interact with 

the environment compliantly even in an unknown environment. To improve the compliant performance of a robot-environment 

interaction, countless researchers have studied this problem over the past two decades. Two major force tracking methods to comply 

with a constrained environment have been proposed: hybrid position/force control [1] and impedance control [2]. 

Compared with hybrid position/force control, because impedance control provides a unified framework for both constrained and 

unconstrained spaces, it is garnering more attention. By regulating the virtual “mechanical impedance” of the end-effector, the 

impedance control scheme maintains the dynamic relationship between position and contact force to achieve an interaction force 

indirectly; this is advantageous for performing little task planning, overcoming uncertain disturbances, and transiting smoothly 

through an unconstrained operation to a constrained operation. Generally, for impedance control, the force tracking performance 

depends on the reference trajectory, environment stiffness and location, and robot position tracking accuracy. 

Since the impedance control method was presented by Hogan [2], researchers have continually sought a remedy for the issue 

within the framework. To provide robustness and stability against disturbances and parameter uncertainties, a robust impedance 

control based on the sliding model [3], an iterative learning impedance control [4], a robust neural network [5], an adaptive optimal 

impedance control by minimizing a certain cost function [6], and a Q-learning method to achieve impedance parameter adaption [7] 

were proposed successively. In [8] and [9], a new two-phase impedance function through null stiffness in an original impedance 

equation to satisfy zero-force tracking error for any environment was presented, where an adaptive method was used by adjusting 

the damping parameter online to obtain robustness against the uncertainties of robot dynamics and environment parameters. Further 

improvement of the works mentioned in [8] and [9] was reported in [10]. However, the hypothesis of null stiffness did not conform 

to the intuitive force tracking rules, in that humans always maintain stiffness when exerting the desired force on objects. Hence, a 

new variable target stiffness impedance control method was proposed [11]. Furthermore, except using variable impedance 

parameters to realize adaptability, the other method is to generate the precise reference trajectory as an input to regulate the contact 

force online, thus demanding prior knowledge or estimation of environment parameters. Hence, a direct reference trajectory 

generation method based on the force tracking error, and an indirect adaptive method by observing the environment stiffness and 

location to obtain the reference trajectory were provided [12]. Recently, by minimizing a cost function including several interaction 

targets and a novel online reference trajectory adaptation algorithm, a new scheme to obtain a reference trajectory was proposed 

[13,14]. However, the accurate reference trajectory has been calculated, and the position tracking error will primarily affect the 

force tracking performance such as the steady-state error. Using information from previous experiments continually, iterative 

learning control is a highly simple and useful method to improve motion trajectory tracking accuracy to obtain the desired output 

[15]. In addition, some novel adaptive iterative algorithms to improve robotic trajectory tracking accuracy were presented in [16]. 

The objective of this study is to provide a simple and effective method to enhance impedance control. Within the impedance 

control framework, an adaptive control scheme is developed in this study for robust force tracking without any environment 

information, and an iterative learning method is employed to improve the tracking accuracy for a better force tracking performance. 

The primary idea of the study is to estimate the environment stiffness and location in real time to induce the observed force to 

converge to the desired ones. Consequently, the accurate reference trajectory will be acquired. Based on the force tracking error, an 

iterative learning algorithm is used to guarantee the trajectory tracking accuracy. The proposed method combines the adaptive 

reference trajectory generation technique with the iterative learning control (ILC) algorithm; it is robust to unknown environments, 

and simple to reduce steady-state errors caused by trajectory tracking errors. The simplicity and efficiency of the control methods 

are necessary for a real-time implementation. 



 

 

B. ADAPTIVE FORCE TRACKING IMPEDANCE CONTROL 

Subsection B.1 briefly reviews the typical compliant force control method: position-based impedance control. The adaptive 

scheme with environment information observation and ILC algorithm is presented in subsection B.2. 

B.1 Position-based Impedance Control 
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Fig. 1. Position-based impedance control algorithm 

Through establishing a virtual mass-damping-stiffness model, impedance control regulates the dynamic relationship between the 

robot end-effector position and contact force. Position-based impedance control consists of both the inner position control loop and 

outer indirect force tracking loop. In Fig. 1, Fd and Fe are the desired force and actual contact force, respectively, and Xr, Xc, Xe, X 

represent the reference trajectory, commanded trajectory, environment location, and real robot end-effector position, respectively; 

Ke is the environment stiffness. For modeling the robot/environment interaction, the environment is simplified as a stiffness model 

such that Fe = Ke(X - Xe) can be satisfied approximatively. If the position tracking error does not exist, X = Xc can yield Fe = Ke(Xc - 

Xe). By the force tracking error ΔF = Fd - Fe. The outer impedance controller generates the trajectory modification to regulate the 

contact force indirectly. The inner position loop ensures the minimum position tracking error, because the residual position error 

contributes to the force error. 

In general, the impedance equation can be expressed as 

      d e c r c r c rF F M X X B X X K X X        

where M, B, K are the diagonal mass, damping, and stiffness matrices, respectively. The commanded reference trajectory satisfies 

Xc = Xr + E, where E represents the position modification generated by the impedance controller. Further, (1) can be rewritten as 

 F ME BE KE     

Obviously, the impedance model can be regarded as a linear second-order system, and its transfer function is K(s) = 1/(Ms
2 
+ 

Bs + K); therefore, Xc = Xr + E = Xr + ΔFK(s). 

Owing to independent Cartesian variables, the lower-case scalars x and f were used to represent any element of vectors X and F. 

Subsequently, the force tracking error can be expressed as follows: 

  d e d e c ef f f f k x x       

Substituting xc = xr + k(s)Δf and k(s) = 1/(ms
2 
+ bs + k) into (3) yields 

      2 2

e r+ [ ]d e ef ms bs k k ms bs k f k x x        

From (4), the steady-state force tracking error can be expressed as 
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From (5), two methods can be used such that the force tracking error converges to zero. One is to set the impedance parameter k = 

0 to guarantee that Δfss = 0 is always satisfied for any ke; the other is to guarantee that the reference trajectory satisfies the 

following equation  
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It is unreasonable to use the null stiffness such that the steady-state force tracking error converges to zero. One reason is that the 

impedance parameter k is closely related to the natural frequency and the damping ratio of the linear second-order system [17]. 

Additionally, the fact that humans exert force on an object through adapting arm stiffness cannot be ignored [18]. From (6), the 

reference trajectory could be obtained accurately if the environment location and stiffness are both known exactly. Owing to the 

lack of exact environment information in practice, it is typically difficult to specify the accurate reference trajectory offline. 

However, through the online estimation of the environmental parameters xe and ke, the reference trajectory xr can be computed 

indirectly. The reference trajectory generator can be devised with appealing simplicity and strong robustness. 

B.2 Impedance Control with Iterative Learning Algorithm 

An adaptive impedance control with iterative learning algorithm is proposed herein. The motivation is to regulate the reference 

trajectory adaptively, while reducing the influence of robot position tracking error on the force tracking performance. 

Consequently, the desired contact force and compliant interaction are achieved. First, the online estimation of the environment 

stiffness and location helps to generate xr. Subsequently, iterative learning contributes to x→xr. The idea is also motivated by the 

fact that the online observation of the environment stiffness and location can provide appealing robustness properties. From 

subsection B.1 of Section B, the xr can be computed accurately if the xe and ke are known exactly. However, owing to the 

complexity of the contact environment, it is difficult to obtain the accurate environment information in practice. One available 

approach is to approximately calculate the observation values ˆ
ex  and ˆ

ek ; therefore, based on (6), xr can be expressed as 
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where ˆ
ex  and ˆ

ek  are the calculated observation values of xe and ke, respectively. It is rational to regard a rigid environment as a 

stiffness model, as practiced by most researchers. Suppose that no position tracking error exists when a robot manipulates, i.e., xc 

= x; subsequently, the contact force can be written as 

 ( )e c e e c e ef k x x k x k x     

Considering the definition 

 ˆ ˆ ˆ ˆˆ ˆ( )e c e e c e ef k x x k x k x     

where f̂  can be regarded as the observation value of the current actual contact force f  based on the current observation values 

ˆ
ex  and ˆ

ek . From (8) and (9), the objective of the precise observation values ˆ
ex  and ˆ

ek  is to render f̂ f  when t  ; 

therefore, the control scheme can be proposed according to the observation objective. Substituting (7) into (9) with f̂ f , the 

following formulation holds 

 ˆ ˆ ˆˆ ( )e c e e e r c df k x k x k x x f       

According to the target impedance equation, it can be shown that 

 df f me be ke     

Substituting (10) into (11), it becomes  

   0eme be k k e     



 

 

Therefore, the convergence of (12) guarantees f̂ f ; subsequently, 
df f  or ˆ

ek k  , and setting the estimation limits as 

ˆ 0ek   can easily avoid the latter situation. To achieve the desired force tracking, it is necessary to develop an adaptive scheme 

such that ˆ
ex  and ˆ

ek  can be estimated such that f̂  converges to f. The observation values ˆ
ex  and ˆ

ek  are defined as  
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where λ1, λ2, and λ3 are positive constants for parameter estimation. The stability of the observation scheme is described in Section 

C by a Lyapunov-based approach. Through estimating 
ex  and ek , the adaptive reference trajectory can be obtained; thus, f̂ f  

is guaranteed. However, the position tracking error always exists, implying that the hypothesis xc = x is not satisfied generally. If 

we denote the steady-state position tracking error Δx as  


cx x x    

it is easy to determine the force error f  because the position tracking error is equal to 
ek x . To improve the force tracking 

performance, the ILC algorithm is adopted in this study to reduce the position tracking error. The ILC algorithm can handle highly 

uncertain dynamic systems simply and does not depend on the exact mathematical model of the dynamic system; further, it does 

not require a large amount of prior knowledge and calculation. The ILC scheme is written as  


, , 1 0 1( ) ( ) ( )f i f i i fu t u t k f t t      

where 
, ( )f iu t , 

, 1( )f iu t
, and 

1( )i ff t t   are the force control inputs at time t in the i-th cycle, (i-1)-th cycle, and the force 

tracking error at time t+tf in (i-1)-th cycle, respectively. The parameters k0 and tf are positive constants, and tf represents the 

leading phase. The convergence condition for this ILC scheme is as shown in (16), and its stability will be proven in Section C. 
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where Gc and Gp are the transfer functions of the position controller and robot, respectively. Figure 2 shows the structure of the 

adaptive position-based impedance control with the iterative learning scheme. 
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Fig. 2. Position-based impedance control scheme with iterative learning algorithm 



 

 

C. STABILITY OF IMPEDANCE CONTROL WITH ITERATIVE LEARNING SCHEME 

The form of the proposed method is given in (13) and (15). The convergence condition and stability analysis are presented 

below to prove that the force tracking error will converge to zero. The Lyapunov function and frequency domain method were 

used in this study.  

First, the stability of the adaptive reference trajectory generator is given. Let ˆ
k e ek k   , ˆ ˆ

x e e e ek x k x   , and  
T

k x   . 

Subsequently, substituting them into (8) and (9) yields 

  ˆ 1cf f x    

To analyze the stability, we define the positive scalar Lyapunov function candidates as 

 TV     

where Г is a 2 × 2 symmetric positive-definite constant matrix. Subsequently, we define the   as the following: 

  1 ˆ
1

cx
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By substituting (17) and (19) into the derivative of (18), we have 
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which is a negative semidefinite. (18) and (20) suggest that a suitable adjustment of   according to (19) can render f̂ f  as 

t  . From (17), the simple scheme to adjust   is to adapt ˆ
ex  and ˆ

ek . It is noteworthy that   is specified as  
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Subsequently, the observation values ˆ
ex  and ˆ

ek  can be formulated as (13). 

Next, the iterative learning control scheme will be proven in frequency domain. From Fig. 2, the following formulation holds 
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where ( )E s , ( )X s , and ( )U s  are the Laplace transforms of ( )e t , ( )x t , and ( )u t . That is 


, 1

, 1

( )
( )

1 1

f i c pr

x i

c p c p

U s G GX
E s

G G G G



  
 

 

Substituting Laplace transform of (15) into (23), it becomes 
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The force tracking error caused by the position tracking error can be written as  


1 , 1( ) ( )i e x iF s k E s    

where ke is the environment stiffness. Substituting (24) into (25) yields 
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Further,  
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where F  is the Laplace transform of f . From (27), it is easy to obtain the convergence condition as (16). The proof is 

completed. 

D. SIMULATION STUDIES AND EXPERIMENTAL RESULTS 

D.1 Simulation 

The proposed force tracking impedance control via the iterative learning algorithm is simulated based on the 

MATLAB/Simulink software. To discuss the adaptive reference trajectory generation scheme and the iterative learning control 

algorithm, some comparison simulations are performed. Both adaptive reference generation methods are shown in (7) and (13), 

and the iterative learning scheme shown in (15) was used. The block diagram of the simulation is illustrated in Fig. 3. 

 
Fig. 3. Simulation block diagram. 

The contact environment in the simulation is an elastic plane, and the environment location xe= 0.1 mm, and the fixed 

reference trajectory xr = 0.09 mm indicates that the robot end-effector is not in contact with the environment at the initial time. The 

constant parameters in (15) are set to k0 = 7 × 10
6
 and tf = 1; the impedance parameters m = 50, b = 1500, k = 500, fd = 20 N; the 

parameters in (13) are λ1 = 1, λ2 = 15, λ3 = 1. Abrupt changes in the environment stiffness are considered to test the robustness of 

the proposed control scheme. The variable environment stiffness is shown as follows: 
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With the fixed reference trajectory xr = 0.09 mm, Fig. 4 shows the position tracking result and contact force response on a 

plane. The lower subfigure shows that the robot end-effector moves from a free space to be in contact with the environment 

surface at 1.96 s, and that a large steady-state error exists. After analyzing the different positions in the upper subfigure, a 

conclusion can be drawn in that the fixed xr is unsuitable because xr cannot be calculated when it lacks accurate environment 

information. The conclusion coincides with the fact that, only when impedance parameter k = 0 or the accurate xr is given can the 

steady-state zero force tracking error be achieved, as shown in (5). The result motives us to devise a useful reference trajectory 

generator to achieve an accurate force tracking.  

 
Fig. 4. Position tracking (upper) and contact force tracking (lower): constant impedance control with fixed xr = 0.09 mm, without ILC algorithm, and m = 50, b = 

1500, k = 500, fd = 20 N. 

Figure 5 shows position and contact force tracking results on a plane with variable xr generated by the developed adaptive 

reference trajectory generator. Compared with the fixed xr, by estimating the stiffness and position of the environment shown in (7) 

and (13), the proposed adaptive reference trajectory generation scheme produces a more accurate xr and realizes better force 

tracking result as shown in Fig. 5. Additionally, the adaptive scheme provides effective robustness to the abruptly changing 

environment stiffness. From the lower subfigure, although the adaptive scheme renders the force tracking error to be close to zero, 

the steady-state force tracking error still exists. As shown in the upper subfigure, the primary cause of the residual force error is 

the position tracking error, which has been studied in subsection B.2. 

To reduce the steady-state force tracking error caused by the position tracking error, an iterative learning control is combined 

with the former adaptive generator. The simulation results are shown in Fig. 6, and all the experimental conditions are the same as 

before but the iterative learning scheme is added. The constant parameter k0 is set to 7 × 10
6
 and tf is set to 1. The simulation result 

is obvious. It is observed that the steady-state force tracking error is smaller than 0.01 N after adding the ILC algorithm. The lower 

subfigure shows that an overshoot appears during the transient process, and the overshoot appears to be slightly large. This is 

because, in this study, only to the force tracking control is emphasized when the robot is in contact with the environment; the 

overshoot during the transition between the free motion and constrained motion is not treated. 

  
Fig. 5. Position tracking (upper) and contact force tracking (lower): constant impedance control with adaptive xr, without ILC algorithm, and m = 50, b = 1500, k 

= 500, fd = 20 N, λ1 = 1, λ2 = 15, λ3 = 1 



 

 

D.2 Experiment Results 

Based on the impedance control, experiments were devised to demonstrate the performance of the adaptive reference trajectory 

generator and ILC algorithm. The experimental platform is a biaxial platform as shown in Fig. 7. An external PC was used to 

design the controllers in MATLAB/Simulink. The control system dSPACE DS1006 controller board runs programs in real time to 

generate a control command. An ATI Gama wrist force sensor (nominal capacity, Fz of 400 N, measurement uncertainty of 95% 

confidence level) collects the force information. The Z-axis moves to achieve a contact interaction in the position loop and the X-

axis moves a plate at 2 mm/s, and both are driven by a Yasukawa ac servo motor with a 10 mm/pitch lead screw. 

Two comparison tests were conducted in one experimental process. The experiment results are shown in Fig. 8, which are in 

accordance with the simulation studies. Only the force in the negative direction of the Z-axis was considered, and the impedance 

parameters were set to m = 50, b = 20, k = 60, the constant parameters λ1= 0.5, λ2= 0.1, λ3= 0.6, the constant parameter of the 

iterative learning controller k0 = 1.8 × 10
-5

, fd =20 N, respectively.  

  
Fig. 6. Position tracking (upper) and contact force tracking (lower): constant impedance control with adaptive xr and ILC algorithm, and m = 50, b = 1500, k = 

500, fd = 20 N, λ1 = 1, λ2 = 15, λ3 = 1, k0 = 7 × 106. 

The first contrast test was set such that the end-effector was in contact with the plate, but the plate remained actionless during 

0–72.5 s, and only the adaptive reference trajectory generator operated before 41 s. As shown, the steady-state force tracking error 

exists up to 0.95 N owing to the position tracking error xc≠x in stage 1, as shown in Fig. 8. The result is consistent with the 

analysis in subsection B.2. The iterative learning algorithm was added during 41–72.5 s through a software switch and the plate 

was still motionless. Because the position tracking accuracy was compensated, the steady-state force tracking error was almost 

adjusted to 0 N in stage 2. 
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Fig. 7. Hardware architecture for plate-contact experiment 

The second contrast test was to test the dynamic performance of the situations with or without the iterative learning algorithm. 

The plate continued moving during 72.5–132.5 s, as shown in Fig. 8. The adaptive reference trajectory generator and the iterative 

learning operated synergistically during 72.5–104.5 s, shown in stage 3, and the average of the tracking force is -20.0456 N. When 

the iterative learning algorithm was removed in 104.5 s with software switch, the average tracking force was -21.2558 N, as shown 

in stage 4. The comparative experimental results indicate that the iterative learning algorithm is effective in improving the force 

tracking accuracy. 



 

 

  
Fig. 8. Results of comparative experiments. Stage 1, fixed reference trajectory without ILC and the plate is actionless; stage 2, adaptive reference trajectory with 

ILC algorithm added and the plate is actionless; stage 3, adaptive reference trajectory with ILC algorithm added and the plate keeps moving; stage 4, 

adaptive reference trajectory is generated without ILC and the plate keeps moving. 
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