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Dear editor,
Near-space vehicles (NSVs) have been proposed as
a more reliable and efficient alternative to tradi-
tional flight vehicles because of their high mobil-
ity and multitask mode, as well as their excellent
performance in high-speed flights [1]. In practical
applications, the design of an efficient trajectory
control scheme for an NSV is crucial, especially
when the system is affected by an external distur-
bance. In addition, some conditions are required
to improve the performance of the flight control
system, such as a minimum tracking error or an
optimal control energy. Thus, we focus on the op-
timal trajectory control problem of an NSV with
an external disturbance.

Recently, the optimal control problem has been
attracting more attention in the control field.
In [2], a nonlinear adaptive optimal regulator was
presented for a class of nonlinear systems, and an
adaptive dynamic programming (ADP) algorithm
based on a single network was proposed in [3] for
an uncertain nonlinear system. By using the con-
cept of system augmentation, the ADP method
was employed to solve the optimal tracking control
problem in [4]. It is well known that the existence
of an external disturbance is inevitable during the
flight process of an NSV, which means that the
effect of the disturbance should be considered to
satisfy the robustness requirement. The nonlinear
disturbance observer (NDO) method is considered
to be a reliable way to address an external distur-
bance. An introduction to the existing disturbance

observer-based control methods is given in [5]. A
new nonlinear composite bilateral control frame-
work using the NDO method has been proposed
for the n-degree-of-freedom (n-DOF) teleoperation
systems in [6]. Many studies have been performed
to develop the flight control of an NSV, but only a
few have investigated the optimal trajectory con-
trol of an NSV, especially when there exists an
external disturbance in the system.

Therefore, in this study, a disturbance observer-
based optimal trajectory control scheme is pre-
sented for the NSV longitudinal trajectory model
with an external moment disturbance. The effec-
tiveness of the proposed control method is demon-
strated using simulations.

Problem description. The longitudinal dynam-
ics of NSV are given as follows:

ḣ =V sin γ, (1)

V̇ =(T cosα−D)/m− g sin γ, (2)

γ̇ =(L+ T sinα)/mV − g cos γ/V, (3)

α̇ =q − (L+ T sinα)/mV + g cos γ/V, (4)

q̇ =My/Iy + dq, (5)

where h, V , γ, α, and q represent the height, veloc-
ity, flight path angle, attack angle, and pitch angle
rate, respectively. The symbols T , D, and L stand
for the thrust, draft, and lift forces, respectively,
whereas My is the pitching moment. The external
moment disturbance is represented by dq, and its

first derivative, ḋq is assumed to be bounded such

that |ḋq| 6 d̄q for positive constant d̄q. The mass
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of the NSV, its moment of inertia, and the grav-
itational constant are represented by the symbols
m, Iy , and g, respectively. The objective of the
method is to design a suitable optimal trajectory
controller such that the given signals for height
and velocity, hd and Vd, can be optimally tracked
by h and V , respectively.

Controller design. If h̃ = h − hd, to obtain γd,
the calculations performed in [1] have been used.

γd = arcsin

(

−khh̃− kI
∫

h̃dt+ ḣd

V

)

, (6)

where kh and kI are the design constants.
From (1) and the definition of h̃, the correspond-

ing altitude tracking error dynamic satisfies the

equation:
¨̃
h + kh

˙̃
h + kI h̃ = 0. If we select kh > 0

and kI > 0, and the γ is controlled to track γd,
then h̃ is exponentially regulated to zero exponen-
tially [1].

Then, Eqs. (2) and (3) can be rewritten
as η̇ = Fη(η) + Gη(η)F̄d, where η = [V, γ]T,
Fη = [−g sin γ,−g cos γ/V ]T, Gη(η) = diag{1/m,
1/mV }, F̄d = [D̄, L̄]T, D̄ = 0.5ρV 2SCD +
T cosα = fD̄(T, α), and L̄ = 0.5ρV 2SCL +
T sinα = fL̄(T, α). The symbols ρ and S rep-
resent the air density and the reference wing area,
and CD, CL are drag and lift force coefficients, re-
spectively.

The proportional integral derivative (PID)
method is used to design the control input F̄d as

F̄d = G−1
η

(

KP eη +KI

∫

eηdt+KD

deη
dt

)

, (7)

where eη = η−ηd denotes the tracking error vector
and KP ,KI ,KD are designed parameter matrixes.

To obtain T and α from D̄ and L̄, the Newton
iteration method is applied. Then, the obtained
α is regarded as a reference signal for the attitude
subsystem, αd.

The relations in (4) and (5) can be rewritten for
the attitude subsystem as

α̇ = fα(α) + gαq,

q̇ = fq(α, q) + gqu+ dq,
(8)

where the control input is fα(α) = −(L +
T sinα)/mV + g cos γ/V , gα = 1, fq(α, q) =
0.5ρV 2Sc̄[CM (α) + CM (q) − 0.0292α], gq =
0.5ρV 2Sc̄ × 0.0292, and u = δe. The symbol c̄
denotes the reference length, and the moment co-
efficients are represented by CM (α) and CM (q).

Let the tracking errors be defined as follows:

eα = α− αd, (9)

eq = q − qd. (10)

The tracking error dynamic of (9) can be

ėα = fα(α) + gαqd + gαeq − α̇d, (11)

where qd is the virtual control input which has
two parts, qd = qdf + qdo. qdf is the feedfor-
ward controller which can be designed as qdf =
g−1
α [α̇d − fα(αd)], and qdo is an optimal feedback
controller to be designed.

Then the tracking error dynamic (11) can be
ėα = f∗

α(eα) + gαqdo + gαeq, where f∗
α(eα) =

fα(α) − fα(αd).
By using (10), the dynamic of eq is

ėq = fq(α, q) + gqu+ dq − q̇d. (12)

The control input u also contains two parts, u =
uf+uo, where uo denotes the optimal control input
to be designed and uf is the feedforward controller

in the form of uf = g−1
q [q̇d − fq(qd) − gαeα − d̂q].

The symbol d̂q represents the estimation of dq us-
ing the NDO method as follows:

d̂q =zq + pq(α, q),

żq =− lq(fq(α, q) + gqu+ d̂q) + eq,
(13)

where zq is an internal state variable and pq(α, q)
is a designed function such that lq = ∂pq/∂q. By
suitably selecting lq, the estimation error of the

disturbance, d̃q = dq − d̂q, is uniformly ultimately
bounded (UUB) [5]. Then, ėq = f∗

q (eq) + gquo −

gαeα + d̃q, where f∗
q (eq) = fq(q)− fq(qd).

In the next step, the optimal control inputs qdo
and uo are designed. We consider the nominal
affine system as follows:

Ė = F (E) +GUo, (14)

where E = [eα, eq]
T, F (E) = [f∗

α(eα), f
∗
q (eq)]

T,

G = diag{gα, gq}, and Uo = [qdo, uo]
T.

The cost function can be defined as

V=

∫ ∞

t

(ETQE + UT
o RUo)dτ, (15)

where Q and R are symmetric positive matrices.
The optimal controller Uo can be designed us-

ing the nonlinear optimal control theorem, as pre-
sented in [3, 4]:

Uo = −
1

2
R−1GTV ∗

E , (16)

where V ∗(E) is the optimal cost function and
V ∗
E = ∂V ∗/∂E.
By using a neural network (NN) technique, we

obtain V ∗(E) = WT
c ϕ(E) + ε(E), where Wc ∈ R

L

denotes the desired weight vector, ϕ(E) is a basis
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function vector satisfying ϕ(0) = 0, and ε is the
corresponding NN approximate error.

Furthermore, we have V ∗
E = ∇T

EϕWc +∇Eε.

Let Ŵc be defined as the estimated value of Wc;
the estimation of Uo is equal to

Ûo = −
1

2
R−1GT∇T

EϕŴc. (17)

The update law for Ŵc is designed as in [3]:

˙̂
Wc = −

ξ1σ̂

(σ̂Tσ̂ + 1)2
(ETQE + ŴT

c ∇EϕF

−
1

4
ŴT

c ∇EϕΞ∇
T
EϕŴc)

+
1

2
ξ2Σ(E, Ûo)∇EϕΞJ1E ,

(18)

where the symbols Ξ = GR−1GT, σ̂ = ∇EϕF −
∇EϕΞ∇

T
EϕŴc/2, ξ1 > 0 and ξ2 > 0 represent de-

sign constants and J1(E) is a designed Lyapunov
function. The last term, Σ(E, Û), is defined as
follows:

Σ(E, Ûo) =

{

0, if JT
1E(F +GÛo) < 0,

1, otherwise.
(19)

The Lyapunov candidate function is chosen as
JHJB=

1
2W̃

T
c W̃c + ξ2(J1(E) + 1

2 d̃
T
q d̃q). As shown

in [3, 7], the designed function J1E , the weight es-
timation error W̃c, and the disturbance estimation
error d̃q are guaranteed to be UUB.

Simulation results. The reference signals hd

and Vd are generated by the filters hd

hc

=
0.02

(s+0.5)(s2+0.28s+0.04) and
Vd

Vc

= 0.04
(s+1)(s2+0.28s+0.04) ,

with Vc = 100 m/s and hc = 300 m. The exter-
nal moment disturbance, which acts on the pitch
rate, is selected as dq = 0.075 sin(0.8t). The para-
ments of the control gain for altitude tracking are
set to be kh = 1 and kI = 0.01. The PID con-
troller paraments are set as KP = [5 0; 0 0.45],
KI = [0.005 0; 0 0.05], and KD = [0.01 0; 0 0.02],
whereas ξ1 = 0.5, ξ2 = 0.1, R = [1 0; 0 1], Q =
[20 0; 0 10], and lq = 120. The tracking results of
the velocity and height are presented in Figure 1.
We can observe that the desired signal of Vd and
hd can be tracked well by the system states V and
h.

Conclusion. This study introduces an NDO-
based optimal trajectory control system of an NSV
longitudinal model with a moment disturbance.
By combining the NDO method and an optimal
tracking control algorithm, the effect of the exter-
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Figure 1 (Color online) Response of the velocity (a) and
height (b).

nal moment disturbance can be eliminated and the
prescribed performance index requirement of the
control effect can be minimized.
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