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Dear editor,
Controllability and observability are basic con-
cepts in modern control theory that are based on
Kalman filtering (KF) [1,2]. In particular, observ-
ability is closely related to state estimation abil-
ity [2–4]. The indicator called observable degree
(OD) has been used to quantitatively measure the
degree of observability [5–7]. However, limited by
slow progress of the observability theory, observ-
able degree analysis (ODA) faces many difficulties
in theory and applications.

In general, there are two methods through which
OD can be analyzed. One is based on the observ-
ability matrix, whereas the other uses estimation
error covariance, which is a performance measure-
ment index [5–7]. Intuitively, the two methods
should be closely related; however, the correspond-
ing study was very incomplete. In one of our previ-
ous studies [7], we attempted to explore this issue.
In particular, a novel ODA method based on an
estimation performance measure (ODAEPM) was
presented. It is based mainly on the method used
for designing the traditional observability matrix.
The discriminant matrix of observable degree can
be constructed using the Cauchy Schwarz inequal-
ity, weighted least squares, and the Gramian ma-
trix. Afterwards, the relation between the observ-
able degree and the performance index of the KF
is clearly disclosed. However, the following short-
comings still remain [7]:

(1) Owing to the complexity of the derivation,

the process noise is not considered to simplify the
computation. This directly reduces the applica-
tion ability.

(2) The ODAEPM cannot effectively deal with
incompletely observable systems.

Motivated by these limitations, in this study, we
try to extend the result without process noise in [7]
by using the Cramer-Rao lower bound (CRLB),
which is a basic concept a strong tool in state
estimation; it is generally used to measure the
availability of the unbiased estimator [8, 9]. The
main contribution of this study is to demonstrate
the consistency between the ODA in [7] and the
CRLB theory by obtaining the relation between
the Fisher information matrix and the OD’s dis-
criminant matrix. Namely, this study shows that
there is a natural relation between the two ap-
proaches. Additionally, the CRLB is an effective
scheme to study and evaluate the OD for complex
systems with process and measurement noises.

Review of ODAEPM [7]. The following stochas-
tic estimation system is considered:

xk = fk(xk−1,wk−1) = Φk,k−1xk−1 +wk−1, (1)

zk = hk(xk,vk) = Hkxk + vk, (2)

where k (k = 1, 2, . . .) is the time index, xk ∈ R
n

is the state vector, zk ∈ R
m is the observation vec-

tor, Φk,k−1 ∈ R
n×n is the state transition matrix,

and Hk ∈ R
m×n is the observation matrix. wk−1

is the process noise with dimension n, and vk is
the observation noise with dimension m; both are
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zero mean Gaussian white noises with covariances
Qk−1 and Rk, respectively.

The discriminant matrix of the OD is

D∗
1,k = Φk,1D1,kΦ

T
k,1 (3)

with the discriminant matrix of observability
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where Φj,1 is the state transition matrix from time
1 to j, O1,k is the classical observability matrix,
and R1,k is defined in [7]. In particular, D1,k is
the inversion of the observability Gramian matrix.
Based on this, the relation between D1,k and the
estimation performance of the KF was derived [7].
The local observable degree (LOD) and the global
observable degree (GOD) are defined as follows:

∆ηi =
1

(D∗
1,k)i

, η =
1

Trace(D∗
1,k)

. (5)

Compared with previous methods, the ODAEPM
takes measurement noise into account. However,
the process noise is still not considered; therefore,
process noise is the focus of this study.

Motivation. Based on (1) and (2), we have

zk = HkΦk,ix0 +

k
∑

i=1

HiΦk−i,1wi + vk. (6)

According to the classical modern control theory,
random noise is not considered; the process noise
was also not considered for the ODAEPM. How-
ever, Eq. (6) shows that determining the ini-
tial state value is influenced by the random vari-
able wi. Therefore, it is necessary to consider
this influence to improve the effectiveness of the
ODAEPM. In addition, the ODAEPM is only ap-
plicable for completely observable environments; it
cannot deal with incompletely observable cases.

As such, a novel ODM based on the CRLB is
proposed to overcome the two shortcomings of the
ODAEPM. The core is to find the inner relation
between the Fisher information and the OD’s dis-
criminant matrices.

ODA based on the CRLB. For (1) and (2), the
Fisher information matrix can be written as [8,9]:

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k , (7)

where

D11
k =E[−∆xk

xk
log p(xk+1|xk)],

D12
k =E[−∆

xk+1

xk
log p(xk+1|xk)],

D21
k =E[−∆xk

xk+1
log p(xk+1|xk)] = D12

k

T
,

D22
k =E[−∆

xk+1

xk+1
log p(xk+1|xk)]

+ E[−∆xk

xk+1
log p(zk+1|xk)].

(8)

For the system in [7], we have

D11
k =Φ

T
k+1,kQ

−1
k Φk+1,k,

D12
k =−Φ
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k ,

D22
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(9)

Based on (7) and (9) and using the matrix inver-
sion lemma, one has

Jk+1 =HT
k+1R

−1
k+1Hk+1

+ (Qk +Φ
T
k+1,kJ

−1
k Φk+1,k)

−1. (10)

The CRLB is computed using J−1
k+1 [8, 9]. When

Qk = 0, one can get the same discriminant matrix
of observable degree with the ODAEPM:

D∗
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(11)

From (10) and (11), we can infer the following:
(1) The observable degree of each state compo-
nent given by the ODAEPM is the reciprocal of
the correspondingly conditional, posterior CRLB.
Obviously, it is also related to the Fisher informa-
tion matrix of the state estimation theory.

(2) When Qk = 0, the discriminant matrix of
the observable degree based on the CRLB degener-
ates the result obtained in [7]. In other words, the
OD’s discriminant matrix in [7] is a special case of
the Fisher information matrix. However, the ex-
pression of the OD’s discriminant matrix has more
extensive coverage to indicate the observable de-
gree than that of the ODAEPM. Namely, the ODA
using the CRLB shown in (11) is more adaptive
compared with the ODAEPM for more complex
systems with two types of noise.

(3) There is a natural connectivity between the
ODAEPM and the Fisher information matrix (or
the CRLB). Both functions should be coincident.
The observability (the modern control theory) and
the estimation theory are also closely related.

(4) The KF is also the base of the model-based
state estimation. As such, the control theory and
estimation have the same basis from the KF frame.
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Moreover, the ODA generally refers to the modern
control theory; this naturally leads to connection
between the ODA and the state estimation.

Based on (10) and (11), the CRLB can be
taken as the OD’s discriminant matrix of the ODA
method in [7] for systems with process and mea-
surement noises. Thereby, the CRLB can be used
to assess the OD, namely, the OD’s discriminant
matrix of a system (Eqs. (1) and (2)) is

D∗c
1,k = J−1

k , (12)

where the CRLB J−1
k is evaluated using (10).

Then, the observable degree of the system and the
state component are the same as in (5) for a sys-
tem with the process and observation noises.

Simulation. For the CV model [7, 8], we take

Φk,k−1 =






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

1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1


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, Hk =

[

1 0 0 0

0 0 1 0

]

,

where t (s) is the sample interval and Qk−1 =
0.01× I4×4, Rk = I2×2.

The simulation results are shown in Figure 1. In
Figure 1, the red line with circles indicates the dis-
placement component (the first state component),
whereas the blue line with stars is related to the
velocity component.
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Figure 1 (Color online) (a) Estimation error covariance;
(b) result of the proposed ODA; (c) result of the ODAEPM
in [7].

From the simulation results, we have: (1) Fig-
ure 1(a) shows that the estimation error covari-
ance (estimation accuracy) of the velocity is better
than that of the displacement for the x direction.
(2) For the proposed ODA and ODAEPM, the or-
ders are the same for the ODs of displacement and

velocity. It is also consistent with the result in Fig-
ure 1(a). It means that the two ODAs can be used
to measure the estimated performance with both
having the same function. (3) The OD values of
the corresponding state components are different.
This is because the proposed method, unlike the
ODAEPM, considers the process noise using the
CRLB.

Conclusion and future work. When extending
the work in [7], inner connectivity is found be-
tween the observability (or ODA) and the CRLB
based on the OD’s discriminant matrix. This indi-
cates that there is a link between the modern con-
trol theory and the estimation theory. This study
is performed through exploring the ODA method
from a different view on the CRLB. It also demon-
strates the benefits of looking from multiple per-
spectives. The result is that the CRLB can be used
to measure the observable degree. Thereby, the
process noise is perfectly considered in the ODA
process. The future work includes extending the
study to nonlinear systems such as non-Gaussian
systems, and multi-sensor systems.
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