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Dear editor,

Robots are extensively used in various civil and
military applications [1,2]. In the last decade, in-
formative path planning (IPP) has been one of the
most important research areas in modern robot en-
gineering [3], especially in long-term monitoring of
a particular area of interest. In such scenarios, it
is expected that an optimal path will be chosen
along with the collection of maximal information
about the scalar field with a limited fuel budget.
To the best of our knowledge, state-of-the-art IPP
methods do not consider adaptive long-term scalar
field monitoring tasks where the reliability on his-
torical data is gradually decreasing. The Gaus-
sian process (GP) is an attractive tool because
its mean and covariance functions can describe a
given scalar field. In this study, we design a time-
varying likelihood of measurements to handle the
concept of descending belief. Moreover, we utilize
a clamped B-spline curve to analytically parame-
terize the continuous path. Here, the path is de-
termined by a sequence of control points. When
new measurements are received, an adaptive re-
planning scheme that makes the trade-off between
information gain and fuel budget is required [4].
Further, the results of simulations are depicted to
display the effectiveness of our algorithms.

Modified Gaussian process. The Gaussian pro-
cess is a powerful non-parameter tool used for de-
scribing an underlying scalar field that can be for-
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mulated as f : R? — R on d-dimensional space
X C R? [5]. Here, we focus on a scalar workspace
where d = 2. A typical Gaussian process is defined
as

where m(x) is the mean function and generally
set to zero. k(x,z’) denotes the corresponding co-
variance function, which describes the relation be-
tween x and 2.

In practice, the scalar filed f(x) is defined only
through noisy measurements y = f(z) + ¢, where
€ is generally white Gaussian noise, ie., £ ~
N(0,02). This implies that the likelihood of mea-
surements y(z) is also Gaussian. Unfortunately,
in our long-term monitoring application, the pre-
viously collected data would be inadmissible. This
certainly results in a non-Gaussian likelihood of
y().

To consider the non-Gaussian likelihood, we de-
sign a new covariance function k(x,2’) as

o} exp(—3(z — 2/)TM(z — 2'))

+o7 min{meoy,exp(t2t(x))/(297)}.
when 1z =1, (2)

—a')TM(z —a")),

k(z,z")=
o7 exp(—3(x

other,

where §gp = {0y, M,0,} is the Gaussian process

hyperparameter set. Specifically, M = diag(l)~!,
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where [ is a positive vector. fgp can be obtained
using simple descending algorithms.

0 = {t., V.} is the time hyperparameter set of
the Gaussian process. t(x) > 0 is the time interval
between now and the point of collection. Impor-
tantly, the influence of time-varying measurement
reliability is decreasing and limited to mcovcf%. It
is important to note that if maximum mcovafl is
achieved, the corresponding measurements will be
discarded.

Suppose we already have H history measure-
ments Yy = {yn1,Yn2, ..., yu} at locations Xpy =
{zp1,Th2, ..., 2y}, and we want to predict values
at locations of interest Xo = {x41,xe2,...,27}.
Therefore, using properties of Gaussian process,
we can obtain the posterior distribution of f(X7)
using

fxe = K(Xr,Xn)
X[K(XH, XH) + UTQII]_l(YH - m(XH)),(g)
cov(fx,) =KX, Xr) — K(X71,Xn)
X [K(XH,XH) +U?LI]71K(XH,XT).

Given the model of the scalar field, we utilize a
mutual information method to quantize the value
of collected measurements. Suppose we have F'
forthcoming sampling locations on the candidate
path Xp = {zf1,2f92,...,2r}. The information
gain by X can be formulated using

I(f(X7),Y(XF))
NXe,Y)—H(f(X1)| X, Y, Xr,Yr)

lcov(f(X7)|Xn, Yn)|
o8 lcov(f(X)| X, Yi, Xp, Yr)| (4)

(X
H(f(Xr
1
T2

Adaptive informative path planning. Clamped
B-spline curve’s continuous availability of any or-
der derivatives makes it a powerful tool that can
be used to represent a continuous path [6]. It is
parameterized by a sequence of n control points
Xo = {zc1,2ea, ..., xc}, which is formulated us-

ing
c
w) = Z x;B; p(w), where
i=cl
B ( ) 1, ifvi<w<vi+1,
Co(w) =
o 0, otherwise, (5)
w — v;
Biy(w)= """ p, _
ip(W) Vgl —v; P 1(w)
Y —w
+ LB?}FI,Z)*I?

Vitp+1 — Vit

where B; p is the basis function, and {v;} € [0,1]
is the knot vector, which is equally divided in [0, 1].
Briefly, we also define the curve as 7x., and the
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first derivative can be formulated as a B-spline
curve using

c-1
= Z Biy1.p-1Qi, (6)

1=cl

_ P
Where QZ = m
collected with a fixed interval [.

pling locations are obtained using

dT(w)}dw = z}, (7)

The measurements are
Thus, the sam-

wi

dw

Xg = {T(U)Z”
Wi—1
where wy = 0.

Note that the B-spline curve is hardly divided
into exact segments of length . If the curve is par-
titioned into several sub-curves with length [, and
the last one is less than [ then the last location
is abandoned. Now, we introduce our informative
path planning scheme. First, the local sequence
of control points X is optimized according to our
designed objective function O(X¢) in (8) using the
cross-entropy method.

O(Xe) = I(Xc uom(Xeue(Xe), ()
where I(X¢) is the mutual information carried by
Xc. Uobs is the penalty of obstacles. uops(X¢) =
uc(X¢) is the

Ue =
Xobs denotes

1+exp{— )\obbmln(lTXC_Xobbl €obs) )
penalty of the limited resource.

1+exp{*>\c(C(Txc)iE(Txc )—Cleft—€c)}
the obstacle region. e€,ps is the obstacle clear-
ance parameter. ¢(7x, ) denotes the length of 7x,
and ¢(7x.) approximates the length for return-
ing to start location. cie is the remaining source.
Second, the measurements are collected along the
path, which is determined by X¢. Finally, the
posterior estimation of the scalar field is obtained
based on (3).

Because we have quantified the information
about the scalar field in terms of I(X¢), it is criti-
cal to dynamically choose X7 according to the col-
lected data. Instinctively, measurements are taken
where the variance is high. Simultaneously, the
total variance of the scalar field is kept at a low
level. We divide X7 into two sets: X7 and Xr,.
X7, is fixed and averagely distributed in . Con-
trastingly, X, is adaptively chosen in the high
posterior variance region. We generate X7, with
distribution expressed as

“””cwaﬁ/ﬂw@@r ®

Here we formally propose the long-term adap-
tive IPP algorithm in Algorithm 1.
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Algorithm 1 Long-term adaptive IPP algorithm

Input: starting point zstart, planning horizon p, historical
sequence of control points X, obstacle region Xyps.
Output: posterior estimation of scalar field f, local opti-
mal path 7x .
1: [u, s2] + init_para(Xg, 0);
2: local optimal sequence of control points distribution
[“*7 S;] — CEOptimize(“v 52, Xobsv Cleft XT);
3: X¢ « Sample(p*, s3); Xp < 7x;
C f solveGP (X, XF);
5: adaptive re-plan X7, < Sample(p(x,)).

W~

The number of historical measurements X g is
increasing with in-situ data accumulation, which
results in infinite dimensional Xg. Thus, X is
truncated to a fixed scale according to the time la-
bel of the measurements. The scale is empirically
chosen, where a trade-off of estimation error and
computation efficiency must be managed.

Cross-entropy optimization was first proposed
in [7]. Tt is widely used in multi-extremal opti-
mization problems, which do not require a convex
target function. Thus, it is appropriate in our path
optimization problem. Suppose we need to max-
imize O(X¢) in (8) and write the maximum as
v = O0*(X¢) = maxxcx O(z). We define a fam-
ily of pdfs {¢(X,v),v € V is pdfs parameter} on
X. The probability of the rare event {O(X¢) > v}
can be formulated as I(y) = P,(O(X) > ~) =
E,I(O(X) > ). Thus, it is possible to optimize
the pdfs family parameter v, until the rare event
probability is small enough. We formally present
the optimization algorithm in Algorithm 2.

Algorithm 2 Cross-entropy optimization algorithm

Input: v1, quantile n, size IV, max iterations M.
Output: pdf of z*, i.e., g(v*).
1: fort=2,...,M do
2:  generate samples from pdf g(X,v:—1), and sort as
01 <02<---<0Op;
Yt < Or(1—n)N13
V¢ 4— argmaxy %I{O(X) >t} Ing(X;v);
if 74+ < yt—1 then
break;
end if
end for

Simulations. Here, the proposed algorithms are
demonstrated using simulations. The scalar field is
randomly generated in an area of 3 mx 3 m. Sup-
pose the start location is [0,0]. Four circle obsta-
cles with the same radius » = 0.5 m are separately
located at [1,1], [1,2] [2,1], [2,2]. All parameters
include three parts, i.e., GPs, cross-entropy opti-
mization, and path curve, where t. = 1, V; = 2,
n=01, N=20,n=4,]=3. As shown in Fig-
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ure 1, the estimation variance is decreasing along
with the optimized path.
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Figure 1 (Color online) Estimation variance at different
iterations. (a) Iteration = 1; (b) iteration = 5; (c) iteration
= 10; (d) iteration = 15.

Conclusion. Here, we present a new long-term
adaptive IPP algorithm for scalar field monitor-
ing in which time influence and energy limitations
are considered in a long-term situation. Addition-
ally, the interested target locations are adaptively
chosen when new measurements are collected; and
the cross-entropy method is utilized to obtain the
local optimal path segment, which is more appro-
priate in online cases. Thus, it is more practical
for real-world applications.
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