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Dear editor,
Robots are extensively used in various civil and
military applications [1, 2]. In the last decade, in-
formative path planning (IPP) has been one of the
most important research areas in modern robot en-
gineering [3], especially in long-term monitoring of
a particular area of interest. In such scenarios, it
is expected that an optimal path will be chosen
along with the collection of maximal information
about the scalar field with a limited fuel budget.
To the best of our knowledge, state-of-the-art IPP
methods do not consider adaptive long-term scalar
field monitoring tasks where the reliability on his-
torical data is gradually decreasing. The Gaus-
sian process (GP) is an attractive tool because
its mean and covariance functions can describe a
given scalar field. In this study, we design a time-
varying likelihood of measurements to handle the
concept of descending belief. Moreover, we utilize
a clamped B-spline curve to analytically parame-
terize the continuous path. Here, the path is de-
termined by a sequence of control points. When
new measurements are received, an adaptive re-
planning scheme that makes the trade-off between
information gain and fuel budget is required [4].
Further, the results of simulations are depicted to
display the effectiveness of our algorithms.

Modified Gaussian process. The Gaussian pro-
cess is a powerful non-parameter tool used for de-
scribing an underlying scalar field that can be for-

mulated as f : Rd → R on d-dimensional space
X ⊆ R

d [5]. Here, we focus on a scalar workspace
where d = 2. A typical Gaussian process is defined
as

f(x) ∼ GP(m(x), k(x, x′)), (1)

where m(x) is the mean function and generally
set to zero. k(x, x′) denotes the corresponding co-
variance function, which describes the relation be-
tween x and x′.

In practice, the scalar filed f(x) is defined only
through noisy measurements y = f(x) + ε, where
ε is generally white Gaussian noise, i.e., ε ∼
N (0, σ2

n). This implies that the likelihood of mea-
surements y(x) is also Gaussian. Unfortunately,
in our long-term monitoring application, the pre-
viously collected data would be inadmissible. This
certainly results in a non-Gaussian likelihood of
y(x).

To consider the non-Gaussian likelihood, we de-
sign a new covariance function k(x, x′) as

k(x, x′)=
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when x = x′,
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f exp(−
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other,

(2)

where θGP = {σf ,M, σn} is the Gaussian process
hyperparameter set. Specifically, M = diag(l)−1,
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where l is a positive vector. θGP can be obtained
using simple descending algorithms.

θt = {tc,▽t} is the time hyperparameter set of
the Gaussian process. t(x) > 0 is the time interval
between now and the point of collection. Impor-
tantly, the influence of time-varying measurement
reliability is decreasing and limited to mcovσ

2
n. It

is important to note that if maximum mcovσ
2
n is

achieved, the corresponding measurements will be
discarded.

Suppose we already have H history measure-
ments YH = {yh1, yh2, . . . , yH} at locations XH =
{xh1, xh2, . . . , xH}, and we want to predict values
at locations of interest XT = {xt1, xt2, . . . , xT }.
Therefore, using properties of Gaussian process,
we can obtain the posterior distribution of f(XT )
using

f̂XT
= K(XT , XH)

×[K(XH , XH) + σ2
nI]

−1(YH −m(XH)),

cov(fXT
) = K(XT , XT )−K(XT , XH)

× [K(XH , XH) + σ2
nI]

−1K(XH , XT ).

(3)

Given the model of the scalar field, we utilize a
mutual information method to quantize the value
of collected measurements. Suppose we have F
forthcoming sampling locations on the candidate
path XF = {xf1, xf2, . . . , xF }. The information
gain by XF can be formulated using

I(f(XT ), Y (XF ))

= H(f(XT )|XH , YH)−H(f(XT )|XH , YH , XF , YF)

=
1

2
log

|cov(f(XT )|XH , YH)|

|cov(f(XT )|XH , YH , XF , YF )|
. (4)

Adaptive informative path planning. Clamped
B-spline curve’s continuous availability of any or-
der derivatives makes it a powerful tool that can
be used to represent a continuous path [6]. It is
parameterized by a sequence of n control points
XC = {xc1, xc2, . . . , xC}, which is formulated us-
ing

τ(w) =
C
∑

i=c1

xiBi,P (w), where

Bi,0(w) =

{

1, if vi < w < vi+1,

0, otherwise,

Bi,p(w) =
w − vi

vi+1 − vi
Bi,p−1(w)

+
vi+p+1 − w

vi+p+1 − vi+1
Bi+1,p−1,

(5)

where Bi,P is the basis function, and {vi} ∈ [0, 1]
is the knot vector, which is equally divided in [0, 1].
Briefly, we also define the curve as τXC

, and the

first derivative can be formulated as a B-spline
curve using

dτ(w)

dw
=

C−1
∑

i=c1

Bi+1,P−1Qi, (6)

where Qi = P
vi+P+1−ui+1

. The measurements are

collected with a fixed interval l. Thus, the sam-
pling locations are obtained using

XS =

{

τ(wi)|
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where w0 = 0.
Note that the B-spline curve is hardly divided

into exact segments of length l. If the curve is par-
titioned into several sub-curves with length l, and
the last one is less than l then the last location
is abandoned. Now, we introduce our informative
path planning scheme. First, the local sequence
of control points XC is optimized according to our
designed objective function O(XC) in (8) using the
cross-entropy method.

O(XC) = I(XC)uobs(XC)uc(XC), (8)

where I(XC) is the mutual information carried by
XC . uobs is the penalty of obstacles. uobs(XC) =

1
1+exp{−λobs min(|τXC

−Xobs|−ǫobs)}
. uc(XC) is the

penalty of the limited resource. uc =
1

1+exp{−λc(c(τXC
)+c̃(τXC

)−cleft−ǫc)}
. Xobs denotes

the obstacle region. ǫobs is the obstacle clear-
ance parameter. c(τXC

) denotes the length of τXC
,

and c̃(τXC
) approximates the length for return-

ing to start location. cleft is the remaining source.
Second, the measurements are collected along the
path, which is determined by XC . Finally, the
posterior estimation of the scalar field is obtained
based on (3).

Because we have quantified the information
about the scalar field in terms of I(XC), it is criti-
cal to dynamically chooseXT according to the col-
lected data. Instinctively, measurements are taken
where the variance is high. Simultaneously, the
total variance of the scalar field is kept at a low
level. We divide XT into two sets: XTs

and XTd
.

XTs
is fixed and averagely distributed in X . Con-

trastingly, XTd
is adaptively chosen in the high

posterior variance region. We generate XTd
with

distribution expressed as

p(xTd
) =

1

cov(fxTd
)

/
∫

X

1

cov(fxTd
)
. (9)

Here we formally propose the long-term adap-
tive IPP algorithm in Algorithm 1.
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Algorithm 1 Long-term adaptive IPP algorithm

Input: starting point xstart, planning horizon ̺, historical
sequence of control points XH , obstacle region Xobs.

Output: posterior estimation of scalar field f̃ , local opti-
mal path τXC

.
1: [µ, s2]← init para(XH , ̺);
2: local optimal sequence of control points distribution

[µ∗, s∗2]← CEoptimize(µ, s2,Xobs, cleft,XT );
3: XC ← Sample(µ∗, s∗2); XF ← τXC

;

4: f̃ ← solveGP(XH ,XF );
5: adaptive re-plan XTd

← Sample(p(xTd
)).

The number of historical measurements XH is
increasing with in-situ data accumulation, which
results in infinite dimensional XH . Thus, XH is
truncated to a fixed scale according to the time la-
bel of the measurements. The scale is empirically
chosen, where a trade-off of estimation error and
computation efficiency must be managed.

Cross-entropy optimization was first proposed
in [7]. It is widely used in multi-extremal opti-
mization problems, which do not require a convex
target function. Thus, it is appropriate in our path
optimization problem. Suppose we need to max-
imize O(XC) in (8) and write the maximum as
γ∗ = O∗(XC) = maxX⊆X O(x). We define a fam-
ily of pdfs {ς(X, v), v ∈ V is pdfs parameter} on
X . The probability of the rare event {O(XC) > γ}
can be formulated as l(γ) = Pv(O(X) > γ) =
EvI(O(X) > γ). Thus, it is possible to optimize
the pdfs family parameter v, until the rare event
probability is small enough. We formally present
the optimization algorithm in Algorithm 2.

Algorithm 2 Cross-entropy optimization algorithm

Input: v1, quantile η, size N , max iterations M .
Output: pdf of x∗, i.e., g(v∗).
1: for t = 2, . . . ,M do

2: generate samples from pdf g(X, vt−1), and sort as
O1 6 O2 6 · · · 6 ON ;

3: γt ← O⌈(1−η)N⌉;

4: vt ← argmaxv
1
N
I{O(X) > γt} ln g(X; v);

5: if γt < γt−1 then

6: break;
7: end if

8: end for

Simulations. Here, the proposed algorithms are
demonstrated using simulations. The scalar field is
randomly generated in an area of 3 m× 3 m. Sup-
pose the start location is [0, 0]. Four circle obsta-
cles with the same radius r = 0.5 m are separately
located at [1, 1], [1, 2] [2, 1], [2, 2]. All parameters
include three parts, i.e., GPs, cross-entropy opti-
mization, and path curve, where tc = 1, ▽t = 2,
η = 0.1, N = 20, n = 4, l = 3. As shown in Fig-

ure 1, the estimation variance is decreasing along
with the optimized path.
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Figure 1 (Color online) Estimation variance at different
iterations. (a) Iteration = 1; (b) iteration = 5; (c) iteration
= 10; (d) iteration = 15.

Conclusion. Here, we present a new long-term
adaptive IPP algorithm for scalar field monitor-
ing in which time influence and energy limitations
are considered in a long-term situation. Addition-
ally, the interested target locations are adaptively
chosen when new measurements are collected; and
the cross-entropy method is utilized to obtain the
local optimal path segment, which is more appro-
priate in online cases. Thus, it is more practical
for real-world applications.
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