SCIENCE CHINA
Information Sciences

@ CrossMark
&click for updates

« LETTER -

Special Focus on Human-Robot Hybrid Intelligence

May 2019, Vol. 62 050206:1-050206:3
https://doi.org/10.1007/s11432-018-9696-2

Composite following control for wheeled inverted
pendulum vehicles based on human-robot interaction

Ming YUE!", Yigao NING!, Shuzhou YU! & Yongshun ZHANG?

1School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China;
2School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received 30 August 2018/Revised 26 October 2018/Accepted 21 November 2018/Published online 25 February 2019

Citation Yue M, Ning Y G, Yu S Z, et al. Composite following control for wheeled inverted pendulum ve-

hicles based on human-robot interaction.
$11432-018-9696-2

Sci China Inf Sci, 2019, 62(5): 050206, https://doi.org/10.1007/

Dear editor,

Over the past decade, wheeled mobile robots have
been widely used in many fields, and for the
human-following, they are required to respect the
social zones when they follow humans for the
purpose of company or carrying loads [1-4]. To
this end, an impedance control is proposed for a
human-following robot Pioneer 3AT, where the pa-
rameters of the impedance function are obtained
from an identification experiment in a human-
human interaction [5]. However, if the robot in the
human-robot formation is a wheeled inverted pen-
dulum (WIP) vehicle that has the advantages of
compact construction, high maneuverability and
low energy consumption [6], the related control is
encountered with such difficulties: (1) the forward
movement of the WIP vehicle is decoupled with
the steering movement, thus the distance between
the vehicle and human cannot be regulated by a
simple impedance control; (2) the WIP vehicle is
a typical underactuated system, and it is impor-
tant to control the tilt angle of vehicle body in
a given domain during the motion process. These
problems limit the application of WIP vehicle, but
motivate this study in the meantime.

To fix these problems, a composite control
method for the WIP vehicle in a human-robot for-
mation is proposed based on human-robot inter-
action, which consists of a direct adaptive fuzzy
controller (DAFC), a supervisory controller and
an impedance controller. With DAFC, the direc-
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tion of forward motion can be coincide with the
line from the vehicle to the human. Then the dis-
tance between the vehicle and human can be con-
trolled with the impedance controller to improve
the social acceptance of the vehicle, and by the su-
pervisory controller, the tilt angle of vehicle body
can be controlled in a small domain given by the
designer. Finally, an experimental study is per-
formed to demonstrate the effectiveness of the pro-
posed method.

Dynamic model. To facilitate the development
of the control method, the dynamic model derived
by Lagrangian approach [7] can be partitioned into
three subsystems, as follows.

(1) Steering subsystem

¢:f1+gl7-w7 (1)
where f1 =0, 1 = d/(2J17r), J1 = I + I3/2 +
I3/2+ (mw + L /r?)d* /4, 7, = 7 — 7.
(2) Tilt angle subsystem

é = f2 + ng’U) (2)

3 3 2
. my gL sin § cos” 0
where fo = (2m,mygLsin@ — TeI=Z0 222N /1

F = 4myJo—mIL?cos? 0, go = —myLcos0/(2Jz),
Jo = I4/2 + Is/2 + myL? /2, my = Io/1% + my, +
me/2 +my /2.

(3) Forward subsystem

Ty = fd + 93Tv, (3)

where f3 = (2.Jymy, LO? sin 6—m3gL?sin 6 cos0) /I,
g3 =2Jo2/(F 1), xy = dZcosp+ysing, 7, = 7.+ 7.
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Composite control method. The distance be-
tween the WIP vehicle and the human in a human-
robot formation should be regulated properly to
respect the social zone, as shown in Figure 1(a),
which involves both the steering subsystem control
and forward subsystem control.
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Figure 1 (Color online) (a) Human-robot formation;
(b) scheme of the control system.

In particular, the tilt angle of vehicle body
should be controlled in a small domain around zero
to ensure the stability of the vehicle, which needs
the effectively control of the tilt angle subsystem.
However, the tilt angle subsystem can only be con-
trolled through a coupling effect between the for-
ward subsystem and the tilt angle subsystem be-
cause of the underactuated characteristic. To fix
this problem, two virtual inputs 7,17 and 7,92 are in-
troduced [7] to control the two subsystems, respec-
tively, with the relation of 7, = 7,1 + Ty2. There-
fore, a composite control method for the WIP ve-
hicle is developed, as shown in Figure 1(b), which
will be described in detail in the following.

(i) Steering subsystem control. A DAFC is ap-
plied to make the steering angle ¢ track the ref-
erence one ¢, that can be calculated through the
coordinates of the vehicle and the human. For
example, ¢, = arctan =%, when y, —y > 0 and
xp—x > 0, where xj, and yj, satisfy &5, = vy, cos ¢y,
Yp = Up, SN Q.

(ii) Forward subsystem control. The interaction
between the human leader and the vehicle follower
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can be described by a fictitious potential field that
centered at the human with impedance character-
istic [5], and the repulsion force from the human
to the vehicle in the social zone can be expre-
ssed as

0, p(t) > R,

where p(t) = /(zn — 2)2 + (y, —y)? is the dis-
tance between the human and the vehicle, R is
the radius of the social zone, x is the maximum
value of the force, and n € N is the order of the
function.

Based on the above, the relationship between
the distance error Z,(t) = R — p(t) and the inter-
action force f,(t) can be established through an
impedance control [8], that is

fr(t) = —(m2% + cz + k)T, (1), (5)

where m, ¢ and k are the inertial, damping, and
the elastic parameter, respectively, and z = d/dt
is the time derivative operator.

Then, an experiment of impedance identifica-
tion for a human-human interaction is conducted
to lay the foundation for the human-robot interac-
tion [5], and the related parameters are obtained
asn =2, x =100, R = 1.55, m = 0.35, ¢ = 0.19,
and k£ = 0.01.

Next, to facilitate the design of control law 7,1,
Eq. (5) is rewritten as

fr(t) = —m(&y —Evr) —c(Zy—Fpr) —k(R—p), (6)

where &,, = &, + p and &, = I, + p are the
velocity and acceleration of the human along the
direction of the line between the human and the
vehicle.

According to (3) and (6), the impedance con-
trol law based on human-robot interaction can be
obtained as

Tyl = g_13<j'u'r - f3 - %(fr(t) + C(jjv - x.'U"")

KR p»). (7)

Note that the control effect of (7) can reduce p
when p > R, thus the WIP vehicle cannot always
stay outside of the social zone.

(i) Tilt angle subsystem control. A supervisory
controller is constructed to control the tilt angle as
follows:

Ty2 = Uf + pUs, (8)
where uf is a commonly used proportional deriva-
tive (PD) controller for the subsystem, p satisfies
that p = 0 when [#] < § and p = 1 when [0] > ¢,
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0 is the bound of the tilt angle given by the de-
signer [9], and u, will be developed in the follow-
ing.

Substituting (8) into (2), it obtains

0= fo+ galus + pus). 9)
Then define the following expression:
1

ut = g—Q[ﬁfé ~- k"0, (10)

where 8 = [0,0]", k = [k, k1T, and the roots of
52 + k1s + ko = 0 are on the left half plane.
Combining (9) and (10), it yields

0=—kT0+ galus —u* + puy). (11)

Rearranging (11) as a vector form, it obtains

6= A0 +blu; —u* + puy), (12)
where
1
A= 0 , b= 0 )
—ky —k1 92

On that basis, us can be developed with the
form of

1
us = —sign(6” Pb) g—(fU+|k:T0|>+luf| , (13)
L

where fU and gr are the upper bound of |fs| and
the lower bound of |ga|, respectively, which can be
obtained by the skill of magnifying and shrinking;
P and Q are both positive definite symmetric ma-
trices that satisfy ATP + PA = —Q.

Theorem 1. Given the initial value |6(0)| < 0,
the control law (8) can ensure |6(¢)] < 0 for t > 0.
Proof. Define a Lyapunov candidate function as

1
V= 5aTPa. (14)

Taking the time derivative of (14), it yields

1. 1 .
V= 5aTPa +50"Po. (15)

Taking (12) into (15) and rearranging that, it
yields

: 1
V= —§0TQ0 + 0" Pblus — u* + uy]
< 0T Pb|(Juy| + |u*]) + 8T Pbu,.  (16)

It can be concluded that V < 0 after plugging
(13) into (16), namely, the control law (8) can en-
sure |0(t)] < ¢ for t > 0.
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Ezxperimental study. An experiment for the pro-
posed composite control method is conducted to
validate its feasibility, where the experimental ap-
paratus as shown in Figure S1 and the movement
of the human is simulated by a reference trajec-
tory vy, = 0.1 m/s, ¢p = /4 rad. The results (see
Figure S2 for details) show that the WIP vehicle
can keep a proper distance from the human with
the application of the human interaction dynam-
ics, and the tilt angle of the vehicle body can be
controlled in a small domain |f| < 0.1 rad given
by the designer during the whole process.

Conclusion. A composite control method for
the WIP vehicle in a human-robot formation is
presented based on human-robot interaction, and
the effectiveness of the proposed method is verified
by the related experimental results.
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