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Dear editor,
In our daily life, information such as tactile and
visual information is widely used to recognize ob-
jects when we manipulate them. Research has
shown that the human brain makes use of mul-
tisensory models of objects [1]. However, the issue
of how to combine visual and tactile information
to recognize the objects is challenging, because
the two sensing modalities offer differing charac-
teristics. Nowadays, the most popular method of
recognizing an object is to use visual information
for classification. However, practical manipulation
tasks provide a great challenge for vision-based ob-
ject recognition. Currently, progressive research
has been performed on tactile sensing. Chitta et
al. [2] studied the problem of discriminating be-
tween various types of liquid containers and their
respective internal states. In addition, Schmitz et
al. [3] investigated deep learning for multi-finger
fusion. Liu et al. [4] exploited the intrinsic re-
lationships between fingers and developed a joint
kernel sparse coding method to combine different
tactile sequences, which were captured by differ-
ent fingers. Research on visual-tactile fusion ob-
ject recognition is still very limited. In general, vi-
sion is suitable for dealing with color, shape, while
tactile sensing is suitable for dealing with the tem-
perature, hardness. For discerning the features of
the surface material, both methods should be used.
The former is usually used to deal with rough ma-
terial and the latter is used to deal with finer ma-
terial. Newell et al. [5] provided a detailed discus-

sion regarding this. Recently, Gao et al. [6] pro-
posed the joint learning method of visual images
and tactile data by using the convolutional neu-
ral network (CNN). Güler et al. [7] recognized the
internal state of the container focusing on trans-
formable object with the information of visual-
tactile fusion. Liu et al. [8] developed a joint group
kernel sparse coding method to deal with the ob-
ject recognition via visual-tactile fusion. However,
in the actual robotic system, data acquisition is a
relatively tedious task, and it is difficult to ensure
data validity, particularly for tactile data [9].

A glove-based system is proposed for object
recognition. This tactile glove is capable of jointly
collecting tactile data on fingertips and the palm.
It can reliably perform simultaneous tactile sens-
ing in real time, for the purpose of collecting hu-
man hand data during fine manipulative actions.
Then, the algorithms of data representation and
fusion classification are deduced. Finally, we de-
velop the visual-tactile data set for experimental
verification.

System description. The tactile glove is devel-
oped to collect tactile data of human grasping. It
consists of six Flexiforce pressure sensors on the
front and an MCU board on the back of the glove.
Five Flexiforce pressure sensors are at the five fin-
gertips, and one is on the palm of the hand. The
MCU board is used to collect and send tactile in-
formation, and the adapter board is used to switch
the serial port to the USB port. The sensors’
measurements are transmitted to the computer.
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Meanwhile, a camera is used to capture images of
the objects. In our system, the object is placed
on the electronic turntable to capture the video.
Then, we convert the video into pictures, and we
can obtain the pictures of the object at different
angles. We randomly extract one every 10 to 20
degrees in the pictures; hence, 30 pictures of one
object are extracted as the visual dataset.

Object recognition algorithm. The covariance
descriptor is used for the visual modality represen-
tation. The covariance descriptor is the integra-
tion of a variety of feature channels; it calculates
their direct correlation coefficient and produces a
kind of low-dimensional description of the visual
features. The covariance matrix is extracted from
the original image, and the feature matrix is then
transformed into a 5×5 covariance descriptor.

Because grasping an object is a dynamical pro-
cess and the gathered tactile information varies
with time, the dynamic time warping (DTW)
method is used to deal with the tactile features.
The DTW algorithm uses the theory of dynamic
programming to obtain the best matching path,
on which the total matching distance between the
two sequences reaches a minimum.

We deal with the problem of visual-tactile fusion
classification by the kernel ELM (extreme learning
machine) method. The details of the training pro-
cess and recognition process of the visual-tactile
fusion algorithm for object recognition based on
kernel ELM are introduced as follows.

(1) Training process.

Input: A training set of the visual-tactile pair
and its relevant label Y , Gaussian variance γ, and
regularization coefficient C.

Output: W (and saving the training set of a
visual-tactile pair simultaneously).

Step1: Extract visual feature. For each image of
the visual train set, calculate the 5×5 covariance
matrix. Calculate the covariance distance between
the covariance matrix Pi and Pj of any two images,
which is dCovD(Pi, Pj). Obtain the covariance dis-
tance matrix DCovD.

Step2: Extract tactile features. Calculate DTW
distance once between each tactile sequence of the
tactile train set and all types of training samples,
and obtain the DTW matrix DDTW.

Step3: Obtain visual feature kernel. Put DCovD

into the Gaussian kernel function to obtain

KCovD = exp[−γD2
CovD]. (1)

Step4: Obtain tactile feature kernel. PutDDTW

into the Gaussian kernel function to obtain

KDTW = exp[−γD2
DTW]. (2)

Step5: Visual-tactile fusion. We define the ker-
nel of visual-tactile fusion as the product of kernel
KCovD and KDTW, which is

Kernel(KCovD,KDTW) = KCovD ×KDTW. (3)

Step6: Train kernel ELM classifier. Put Kernel
(KCovD, KDTW) into the formula W = (I/C +
ΩELM)−1Y .

(2) Recognition process.
Input: A test sample of the visual-tactile pair,

W , the train set of the visual-tactile pair.
Output: Label label(x) of the test sample.
Step1: Extract visual features. Calculate the

covariance distance between covariance matrix Pi

and Pj of any two images, which is dCovD(Pi, Pj).
Get 1×N covariance matrixDCovD of the test sam-
ple.

Step2: Extract tactile feature. Calculate the
DTW distance once between each tactile sequence
of the tactile train set and all types of training
samples.

Step3: Obtain visual feature kernel. Same as
Eq. (1).

Step4: Obtain tactile feature kernel. Same as
Eq. (2).

Step5: Visual-tactile fusion. Same as Eq. (3).
Step6: Classification. Put Kernel(KCovD,

KDTW) and W into f(x) = [K(x, x1) . . .K(x,
xN )]W to determine f(x). Then, according to
label(x) = argi=1,...,m fi(x), obtain the label(x) of
the test sample.

Experimental results. We introduce the col-
lected data set and the experimental validation
results. We selected fifteen experimental objects
including a tea package, milk-tea package, coffee
package, paper towel, tea box, empty water bot-
tle, full water bottle, cylindrical box, rectangular
biscuit box, soft doll, tough doll, metal bottle, pa-
per package, tennis ball and plastic ball. In the
tactile data collection process, there are six indi-
viduals involved in the collection of tactile data.
Each person wore tactile gloves and grasped each
experimental object five times. For each object,
there are 30 pieces of tactile sequence information.
The experiment randomly selects the training set
and the test set from this tactile information.

Then, the proposed classification algorithm is
implemented under three modes of tactile, image
and visual-tactile fusion. And five different divi-
sion ratios of training sets and test sets are respec-
tively computed. The results are shown in Fig-
ure 1. The dark blue bar represents the classifica-
tion results based on the visual image information.
The light blue bar represents the classification re-
sults based on the tactile information. The green
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Figure 1 (Color online) Accuracy under different training/testing set division ratios.

bar represents the classification results based on
the visual-tactile fusion algorithm. The histogram
shows that the fusion algorithm has higher recog-
nition accuracy than the tactile or image single-
modality algorithm.

Conclusion. The designed tactile glove can
be conveniently used to collect tactile informa-
tion, and the visual-tactile information fusion al-
gorithm is proposed to establish the tactile fusion
object recognition system. A multi-layer time se-
ries model is used to express the tactile time series,
and covariance descriptors are used to characterize
the image features. The kernel ELM classification
algorithm is used to fuse two kinds of modal infor-
mation and to classify objects. At the same time,
the tactile-visual information pair dataset, consist-
ing of 15 objects, is established. Experimental
results show that the tactile-visual fusion infor-
mation classification performs significantly better
than the single-modality algorithm. In the future,
the results can be applied in robotic systems to
improve the manipulation performance.
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