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Dear editor,

The linear canonical transform (LCT) is a three-
parameter linear integral transform [1]. It has
many applications in optical systems, filter de-
sign, image watermarking, and other fields [2, 3].
Moreover, the discretization and fastness of the
LCT is one of the most important issues in prac-
tical applications. Since the continuous LCT was
introduced, there has been considerable work on
the definition and fast implementation of the LCT
[3-6]. These existing discrete LCT (DLCT) algo-
rithms have advantages of high computation speed
and accuracy, but they can only calculate the N-
point input samples to obtain N-point output. In
many applications, such as the detection and es-
timation of peak values, it is of more interest to
study the details in a small portion of the linear
canonical spectra or to calculate a single or a few
output spectra with an arbitrary sampling inter-
val. It is clear that the previous algorithms with
fixed resolution cannot meet these requirements.

To solve the aforementioned problems, we pre-
sent two flexible algorithms: a novel type of DLCT
with zooming-in ability (ZDLCT) and a single-
point LCT (Sp-LCT) based on the Goertzel al-
gorithm. Compared to existing digital computa-
tion methods, both of our proposed algorithms are
more flexible in terms of resolution and observa-
tion intervals. Also, the Sp-LCT can be suitable
for used to calculate the LCT of a non-uniform
sampling signal.

Before deriving the new methods for the com-
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putation of LCT, some basic preliminaries are in-
troduced in Appendix A.

The proposed discrete LCT with zooming-in
ability. In order to realize the interval selection
and simplicity of the ZDLCT algorithm, we first
choose an observation interval, and define a value
associated with the selected interval, called shift
factor as Definition 1.

Definition 1. We call A the shift factor if it sat-
isfies A = ¢;/W and —0.5 < A < 0.5, where W
is a positive real number, ¢t; = (t; + t2)/2 and
[t1.ta] C [~V0/2, /2],

It is clear from its definition that the shift
factor represents the relative position of the se-
lected interval’s midpoint over the entire interval.
Noted that we can translate the frequency index
of ZDLCT to the symmetric interval centered on 0
using the shift factor. Then, to observe the details
of the spectrum in the selected interval, we define a
quantization index associated with the resolution,
namely zoom factor.

Definition 2. If a continuous signal z(t) is band-
limited in the time domain such that x = 0 for
[t| > W/2, where W is a positive real number, it
is sampled with sampling period T over the entire
interval [—W/2, W/2]. If V[t1,t2] S [-W/2,W/2],
the signal z(t) is resampled with the sampling in-
terval T, then the ratio P = T/T is the zoom
factor. If P > 1, it is called the zooming-in factor;
otherwise it is called the zooming-out factor.

These two factors will be embedded in the newly
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defined ZDLCT to make the algorithm more con-
venient. The ZDLCT associated with A and P is
given in Theorem 1.

Theorem 1. If a signal z(t) is approximately
limited in the time domain such that x(t) = 0
for [t| > W/2, where W is a positive real num-
ber, the discrete time signal 2:(n) is a sampled ver-
sion of z(t) with sampling period T. Then, on
an arbitrary LCT frequency subinterval [uq, us] &

[—=1/2T|B1),1/(T|5]) — 1/(NT|f])], the ZDLCT
admits a representation of the following form:

Ly=\/Be 7™*zD] L KD}, (1)
where x is a 1 x N vector of the signal
z(n),-N/2<n<N/2—1,and K isan N x M

. (rm—n)2
3 _ TS —p— Y a,B
matrix. K, , = ¢ NP, D)\,P and D/\7P are

N x N and M x M diagonal matrices, respectively,

; sn27 N _
{D:{p}n,n _ {epr[’y(nT)2_2)\sn— PN]} 5 lN, (2)
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(3)
s = sign(p), sign(-) represents the sign function, A
is the shift factor, and P is the zoom factor.
Proof.  Please refer to Appendix B for this proof.

Eq. (1) becomes the DLCT in [4] when A = 0,
P =1,and M = N. We can adjust \ to change the
observation interval, and we can change P to ob-
tain different resolutions. Therefore, the proposed
ZDLCT is more flexible in terms of observational
intervals and resolution. The implementation of
ZDLCT is presented in Appendix C.1. It is obvi-
ous that the ZDLCT is related to the multiplica-
tion of three matrices, with two of them, namely
D] p and Dj p, being diagonal matrices. Thus,
the dominating complexity component of the pro-
posed ZDLCT is the multiplication of the N x M
matrix with the vector . The conventional arith-
metic complexity of a matrix and vector multipli-
cation is O(M N). Meanwhile, it has many inter-
esting properties which are shown in Table 1 and
TN = /(T |8]) +m/PNT|8).

The ZDLCT is more effective when the differ-
ence between the numbers of input and output
points is very small. Meanwhile, the sampling
interval T, requires uniform in the LCT domain.
However, when it is necessary to calculate a single
or a few output spectra or if the sampling inter-
val is nonuniform, we derive the single-point LCT
algorithm.

The proposed single-point LCT. For calculating
the spectrum at an arbitrary frequency u,, in the
LCT domain, we propose the Sp-LCT, which is
based on the Goertzel algorithm [7]. The Goertzel
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algorithm is typically used to compute the sum-
mation of a triangular series through a form of
iteration, which has a higher computational effi-
ciency than direct summation. For computing the
spectrum of any frequency point in the LCT do-
main, Eq. (4) can be implemented by performing
chirp multiplication, summation of a triangular se-
ries, and a second chirp multiplication. The main
arithmetic computation of this process is the sum-
mation of a triangular series. Therefore, we at-
tempt to utilize the Goertzel algorithm to reduce
the computational complexity.
We can convert the equation

Lale(n)](u) ~ /Be I/ teime”
N/2—1 . L (4)
X Z :c(n)e”w("T) e i2mBunT
n=—N/2
into the following equation:

Lalz(n)](um) = Cel™mei™BunTNB(y ) (5)

where C = y/BeiTe™W’ b, = z(n)el™ (D)’
and B(um) = SN0 by njpe 1204m T Note
that the sequence b,, is dependent on the . For
different values of the parameter ~, b, must be re-
calculated. Due to the calculation of a complex
exponential power, this will increase the compu-
tational load and make the algorithm inflexible.
Thus, we use the following recursive method to
overcome this disadvantage.

Take the sequence D, = e™(Cn+LT? p =
T’ = _N/2,... N/2. It is easy to ver-
ify that D,, and h,, have the following recurrence
relations:

Dpy1 =D hyiy =h,D,, (6

and h,, is an even sequence. Therefore, we only

need to calculate h,, for 0 < n < % to derive the
entire sequence h,, for —% <n < % — 1. The re-
cursive method avoids recalculation of the power
series for different parameters and uses less stor-
age.

Eq. (5) can be obtained by the Gozertzel algo-
rithm. Firstly, we calculate two the intermediate

sequence g(n) and r(n) by iterative algorithm:
g(n) = 2g(n — 1)cos(2mwy,) + r(n — 1),

r(n) = bn—N/Q —g(n—1), (7)
g(1) =b_ny2,7(1) = b1_nj2,n=2,3,...,N — 1.

Then we apply the sequence g(n), r(n) to produce
output sequence y(n):

() = 2 gn)e e 4 r)], (8)

where w,, = pu,T,n = 1,2,...,N — 1. The
output is equal to B(u,,) at the time index n =
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Table 1 The properties of ZDLCT

Linear property
Reverse property
Odd-even property

Lal(az1(n) + bra(n)(T2"") = aLalz1(n)](T2"") + bLalz2(n))(T2F)
Lalz(—n)|(Ta"F) = Lalz(m)][—(T27)]
La[z(n)] (T2F) = Lale(m)][-(T2")]

or L [e(n)] (T2°7) = —Lalz()] ()]

Modulation property

. —7 P APy
La [(n)e2nT] (T0F) = 762 27T 5 o [ p[a(n)](T2"" — &)

B

N — 1. Finally, the result B(u,,) is multiplied by
C’ej”"‘“?nej"'g”mTN7 and thus a specific LCT spec-
trum can be obtained.

The implementation of Sp-LCT is presented in
Appendix C.2. This processing needs some phase
modulation and B(u,,) operation. For calculating
B(um), Eq. (7) is implemented N — 1 times, and
Eq. (8) only needs to be computed once. Thus,
the corresponding calculation requires 2N + 4 real
multiplies and 4N + 2 real additions. The compu-
tations of the modulation operation requires 8 real
multiplies and 6 real additions. Thus, the total
number of calculations (5) associated with the Go-
ertzel algorithm are 2N + 12 real multiplications
and 4N +6 real additions. However, it requires 4N
real multiplications and 4N — 1 real additions for
the direct summation B(u,,), and thus the total
number of calculations (5) are 4N 48 real multipli-
cations and 4N + 1 real additions. This indicates
that Sp-LCT has higher computational efficiency
than direct summation (4). If u,, is uniform sam-
pling, there are is 4N real multiplications and 2NV
real additions by ZDLCT. If the w,, is nonuniform
sampling, the ZDLCT is not valid.

Based on above facts, Sp-LCT has higher cal-
culation efficiency for small output sampling and
is more flexible in the selection of sampling points
than ZDLCT. Furthermore, it is easy to prove that
the Sp-LCT has the same properties as ZDLCT. In
order to demonstrate the effectiveness and advan-
tages of the proposed algorithms, some simulations
are discussed in Appendix D.

Conclusion. In this study, we have introduced
the ZDLCT and Sp-LCT for computing local lin-
ear canonical spectra with flexible resolution. The
properties of the ZDLCT and Sp-LCT have also
been discussed to demonstrate their importance.
As opposed to existing algorithms, the ZDLCT as-
sociated with the shift factor A and zoom factor P
has flexible resolution and selectivity of the spec-
trum interval. The simulation results showed that

the ZDLCT can distinguish spectra when multiple
frequency spectra are very closer, which means it
can be applied to spectral refinement. In addition,
the Sp-LCT is more effective than classical meth-
ods for the calculation of a single spectra and it
overcomes the limitation of uniform sampling in
the existing DLCT and ZDLCT. The simulation
results showed that Sp-LCT can realize arbitrary
spectrum output and also obtain perfect perfor-
mance in terms of computational complexity and
precision for nonuniform sampling.

Acknowledgements This work was supported by Na-
tional Natural Science Foundation of China (Grant No.
61671063) and Foundation for Innovative Research Groups
of the National Natural Science Foundation of China (Grant
No. 61421001).

Supporting information Appendixes A-D. The sup-

porting information is available online at info.scichina.com
and link.springer.com. The supporting materials are pub-
lished as submitted, without typesetting or editing. The
responsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Collins S A. Lens-system diffraction integral written
in terms of matrix optics. J Opt Soc Am, 1970, 60:
1168-1177

2 Xu T Z, Li B Z. Linear Canonical Transform and its
Application. Beijing: Science Press, 2013. 291-324

3 Healy J J, Kutay M A, Ozaktas H M, et al. Linear
Canonical Transform: Theory and Applications. New
York: Springer, 2016. 197-240

4 Hennelly B M, Sheridan J T. Fast numerical algorithm
for the linear canonical transform. J Opt Soc Am A,
2005, 22: 928-937

5 Koc A, Ozaktas H M, Candan C, et al. Digital com-
putation of linear canonical transforms. IEEE Trans
Signal Process, 2008, 56: 2383-2394

6 Pei S C, Huang S G. Fast discrete linear canonical
transform based on CM-CC-CM decomposition and
FFT. IEEE Trans Signal Process, 2016, 64: 855-866

7 Goertzel G. An algorithm for the evaluation of finite
trigonometric series. Am Math Mon, 1958, 65: 34-35


info.scichina.com
link.springer.com
https://doi.org/10.1364/JOSA.60.001168
https://doi.org/10.1364/JOSAA.22.000928
https://doi.org/10.1109/TSP.2007.912890
https://doi.org/10.1109/TSP.2015.2491891
https://doi.org/10.2307/2310304

