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Appendix A Preliminaries

The linear canonical transform(LCT) of the ideal uniform sampled signal x(t) with the sampling interval T is given in [1–4]

LA[x(n)](u) =
∞∑

n=−∞
x(nT )KA(u, n) =

1

T

∞∑
n=−∞

e
−jπα( n

Tβ
)2
e
j2πα un

Tβ LA[x(t)](u−
n

Tβ
), (A1)

where KA(u, n) =
√
βe

−jπ
4 ejπ(αu2−2βunT+γ(nT )2). Eq.(A1) is defined as the discrete time LCT (DTLCT) [1], which

replicates LA[x(t)](u) with a period of 1/(T |β|) along with linear phase modulation.

We assume that the signal x(t) is limited in the time domain [−W/2,W/2]. Thus, intercepting N terms of (A1), it can

be rewritten as

LA[x(n)](u) ≈
√

βe−jπ/4ejπαu2
N/2−1∑

n=−N/2

x(n)ejπγ(nT )2e−j2πβunT , (A2)

where N is the number of uniform sampling points in the time domain. Without loss of generality, we denote x(n) = x(nT ).

Since the LCT of the sampled signal is periodic along with linear phase modulation. Therefore, we choose N samples in the

range [−1/(2T |β|), 1/(2T |β|) − 1/(NT |β|)] that is unaffected by the chirp periodic factors. We sample LA[x(n)](u) with

sampling interval Tu = 1/NT |β|. Thus, the DLCT of x(n) can be defined as [1, 3, 5, 6],

LA[x(n)](mTu) =
√

βe−jπ/4ejπα(m/NT |β|)2
N/2−1∑

n=−N/2

x(n)ejπγ(nT )2e−j2πβmn/(N|β|), (A3)

where Tu = 1/NT |β| is standard frequency resolution of LCT, m = −N/2,−N/2 + 1, ..., N/2− 1.

Appendix B Proof of Theorem.1

Proof. For ∀[u1, u2] j [−1/(2T |β|), 1/(2T |β|)− 1/(NT |β|)], we sample uniformly the transform function LA[x(n)](u) in

(A2) with sampling interval ∆I = (u2 − u1)/M , and ∆I < 1/NT |β|. Let ui = (u1 + u2)/2 and substitute u = ui +m∆I,

−M/2 6 m 6 M/2− 1 into (A2), we obtain

LA[x(n)](ui +m∆I)

=
√

βe−iπ/4ejπα(ui+m∆I)2
N/2−1∑

n=−N/2

x(n)× ejπγ(nT )2e−j2πβui(nT )e−j2πβmn∆IT

=
√

βe−iπ/4ejπα(ui+m∆I)2e−jπβ∆ITm2
N/2−1∑

n=−N/2

x(n)× ejπγ(nT )2e−j2πβui(nT )e−jπβ∆ITn2
ejπβ∆IT (m−n)2 .

(B1)
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Based on the definitions of the zoom factor and shift factor, we have λ = ui(T |β|), P = 1/(NT |β|∆I), then substituting

ui = λ/(T |β|) and ∆I = 1/(PNT |β|) into (B1), we derive that

LA[x(n)](
λ

T |β|
+

m

PNT |β|
)

=
√

βe−iπ/4e
jπα( λ

T |β|+
m

PNT |β| )
2

e
−jπ Tm2β

PNT |β|

N/2−1∑
n=−N/2

f(n)× ejπγ(nT )2e
−j2πβ λ

T |β| (nT )
e
−jπβT n2

PNT |β| e
jπβT

(m−n)2

NTP |β| .

(B2)

Let s = β/|β| = sign(β), we obtain

LA[x(n)](
λ

T |β|
+

m

PNT |β|
)

=
√

βe−iπ/4e
jπα( λ

T |β|+
m

PNT |β| )
2

e−jπs m2

PN ×
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x(n)ejπγ(nT )2e−j2πλnse−jπs n2

PN ejπs
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NP ,

(B3)

Eq.(B3) can be rewritten as the following matrix form

LA =
√

βe−jπ/4xDγ
λ,PKDα,β

λ,P , (B4)

where x is a 1×N vector of the signal x(n),−N/2 6 n 6 N/2− 1, and K is N ×M matrix. Kn,m = ejπs
(m−n)2

NP , Dγ
λ,P

and Dα,β
λ,P are N ×N and M ×M diagonal matrices, respectively

{Dγ
λ,P }n,n = {ejπ[γ(nT )2−2λsn− sn2

PN
]}N/2−1

n=−N/2
, (B5)

{Dα,β
λ,P }m,m = {ejπα( λ

T |β|−
m

PNT |β| )
2−jπs m2

PN }M/2−1
m=−M/2

. (B6)

Then, the Theorem.1 is proved.

Appendix C Implementation of ZDLCT and Sp-LCT

Appendix C.1 Implementation of ZDLCT

The ZDLCT can be implemented by the following steps:

Step 1: Select α, β,γ and the sampling space T , and compute entire frequency interval [−1/(2T |β|), 1/(2T |β|)−1/(NT |β|)];
Step 2: Select the frequency subinterval in the LCT domain [u1, u2] ⊆ [−1/(2T |β|), 1/(2T |β|)−1/(NT |β|)] and sampling

points M , then calculate λ and P based on Definition 1 and Definition 2;

Step 3: Calculate the diagonal matrices Dγ
λ,P ,Dα,β

λ,P and the N ×M matrix K ;

Step 4: Perform matrix multiplication to obtain the matrix Dγ
λ,PKDα,β

λ,P ;

Step 5: The result of Step 4 is multiplied by the discrete signal x and the coefficient
√
βe−jπ/4. The output 1 × M

vector is the ZDLCT of signal x(n) in the selected subinterval [u1, u2].

Appendix C.2 Implementation of Sp-LCT

The Sp-LCT can be implemented by the following three steps:

Step 1: Select the specific LCT frequency um, and calculated the sequence bn and the input sequence x(n);

Step 2: Calculate the summation B(um) using (7) and (8);

Step 3: Multiply the result of Step 2 and Cejπαu2
mejπβumTN to obtain specific LCT spectrum at frequency um in (4).

Appendix D Simulations and comparison of methods

Appendix D.1 ZDLCT Simulations

In this subsection, the ZDLCT will be utilized to refine the spectrum of mono-component and multi-component linear

frequency modulation (LFM) signals [7].

Appendix D.1.1 Spectral refinement of mono-component LFM signal

Considering a mono-component LFM signal

x(t) = ejπµt2+j2πf0t. (D1)
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The LCT of x(t) is calculated as following

LA[x(t)](u) =


√

β
|β| e

− jπ
4 ejπαu2

δ(u− f0
β
), γ = −µ√

βj
γ+µ

e−
jπ
4 ejπαu2

e
− jπβ2

γ+µ
(u− f0

β
)2
, γ ̸= µ.

(D2)

It is noted that the mono-component LFM signal has an impulse at u = f0
β

under suitable parameters. Thus, we can obtain

the initial frequency based on the peak location, that is, f0 = uβ.

Now we take f0 = 0, µ = 1 and A = [3, 2,−1], the signal x(t) is band-limited in the interval [−5, 5]. The discrete

time signal x(n) is sampled from the continuous signal x(t) with sampling interval and the number of sampling point

T = 0.1 and N = 100, respectively. The inherent LCT frequency resolution Tu = 0.05 in the whole LCT domain

[−1/(2T |β|), 1/(2T |β|)− 1/(NT |β|)]. The global spectra of x(n) by DLCT [1] is shown in Fig.D1 (a). Next, we select the

local interval [−0.2970, 0.2970] ⊆ [−1/(2T |β|), 1/(2T |β|)− 1/(NT |β|)] to refine the LCT spectrum by the ZDLCT. Fig.D1

(b) presents spectrum on the local range with zoom factor P = 10 and shift factor λ = 0. The results show that we can

obtain spectral details, such as the amplitude, width and zero position of the main and side valves, and more accuracy peak

value. In addition, for appropriate parameters, we can use the peak to estimate the initial frequency of the LFM signal.

Thus, we further consider the effect of spectral refinement on estimated results.

For mentioned above LFM signal and LCT parameters, the estimated value is 0.0495 by using the DLCT, the absolute

error is 0.0495. Now we discuss the effects of P, λ and the selected interval on estimated results. When the local interval

is [−0.2970, 0.2970], and shift factor is λ = 0, Fig.D2 shows the peak position of signal x(t) = ejπt2 for different P in case

of A = [3, 2,−1]. These results indicate that for the fixed frequency interval, the larger P value is, the more accuracy the

estimation is. However, combining the computational complexity and accuracy, P can not be too large. For appropriate

P = 15, Fig.D3 shows the estimated value for different local interval and λ. It shows, in the case of sub-intervals containing

peaks, that the estimated value is independent of the selected subinterval and λ. In order to demonstrate generality of the

algorithm, the estimated initial frequency of LFM signal x(t) in (D1) is shown Table D1 for the suitable P , A and different

f0, µ, where fi is initial frequency of LFM signals; ḟ and f̈ are the estimation of initial frequency of LFM signals based

on DLCT and ZDLCT respectively; εD = |(ḟi − fi)/fi| and εZ = |(f̈i − fi)/fi| represent relative error between the initial

frequency and the estimated results. The results indicate that the accuracy of ZDLCT is higher than that of DLCT [1] in

some cases. Furthermore, the proposed method can also be applied to refine the spectrum of multi-component LFM signals.

Table D1 The estimate values of initial frequency for different f0 and µ.

(f0, µ) (α, β, γ) [u1, u2] Tu
DLCT [1] ZDLCT

ḟ εD P f̈ εZ
(−10, 1) (2, 2.7,−1) [−0.3839,−0.3544] 0.0369 −9.9668 0.332% 5 −9.9865 0.1351%
(−8, 0.3) (2.3, 1.5,−0.3) [−5.413,−5.1949] 0.033 -7.9922 0.0981% 10 -7.9973 0.0337%
(−6,−1) (3, 2, 1) [−3.1272,−2.8611] 0.033 -5.9880 0.2000% 3 -6.0104 0.1733%
(−4,−1) (3, 8,−2) [−0.5302,−0.4503] 0.06 -3.9424 1.4400% 10 -3.9624 0.9400%
(−2, 0.3) (2.3, 1.5,−0.3) [−1.5840,−1.0560] 0.0660 -1.9800 1.000% 11 -1.9890 0.5500%
(2, 2) (2, 4,−2) [0.3725, 0.645] 0.0495 2.0860 4.300% 3 2.0528 2.6400%
(4, 2) (3, 8− 2) [0.4503, 0.5302] 0.0062 4.0424 1.0600% 9 4.0368 0.9200%
(6, 1) (3, 2,−1) [2.8357, 3.2337] 0.0498 6.0694 1.1567% 8 6.0198 0.3300%
(8, 2) (0.1, 4,−2) [1.9154, 2.1144] 0.0249 8.0596 0.7450% 6 8.0428 0.5350%

(10, 0.3) (2.3, 1,−0.3) [9.7904, 10.19] 0.05 9.9902 0.0977% 5 10.0002 0.0022%

Appendix D.1.2 Spectral refinement of multi-component LFM signal

Considering the following multi-component LFM signals

x(t) =
m∑
i=1

Aie
j2πfit+jπµt2 , (D3)

where Ai is the amplitude of i-th component, fi and µ are initial frequency and chirp-rate of i-th component, respectively.

The LCT of x(t) is given by

LA[x(t)](u) =


√

β
|β| e

−jπ( 1
4
−αu2) ∑m

i=1 Aiδ(u− fi
β
) γ = −µ√

βj
γ+µ

e−jπ( 1
4
−αu2) ∑m

i=1 Aie
−jπ β2

γ+µ
(u− fi

β
)2

γ ̸= −µ.

We note that the multi-component LFM signals have m impulses at u = fi/β, i = 1, 2, ...,m in the LCT domain for suitable

A.

Let t ∈ [−5, 5], m = 3, [f1, f2, f3] = [2, 2.15, 1], µ = 1. We sample x(t) with sampling interval T = 0.1 and the number

of samples points N = 100. The DLCT of x(n) with parameters α = 2, β = 4, γ = −1 can be derived in the whole range
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Figure D1 (a) Global spectrum; (b) The spectrum in the partial range [−0.2970, 0.2970] with P = 10.

-0.3 -0.2 -0.1 0 0.1 0.2

 frequency /Hz

0

20

40

60

80

100

120

140

am
pl

itu
de

 

DLCT
ZDLCT

X: 0.033
Y: 135.8

(a)

-0.3 -0.2 -0.1 0 0.1 0.2

 frequency /Hz

0

50

100

150
am

pl
itu

de
 

DLCT
ZDLCTX: 0.0275

Y: 140.9

(c)

Figure D2 In local interval [−0.2970, 0.2970], the spectrum with different P : (a) P = 3; (c) P = 9
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Figure D3 The spectrum in the different local interval with P = 15: (a) [−0.3960, 0.1980] and λ = −0.02; (b)
[−0.0495, 0.5445] and λ = 0.05 .
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[−1.2375, 1.2125] with fixed sampling interval Tu = 0.025. The global spectrum of x(n) is shown in Fig.D4 (a). The only

two peaks can be observed at positions u1 = 0.2722, u2 = 0.5197, respectively. When the zoom factor P = 4 and shift

factor λ = 0.11, the local frequency interval is [0.1732, 0.6187], the LCT spectrum of x(n) by ZDLCT is shown in Fig.D4

(b). It suggests that the closer spectral components can be distinguished by ZDLCT.
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Figure D4 (a) Global spectrum; (b) The spectrum in the local range [0.1732, 0.6187] with P = 4 and λ = 0.11.

Finally, we consider the effect of spectral refinement on the peak positions of multi-component LFM signal in (D3). Based

on obtained the peak position, we can get the estimate values of initial frequency. When the local interval [0.1732, 0.6187]

is selected, Table D2 shows estimate values of LFM signal in (D3) for different P . The result demonstrates that the relative

error decreases with the increase of P , that is, the same conclusion can be obtained as mono-component LFM signal.

Table D2 The estimate values of initial frequency for different P in the interval[0.1732, 0.6187].

fi
P = 1 P = 3 P = 5 P = 7

ḟ εD f̈ εZ f̈ εZ f̈ εZ
f1 = 1 1.0888 8.88% 1.056 5.6% 1.042 4.2% 1.0464 4.64%
f2 = 2 2.0788 3.94% 2.046 2.300% 2.0592 2.96% 2.0508 2.54%
f3 = 2.15 2.2108 2.8279% 2.1976 2.214% 2.192 1.9535%

Appendix D.2 Sp-LCT Simulations

The simulations are performed to verify the accuracy of the Sp-LCT. We consider the following Gaussian signal

g(t) = e−st2 . (D4)

The continuous LCT of g(t) is given by

GA(u) = LA[g(t)](u) =
√

βe−j π
4

√
π

s− jπγ
e

(jπβu)2

s−jπγ . (D5)

Appendix D.2.1 Uniform Sp-LCT

Let s = 1/2 in (D4). Since e−8 ≈ 0, the signal is approximated as finite signal in the interval [−4, 4]. The continu-

ous signal g(t) is sampled with sampling interval T = 0.04, that is, g(n) = g(nT ). We sample the LCT domain vari-

able u with sampling interval Tu = 0.1244. The entire amplitude of g(t) by sampled the continuous LCT in (D5), the

discrete LCT in (A3) and Sp-LCT with parameters α = 1/2, β = 1, γ = 2.5 are plotted in Fig.D5 (a) in whole LCT

domain [−1/(2T |β|), 1/(2T |β|) − 1/(NT |β|)]. Fig.D5 (b) shows the local amplitude of g(n) at uniform sampling points

[−1.3681,−0.8706,−0.3731, 0.1244, 0.6219] by (A3), (D5) and the Sp-LCT. It shows that the Sp-LCT can effectively obtain

a few uniform sampling of output spectrum components. The accuracy is measured by NMSE

NMSE =

∑
(|GA(mTu)| − |LA[g(t)](mTu)|)2∑

|GA(mTu)|2
. (D6)

The NMSE of Sp-LCT for calculating both all of and local of spectrum are 3.464× 10−9. It demonstrated that the DLCT

of g(n) computed by the Sp-LCT exactly approximate sampled the continuous LCT of g(t) in (D5).

Appendix D.2.2 Nonuniform Sp-LCT

Let s = π for g(t) in (D4) with time interval [−5, 5]. Here, g(n) = g(nT ), T = 0.05. We consider the discrete time LCT

of g(n) by (A2). The parameters α, β, γ are randomly distributed in the interval [−5, 5], the sampling is nonuniform in
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Figure D5 For α = 1/2, β = 1, γ = 2.5; (a) The amplitude of g(t) by sampled the continuous LCT, DLCT and Sp-LCT
in the LCT domain [−1/(2T |β|), 1/(2T |β|)− 1/(NT |β|)]; (b) The local amplitude of g(t) by sampled the continuous LCT,
DLCT and Sp-LCT at frequency points [−1.3681,−0.8706,−0.3731, 0.1244, 0.6219].

the LCT domain. In order to verify the effectiveness of the Sp-LCT, we adopt u = [u1, u2, u3, u4, u5, u6], which randomly

distributed in the interval (−2.8429, 2.8144). Fig.D6 (a) shows the amplitude of g(n) by Sp-LCT and sampled (D5) at LCT

frequency u. We carry out the following NMSE to give a quantitative analysis of the accuracy of Sp-LCT

NMSE =

∑
(|GA(um)| − |LA[g(t)](um)|)2∑

|GA(um)|2
. (D7)

The simulation runs 500 times independent experiments, the consequences are shown in Fig.D6 (b). The overall trend of

the NMSEs for different u reveals that the NMSEs of the Sp-LCT are below 1.4× 10−13. Therefore, the proposed Sp-LCT

can approximate the nonuniform sampling of the continuous LCT.
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Figure D6 (a) The amplitude of the continuous LCT and Sp-LCT with parameters α, β, γ which are distributed randomly
in the interval [−5, 5] at frequency points u = [u1, u2, u3, u4, u5, u6]; (b) NMSE of the Sp-LCT for 500 different u.
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