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Dear editor,
Controllability of singular distributed parameter
systems has been attracting attention from re-
searchers for several decades. For example, ap-
proximate controllability has been considered in
[1, 2], exact controllability has been studied in
[2–4], and exact null controllability has been in-
vestigated in [5, 6]. These properties are of great
significance for the study of singular distributed
parameter systems. For more details, please refer
to Appendix F.

It can be seen from these reports that many
results concerning the controllability of the singu-
lar distributed parameter systems have been ob-
tained, but it is regrettable that none of these
results regarding controllability discuss pulsative
behavior. In fact, for singular distributed param-
eter systems, there may be pulse terms in the so-
lutions [7]. In a practical system, the pulse terms
are generally undesirable because strong pulse be-
havior may impede the working of the system or
even destroy it. Therefore, these pulse terms must
be eliminated by imposing appropriate controls.
In view of this fact, in this study, the concept of
pulse controllability of regular singular distributed
parameter systems with finite order is considered
in Banach space. The necessary and sufficient
conditions for this concept are first obtained. In
this study, the following points are worth noting:
(1) Controllability (exact controllability, approx-

imate controllability, and exact null controllabil-
ity) of singular distributed parameter systems is
clearly motivated by the idea of attainable states.
(2) Although not directly related to reachable
states, pulse controllability of a system character-
izes the ability to eliminate the pulse terms in the
system by appropriate control. Indeed, control-
lability and pulse controllability are two different
ideas that are naturally encountered when deal-
ing with singular distributed parameter systems
in which the pulse terms are included in the solu-
tions; furthermore, these two types of controllabil-
ities require separate treatments and have different
conditions.

Notations. Throughout the article, X,Z and
U denote the Banach spaces; L(X,Z) denotes the
space of bounded linear operators from X into Z;
L(X) denotes L(X,X);CD(X,Z) denotes the set
of closed linear operators from X into Z whose
domains are dense in X ; Lp([0, T ], U) denotes the
class of Lebesgue measurable U -valued functions

with
∫ T

0 ‖x(t)‖
p

U dt < +∞(p > 1); ‖ · ‖U denotes

the norm in U ;Ch denotes the class of h times con-
tinuously differentiable functions; D(A) denotes
the domain of operator A; kerA denotes the kernel
of A; ranA denotes the range of A and

X × Z =

{[

x

y

]

: x ∈ X, y ∈ Z

}

. (1)

Consider the following singular distributed pa-
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rameter system

Eẋ(t) = Ax(t) +Bu(t), (2)

where E ∈ L(X,Z), A ∈ CD(X,Z) and B ∈
L(U,Z);x(t) ∈ X and u(t) ∈ U denote the state
and input vectors, respectively. We now define
the regular singular distributed parameter system
(RSDPS) as below.

RSDPS. System (2) is called the RSDPS with
finite order h if there exist Banach spaces X1, X2,
and P ∈ L(Z,X1×X2), Q ∈ L(X1×X2, X), where
P is injective and Q is bijective, such that























PEQ =

[

I1 0

0 N

]

,

PAQ =

[

K 0

0 I2

]

, PB =

[

B1

B2

]

,

(3)

whereN is a nilpotent operator with order h [6]; K
is the generator of the strongly continuous semi-
group [8]; Ik ∈ L(Xk) is the identical operator
(k = 1, 2).

In this case, the operators P and Q transfer (2)
into the following decoupled system on the Banach
space X1 ×X2:

ẋ1(t) = Kx1(t) +B1u(t), (4)

Nẋ2(t) = x2(t) +B2u(t), (5)

where [ x1
x2
] = Q−1x, x1 ∈ X1, x2 ∈ X2. The system

represented by (4) and (5) is called the standard
form of RSDPS with finite order.

From [6], we obtain the following theorem.

Theorem 1. If A is a strong (E, p)-radial oper-
ator [6] in (2), then Eq. (2) is the RSDPS with
finite order h, and h 6 p+ 1.

In addition, from [9], we see that many systems
are RSDPS, such as the Navier-Stokes system, the
robotic system, the system modelling the free sur-
face evolution of a filtered fluid, among others.

Now we consider (2). Suppose that it is an RS-
DPS with finite order, u(t) ∈ Ch−1, and there exist
a > 0,M > 0, such that

‖u(i)(t)‖U 6 Meat, i = 0, 1, . . . , h− 1. (6)

The frequency domain version is

(sE −A)X(s) = Ex0 +BU(s), (7)

where X(s) and U(s) are the Laplace transforms
of x(t) and u(t), respectively. We introduce the
concept of a distributional solution (DS).

DS. Suppose that x(t) is the inverse Laplace
transform of the function X(s) solved using (7).

If x(t) contains the pulse terms, then x(t) is called
the DS to (2) in the sense of the Laplace transform,
or simply, the DS to (2).

From [8], the following proposition holds.

Proposition 1. Subsystem (4) has a unique
mild solution [8] on [0, T ] with any initial con-
dition x1(0) = x10 for any input vector u(t) ∈
Lp([0, T ], U) (p > 1), and the mild solution is given
by

x1(t) = eKtx10 +

∫ t

0

eK(t−τ)B1u(τ)dτ, (8)

where the integral is in the sense of Bochner.
By DS and Proposition 1, the following theo-

rems hold.

Theorem 2. Given (5) with order h, for any ad-
missible control input vector u(t) ∈ Ch−1, and ini-
tial value x2(0) = x20, subsystem (5) has a unique
DS, which is given by

x2(t) = x2pulse(t) + x2normal(t), (9)

where

x2pulse(t)

= −

h−1
∑

i=1

N i

[

δ(i−1)(t)x20

+

i−1
∑

j=0

δ(j)(t)B2u
(i−j−1)(0)

]

= −
h−1
∑

i=1

N iδ(i−1)(t)

[

x20 +
h−1
∑

i=0

N iB2u
(i)(0)

]

,

(10)

x2normal(t) = −
h−1
∑

i=0

N iB2u
(i)(t), (11)

δ(t) is the Dirac function, and δ(i)(t) is the ith
derivative of δ(t) (for details, see Appendixes A
and G).

Theorem 3. Assume that the RSDPS (2) has
order h with standard form (4) and (5), and its ad-
missible control input vector u(t) ∈ Ch−1. Then,
the DS of (2) with the initial value x(0) = x0 is

given by x(t) = Q[ x1(t)

x2(t)
], where

x1(t) = eKt [I1 0]Q−1x0 +

∫ t

0

eK(t−τ)B1u(τ)dτ,

(12)

x2(t) = −

h−1
∑

i=1

N iδ(i−1)(t)

(

[0 I2]Q
−1x0

+
h−1
∑

i=0

N iB2u
(i)(0)

)

−
h−1
∑

i=0

N iB2u
(i)(t).

(13)
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As can be seen from the above theorems, the so-
lution of an RSDPS with finite order may contain
pulse terms.

We now introduce the concept of a classical so-
lution (CS).

CS. If x(t) ∈ C1, x(0) = x0 ∈ D(A) satisfies (2),
then x(t) is called the CS of (2) with the initial
value x(0) = x0.

By CS and Proposition 1, we have the following
theorem (for proof, see Appendix B).

Theorem 4. Assume that the RSDPS (2) is of
order h, u(t) ∈ Ch, and the system represented by
(4) and (5) is of the standard form (2). Then the
set of consistent initial conditions is given by

S =

{

η : [I1 0]Q−1η ∈ D(K) and

[0 I2]Q
−1η = −

h−1
∑

i=0

N iB2u
(i)(0)

}

. (14)

For any x0 ∈ S, system (2) has the unique CS:

x(t, u, x) =

Q





eKt[I1 0]Q−1x0 +
∫ t

0 e
K(t−τ)B1u(τ)dτ

−
∑h−1

i=0 N iB2u
(i)(t)



 .

(15)

We now study the pulse controllability (P-
controllability).

P-controllable. The RSDPS (4) and (5) with
finite order is deemed P-controllable if for any
x20 ∈ X2, there exists an admissible control in-
put vector u ∈ Ch such that x2pulse(t) = 0 in the
solution of (5) given by (9).

Clearly, the definition of P-controllability char-
acterizes the ability to eliminate the pulse terms
in RSDPS with finite order by control.

From P-controllability and (9), the following
theorems hold (for proofs, see Appendixes C and
D).

Theorem 5. The RSDPS (4) and (5) with finite
order is P-controllable if and only if for any initial
value vector x20 ∈ X2 there exists an admissible
control input vector u(t) ∈ Ch such that

Nx20 +
h−2
∑

k=0

Nk+1B2u
(k)(0) = 0. (16)

Theorem 5 shows that the DS of (5) becomes
the CS of (5) after the action of u(t).

Theorem 6. Consider the RSDPS (4) and (5)
with finite order.

(i) RSDPS (4) and (5) is P-controllable if and
only if Eq. (5) is P-controllable.

(ii) Subsystem (5) is P-controllable if and only
if one of the following conditions holds:

(A) ranN = ran[NB2 N2B2 · · · Nh−1B2].
(B) kerN + ran[B2 NB2 · · · Nh−1B2] =

X2.

(C) ranN + kerN + ranB2 = X2.

Conclusion. The P-controllability of the RS-
DPS with finite order is considered. Necessary
and sufficient conditions concerning this concept
are obtained. The obtained results are very
important and convenient for studying the P-
controllabilities of singular distributed parameter
systems. An illustrative example is given in Ap-
pendix E, which shows the effectiveness of The-
orem 6. The relationship between controllability
and P-controllability of the singular distributed
parameter systems will be discussed in future
work.
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