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Abstract This paper proposes a simulation method to model the program Vth distribution of 3-D vertical

channel TLC/QLC charge-trapping NAND flash memory. The program Vth distribution can be calculated

by considering ISPP noise, WL-WL interference, and the RTN effect of tunneling oxide and poly Si, which

are the major physical factors affecting the width of program Vth distribution. Then, the program Vth

distribution shapes with different ISPP incremental voltage steps are compared, and the results are found

to be consistent with the experimental results. Code and layer-dependent coupling coefficients of WL-WL

interference in 3-D vertical channel NAND flash memory are considered. The effect of RTN on the program

Vth distribution is comprehensively studied. The program Vth distribution of a WL is calibrated with the

measurement, and a good agreement is obtained, validating the array program Vth distribution simulation

method. The simulation method can help in improving the reliability of 3-D TLC NAND flash memory and

provides guidance for the design and optimization of 3-D QLC NAND flash memory technology.
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1 Introduction

With the intensive application of data storage in emerging technologies, 3-D NAND flash memory tech-

nology has been considered as a promising candidate for future memory solutions [1–5]. This is because

it overcomes many challenges faced by conventional planar (2-D) NAND flash memory [6, 7] and meets

the requirements for mass storage devices [8]. At present, 48, 64, and even 96-stacked layer 3-D TLC

NAND flash memories are produced [8–12].

Despite the several advantages of 3-D NAND flash memory, its reliability degrades with the continued

scaling down and introduction of multi-level cell (MLC) and triple-level cell (TLC) NAND flash memory

technologies [13, 14]. In particular, the transition from 2-D NAND flash memory to 3-D NAND flash

memory has been raising many new challenges [15]. 3-D quad-level cell (QLC) NAND flash memory

technology is a promising candidate for lower cost per bit and higher-density nonvolatile memory [16,17].

However, for 3-D TLC and QLC NAND flash memories, a narrow program Vth distribution interval is

very important. Therefore, minimizing the width of the program Vth distribution is a central challenge

for multi-bit storage technology. In order for minimization to occur, it is necessary to identify and

understand the effect of different physical factors on the program Vth distribution width [18]. After this,
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Figure 1 Schematic structure of 64-stacked layer 3-D vertical channel TLC charge trapping NAND flash memory array

in a block.

modeling the accuracy of the Vth distribution of 3-D TLC NAND flash memory can make the design of

error correction codes (ECCs) more accurate and efficient. However, it takes considerable time to obtain

the program Vth distribution based on large-scale measurements. Therefore, modeling the program Vth

distribution can make the process more effective and efficient [19].

In this paper, a simulation method is proposed to model the program Vth distribution of 3-D vertical

channel (VC) TLC/QLC charge-trapping (CT) NAND flash memory, considering ISPP (incremental

step pulse programming) noise, WL-WL (word-line) interference, and the RTN (random telegraph noise)

effect of tunneling oxide and poly Si, which are the major physical factors that affect the width of the

program Vth distribution. After the model is created, the program Vth distribution shapes with different

ISPP incremental voltage steps (Vsteps) are compared, and different Vth distribution shapes (rectangle

and triangle) are observed, which is consistent with the experimental results. Code and layer-dependent

coupling coefficients of WL-WL interference in 3-D VC NAND flash memory are considered. Finally, the

effect of RTN on the program Vth distribution is comprehensively studied, and different program/erase

(P/E) cycling times and ambient temperatures can be considered. The program Vth distribution of a WL

is calibrated with the measurement, and a good agreement is obtained, which validates the array program

Vth distribution simulation method. The simulation method can help in improving the reliability of 3-D

TLC NAND flash memory and provides guidance for the design and optimization of 3-D QLC NAND

flash memory technology.

The rest of this paper is organized as follows. In Section 2, we describe the 64-stacked layer 3-D

VC TLC CT NAND flash memory array structure and program Vth distribution simulation method; in

Section 3, we present the simulated and experimental results and discussion; finally, the conclusion is

drawn in Section 4.

2 Array structure and simulation method

The proposed simulation method is universal for different 3-D NAND flash architectures. Thus, we can

use the mainstream 3-D TLC NAND flash memory architecture [10, 11] as an example to explain the

simulation method in this study. Figure 1 shows a typical schematic structure of a 64-stacked layer 3-D

VC TLC CT NAND flash memory array in a block. Figure 2 shows the Vth distribution, read voltage

window, and page configuration of the 3-D TLC NAND flash memory. 3-D TLC and QLC NAND flash

memories require extremely narrow program Vth distribution compared to the single-level cell (SLC) and

MLC NAND flash memory. Three major obstacles against enabling narrow program Vth distribution,
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Figure 2 Vth distribution, read voltage window, and page configuration of the 3-D TLC NAND flash memory.
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Figure 3 (Color online) Block page order (a) and the program sequence (b) of the 3-D VC TLC NAND flash memory.

consisting of ISPP noise, WL-WL interference, and the RTN effect of tunneling oxide and poly Si, are

comprehensively studied.

The block page order and the program sequence of the 3-D VC TLC NAND flash memory array are

shown in Figure 3(a) and (b). Here, a block is defined as 255 WL (4 strings and 64 layers), where one

WL’s (three pages) length is 16 KB [10, 11]. A block is the smallest unit for erase operation before

the ISPP program, and the Vth distribution of the erased memory cells tend to have a wide-Gaussian

distribution [20, 21]. Thus, we first initialize the Vth of every cell in a block to be in the erase state,

whose Vth distribution follows a normal distribution (µ = −3 [19], σ = 0.21 [22]). Contrary to the

ISPP program sequence of the actual array program operation, we program a block from WL〈255〉 to

WL〈0〉 due to the directionality of WL-WL interference, namely, the former programmed cell’s Vth can

be affected by the latter programmed cell’s Vth, and it can also be related with the Vth shift of the latter

programmed cell. The flowchart of the array program Vth distribution simulation method of 3-D TLC

NAND flash memory is shown in Figure 4.

2.1 ISPP noise

ISPP noise originates from the variation of the number of electrons in the nitride layer [23], which has

an essential effect on the program Vth distribution. Figure 5 plots the ISPP program result of the single

memory cell, where a self-consistent simulator is used to simulate the program, erase, retention, and read

operations, as verified and calibrated in our previous studies [24–27]. The figure indicates that the ISPP
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Figure 4 Flowchart of the array program Vth distribution simulation method of 3-D TLC NAND flash memory.
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Figure 5 Single memory cell programming characteristic by ISPP. The program voltage is 8–18 V, and the adopted

program pulse is shown in the insert.

slope is around 1 due to the limitation of the tunneling current [28]. Thus, ideally, the program voltage

distribution is a uniform distribution between Vpv and Vpv+Vstep. However, in reality, a positive tail

above Vpv+Vstep is introduced by ISPP noise. Figure 6(a) shows the typical Vth distribution shift of

the 3-D NAND flash memory array during dumb ISPP program (without a verify operation) [19], and the

distribution is moved to the right and broadened pulse-by-pulse. For each ISPP program step, the Monte

Carlo method [29] is used to generate a Vth shift randomly for each cell in the block whose probability

distribution follows Poisson statistics [23,30,31]. Figure 6(b) shows the ISPP noise with different Vsteps,

and it is found that a larger Vstep has larger ISPP noise. The ISPP noise originates from the variation of

the number of electrons in the nitride layer, and the electron injection statistics show Poisson behavior.

The variance and average value of electron injection statistics are related to the Vstep and the device
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Figure 6 (Color online) (a) Typical Vth distribution shift of a 3-D NAND flash memory array during dumb ISPP program;

(b) ISPP noise with different Vsteps.
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Figure 7 (Color online) (a) WL-WL interference of 3-D VC NAND flash memory because of coupling capacitance;

(b) all possible cases of WL-WL interference at a single memory string in a 3-D VC NAND flash memory.

structure parameters, as follows [23]:

n̄ = Vstep/CPP, (1)

∆Vth = q · n/CPP. (2)

Here, q is the electronic charge, and CPP is the control-gate to nitride layer coupling capacitance, which

can be calibrated in combination with the measurement. In this simulation, we assume a sheet charge

centroid inside the nitride layer. Then, n̄ is the average value of the injected electrons, and n is the

number of injected electrons. Because of the electron injection statistics according to Poisson behavior,

its variance σ2
n is equal to the average value n̄.

2.2 WL-WL interference

WL-WL interference is also an important factor that affects the array program Vth distribution.

Figure 7(a) shows the WL-WL interference of 3-D VC NAND flash memory caused by the coupling

capacitance (CIF), which is immune to the WL-WL interference between the string and the string due to

the source line slits inside the array [8]. Then, we can find that the memory cell located in layer 1 suffers

from as much as 63 times WL-WL interference, while that located in layer 64 is immune to WL-WL

interference due to the directionality of the program sequence, as shown in Figure 7(b). In addition, the

Vth shift of the victim cell is related to the PV level of the victim cell and the target Vth its neighboring

cell programmed to [32, 33]. Finally, we can find that WL-WL interference causes Vth shift of a single
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Figure 8 (Color online) Vth shift of victim cell due to WL-WL interference in correlation with the PV level of the victim

cell.

cell (victim cell) proportional to the Vth change of the adjacent cell (aggressor cell), and is related to

the PV level of the victim cell and the distance between the victim cell and aggressor cell. Here, we

define the coupling degree related to the distance as α (layer-dependent coefficient), which is assumed to

decay exponentially, as shown in Figure 7(b). The coupling degree related to the PV level of the victim

cell is defined as β (code-dependent coefficient), which is assumed to be linearly dependent on the PV

level, as shown in Figure 8. The coupling degree related to Vth change of the aggressor cell is defined

as ∆Vaggressor. Namely, the Vth shift of the victim cell is directly correlated with the number of ISPP

programming step pulses applied to the adjacent cell [32, 33]. Thus, the Vth shift of a victim cell due to

interference is as follows:

∆Vvictim(j) =
64∑

p=j+1

α(p− j) · β(j) ·∆Vaggressor(p). (3)

Here, j is the victim cell layer, and p is the aggressor cell layer. Then, α = α0 · e
j+1−p as shown in

Figure 7, where α0 is used as 0.02 in this work, and β is 8/8, 7/8, 6/8, 5/8, 4/8, 3/8, 2/8, and 1/8 when

the PV level of the victim cell in the erase state, PV1, PV2, PV3, PV4, PV5, PV6, and PV7 respectively

as shown in Figure 8.

2.3 RTN effect

RTN is one of the main reliability constraints for the 2-D and 3-D NAND flash memories. RTN causes

Vth instability of 3-D NAND flash memory during two consecutive read operations [34], which originates

from the electron capture/release phenomena in memory cell defects of tunneling oxide and poly Si.

Figure 9 shows the measured RTN statistics probability density distribution of the 3-D NAND flash

memory for different ambient temperatures [15]. RTN not only widens the positive tail above the PV

level, but also introduces a negative tail below the PV level [34], which significantly distorts the program

Vth distribution. The probability density of RTN distribution is as follows [34]:

P [∆Vth] = ηe±λ∆Vth . (4)

Here, λ is the slope of the exponential tails of the RTN distribution, and η is a variable coefficient that

can be calibrated with different manufacturing processes, different experimental temperatures, and P/E

cycling times. Similar to ISPP noise, a Monte Carlo method is used to randomly generate a Vth shift for

each cell in a block in the form of probability. The simulated Vth distribution broadening for a PV level

of 2.5 V is shown in Figure 10.
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Figure 10 (Color online) Simulated Vth distribution

broadening at a PV level of 2.5 V.
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3 Results and discussion

Theoretically, the Vth distribution resulting from the ISPP PV function is a uniform distribution between

Vpv and Vpv+Vstep. In reality, the Vth distribution is broadened due to ISPP noise, which is the ultimate

accuracy of the ISPP algorithm [23]. Figure 11(a) shows the Vth distribution evolution (sweep every

two loops, without considering RTN effect) during the ISPP PV function. The PV level is 2.5 V, and

Vstep is 0.2 V. The figure indicates that the uniform distribution between Vpv and Vpv+Vstep is almost

maintained. However, the positive tail above Vpv+Vstep is shown due to ISPP noise. This is because a

memory cell with a Vth slightly lower than Vpv requires an additional ISPP program pulse to overcome

the PV level [29]. Figure 11(b) shows the influence of Vstep on the program Vth distribution, as well as

how a triangle distribution is obtained [35]. It can be seen that different Vsteps can lead to different Vth

distribution shapes, which is consistent with the experimental results [35].

Figure 12(a) shows the effect of RTN on the program Vth distribution, as well as the further distortion

of the uniform distribution. Figure 12(b) shows the ISPP program Vth distribution shift of PV5 for both

simulation and measurement, and a good agreement is obtained between the two results. Note that the

experimental results of the program Vth distribution below 0 V cannot be obtained. Figure 13 shows

the Vth distribution of WL〈252〉 on layer 64 and that of WL〈0〉 on layer 1 at the memory string 〈0〉 of

the 3-D VC TLC NAND flash memory, (a) considering and (b) without considering the code-dependent

coefficient. The figure shows that (1) the Vth distribution of WL〈252〉 on layer 64 represents the relative

small Vth shift compared to the Vth distribution of WL〈0〉 on layer 1 at the memory string〈0〉, due to
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for both simulation and measurement, and a good agreement is obtained between the two results.
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Figure 14 (Color online) Simulated Vth distribution of one page versus measured one, and a good agreement is obtained

between the two results.

the directionality of WL-WL interference; (2) WL-WL interference of the erase state cell is larger than

that of the program state cell. The simulated Vth distribution of one page versus the measured one is

calibrated with the experimental measurements combined with the double-verify algorithm [36], as shown

in Figure 14, and a good agreement is obtained between the two. This validates the array program Vth

distribution simulation method.
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4 Conclusion

This paper proposes a simulation method to model the program Vth distribution of the 3-D vertical

channel TLC/QLC charge-trapping NAND flash memory. The program Vth distribution can be calcu-

lated by considering ISPP noise, WL-WL interference, and the RTN effect of tunneling oxide and poly

Si, which are the major physical factors that affect the width of the program Vth distribution. The ISPP

program results obtained with different Vsteps are compared, and different Vth distribution shapes are

observed, which is consistent with the experimental results. Code and layer-dependent coupling coeffi-

cients of WL-WL interference in the 3-D VC NAND flash memory are considered. The effect of RTN

on the program Vth distribution is comprehensively studied. The program Vth distribution of a WL is

calibrated with the measurement, and a good agreement is obtained, which validates the array program

Vth distribution simulation method. This simulation method can help in improving the reliability of 3-D

TLC NAND flash memory and provides guidance for the design and optimization of 3-D QLC NAND

flash memory technology.
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