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Abstract Efficient massive MIMO detection for practical deployment, which is with spatially correlated

channel and high-order modulation, is a challenging topic for the fifth generation mobile communication

(5G). In this paper, lattice reduction aided belief propagation (LRA-BP) is proposed for massive MIMO

detection. LRA-BP applies the message updating rules of Markov random field based belief propagation

(MRF-BP) in lattice reduced MIMO system. With the lattice reduced, well-conditioned MIMO channel,

LRA-BP obtains better message updating and detection performance in spatially correlated channel than

MRF-BP. Log-domain arithmetic is used in LRA-BP for computational complexity reduction. Simulation

result shows that LRA-BP outperforms MRF-BP with 3–10 dB in terms of required SNR for 1% packet

error rate in spatially correlated channel for 256-QAM. We also show that LRA-BP requires much lower

complexity compared with MRF-BP.
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1 Introduction

Massive multiple-input and multiple-output (massive MIMO or large-scale MIMO) is a key technology for

the fifth generation mobile communication (5G) [1–3]. The efficient detections in massive MIMO draw lots

of attention [4]. Classical algorithms for MIMO detection include minimum mean-square error (MMSE)

and sphere decoding (SD) [5, 6]. Another category of MIMO detection is graph based detection [7–11].

Graph based MIMO detection is with high parallelism. It benefits hardware implementation for massive

MIMO detection with low latency which is critical to 5G. Also it provides the possibility for a uniform

processing architecture for MIMO detection and channel decoding.

In graph based detection, MIMO system is modeled as a fully connected graph. Two types of graph-

ical MIMO model are proposed: bipartite graph and Markov random field (MRF). In bipartite graph,

observation nodes, variable nodes and the edges represent the received signals, hidden data symbols to

be detected and MIMO channel. In MRF, observation nodes are embodied in the edges which describe

local dependencies among variable nodes (data symbols). Graph based detection relies on the belief

propagation (BP) algorithm [12] or the sum-product algorithm [13] since they are efficient tools in solv-

ing inference problems in probabilistic graphical models. These algorithms are used widely in channel
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decoding, such as the turbo codes and low density parity check codes. They has also been extensively

studied for the MIMO detection with bipartite and pairwise graphical MIMO model.

As a direct migation from channel decoding, bipartite graph based BP is used for MIMO detection with

complexity reduction based on edge pruning [7] and Gaussian assumption [8, 9, 14]. In Gaussian BP, the

input data and messages are all assumed to be Gaussian so that the message and posterior probability can

be represented by probabilistic mean and variance, resulting in a very simple message update rule. But

as Ref. [10] shown, bipartite graph based Gaussian BP converges to MMSE solution only. Also it does

not work well for non-Gaussian input, particularly for high-order modulation. Belief scaling is considered

in [15, 16] to improve performance for high-order modulation but only 16-QAM is verified. MRF based

belief propagation (MRF-BP) can be used to detect high-order modulation [10, 11, 17]. In MRF-BP,

the conditional a posteriori probability under Gaussian input assumption is used to approximate the

marginal probability density function (PDF) of non-Gaussian data. The messages exchanged between

variable nodes are not treated as Gaussian. In MRF-BP, the message is obtained with conditional MMSE

estimator [11] which works well for independent identically distributed (i.i.d.) Rayleigh channel. In

spatially correlated channel, the performance of conditional MMSE degrades due to the noise amplification

effect. Consequently the performance of MRF-BP degrades. Unfortunately many practical massive

MIMO channel is spatially correlated due to practical limitations like form factor. As simulation result

shown later, the performance gain of MRF-BP over MMSE reduces to be negligible in 3GPP 3D channel

model [18, 19].

In this paper, we propose lattice reduction aided belief propagation (LRA-BP) for efficient massive

MIMO detection for practical deployment, which is with spatially correlated channel and high-order

modulation. LRA-BP utilizes lattice reduction to improve the performance in spatially correlated channel.

Lattice reduction [20] is a powerful concept for solving diverse problems involving point lattices. With

lattice reduction, spatially correlated channel is transformed to a more orthogonal channel which assists

MIMO detection. Better detection performance by combining lattice reduction with MMSE and SD

are reported in [21,22]. Its application in massive MIMO has been proposed [23]. With the transformed

channel, LRA-BP has better message updating and consequent MIMO detection performance in spatially

correlated channel. To support high-order modulation, LRA-BP leverages the message exchanging and

updating of MRF-BP instead of bipartite graph based BP. We also applies log-domain arithmetic in LRA-

BP for computational complexity reduction. Simulation shows that LRA-BP outperforms MRF-BP with

3–10 dB in terms of required SNR for 1% packet error rate (PER) in spatially correlated channel for

256-QAM. Also LRA-BP outperforms MRF-BP in independent channel.

This paper is organized as follows. In Section 2, we briefly review the system model and MRF-BP. In

Section 3, LRA-BP is proposed. The performance is evaluated and compared via link-level simulations in

Section 4, and the computational complexity is analyzed in Section 5. Finally, in Section 6, the concluding

remarks are given.

2 System model and MRF-BP

MIMO system model. A MIMO system with Nr receiving antennas and Nt transmitting antennas is

modeled as

r = G · s+ ω, (1)

where r is an Nr × 1 complex vector for received signals, G is an Nr × Nt complex matrix for channel

coefficients, s is an Nt × 1 complex vector for transmitted data symbols, ω is an Nr × 1 complex vector

for noise. The noise vector ω is complex Gaussian with mean 0 and covariance E[ωωH] = σ2I, where

E[·] denotes expectation. In practice, each element of s is a constellation point drawn from a finite

constellation Ωs of size 2Qm such as quadrature phase-shift keying (QPSK) and 256-QAM, for which

Qm = 2 and 8, respectively.

To facilitate computation and reduce complexity, we use an equivalent real-domain system model
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Figure 1 Real-domain constellation for 256-QAM.

derived from real value decomposition (RVD) [24]. The real-domain system model can be expressed as

y = H · x+ n =

2Nt
∑

k=1

hkxk + n, (2)

where

H =
[

h1 h2 · · · h2Nt

]

=

[

R(G) −I(G)

I(G) R(G)

]

,

y =

[

R(r)

I(r)

]

, x =

[

R(s)

I(s)

]

and n =

[

R(ω)

I(ω)

]

is the Gaussian noise vector with mean 0 and covariance 0.5σ2I. Here R(·) takes the real part, and I(·)
takes the imaginary part. Although the system’s dimension doubles, the constellation size reduces by a

factor of 2−Qm/2 in real-domain system model. Since belief propagation takes each constellation point

into account, it benefits a lot in terms of complexity.

The element of x, noted as xk, is drawn from a finite real-domain constellation Ωx of size 2Qm/2.

For 256-QAM, Ωx = {±1,±3,±5,±7,±9,±11,±13,±15}/
√
170. With the definition of constellation

and inter-stream independency, the Gaussian assumption on x can be formulated as p(x) = N (x;0, I),

where N (x;µ,Σ) representing a Gaussian PDF of mean µ and covariance Σ defined as

N (x;µ,Σ) = det(2πΣ)−
1
2 exp

{

−1

2
(x− µ)TΣ−1(x− µ)

}

.

The Gray mapping function between constellation point and its bits, noted as xk(b1, b2, . . . , bj, . . . , bQm/2),

can be found in [25]. Figure 1 shows the mapping function for 256-QAM.

Considering jth bit (bj), the finite constellationΩx can be divided into two subsets, Ωj0
x

andΩj1
x
, where

Ωjb
x

= {xk(b1, b2, . . . , bj = b, . . . , bQm/2)}, b = 0 or 1, represents all constellation points corresponding to

bj = b respectively. For channel decoding, log-likelihood ratio (LLR) for informatoin bits are desired.

The LLR of bk,j , the jth bit carried by kth X-axis transmitted symbol xk, can be computed as

LLR(bk,j) = log
P (bk,j = 0)

P (bk,j = 1)
= log

∑

xk∈Ω
j0
x

P (xk)
∑

xk∈Ω
j1
x

P (xk)
, (3)

where P (xk) is the the belief (probability) of xk. With lattice reduction, the system model can be

reformulated as

y = H · x+ n = H̃ · z + n =

2Nt
∑

k=1

h̃kzk + n, (4)

where H̃ = H · T and z = T−1x. Here T and T−1 are both 2Nt × 2Nt integer unimodular matrix.

The most commonly used algorithm to obtain H̃ and T is the Lenstra-Lenstra-Lovász (LLL) reduction

algorithm [26]. With lattice reduction, the new channel matrix H̃ is more orthogonal than H . Since

z = T−1x, we have p(z) = N (z;0,C), where C = [cij ] = 0.5 · T−1 · T−T. So the Gaussian assumption

on z remains and p(zk) = N (zk; 0, ckk) = N (zk; 0, σ
2
k). However the inter-stream independency is no

longer valid. The conditional PDF of zj given zi can be obtained as [27]

p(zj
∣

∣zi) = N
(

zj; ρ
σj

σi
zi, (1− ρ2)σ2

j

)

, (5)
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Figure 2 Pairwise graph for MIMO detection.

where the correlation coefficient ρ = cij/(σjσi).

With real-domain system model, the pairwise MRF graphical MIMO model with 2Nt observation nodes

can be obtained. The observation node stands for a transmitted data symbol and connects each other

in pair. For a compact expression, we denote the edge connecting nodes i and j as e(i, j) and the set of

neighbors of the jth node as V (j), where both i and j belong to the integer set [1, . . . , 2Nt] and i 6= j.

Figure 2 shows the MRF for a MIMO system with four observation nodes (Nt = 2).

In MRF-BP, the ith observation node stands for xi in (2) and the message from ith node to jth

node (noted as πi→j) contains the conditional probability of xj (for each constellation points) given xi’s

information. LRA-BP is based on the same pairwise MRF graphical MIMO model. In LRA-BP, the ith

observation node stands for zi in (4) and πi→j contains the conditional probability of zj (for each Z-axis

constellation points) given zi’s information.

Overview of MRF-BP. MRF-BP exchanges and updates messages in each edge bidirectionally. The

messgae updating rules is [11]

π
(t)
i→j(xj) = α

∑

xi∈Ωx







p
(

xj

∣

∣xi,y
)

∏

k∈V (i)\j

π
(t−1)
k→i (xi)







, ∀xj ∈ Ωx, (6)

where t is the iteration number, V (i) \ j denotes all elements in V (i) except j, β = hT
j K

−1
{j,i}hj + 0.5−2,

K{j,i} = 0.5σ2I +
∑

k 6=j,i hktkt
T
k h

T
k and

p
(

xj

∣

∣xi,y
)

=

√

β

2π
exp

{

−(βxj − hT
j K

−1
{j,i}y + hT

j K
−1
{j,i}hixi)

2

2β

}

. (7)

As (6) and (7) shown, MRF-BP’s message updadting is based on conditional MMSE estimator [11]. It is

contaminated by inter-stream interference and residual noise, which is more severe in spatially correlated

channel than independent channel. So MRF-BP’s performance degrades in spatially correlated channel.

3 Lattice reduction aided belief propagation

In this section, LRA-BP is proposed for efficient MIMO detection in spatially correlated channel by

conducting message updating rules like (7) in lattice reduced system model (4). With lattice reduction,

orignal MIMO channel is transformed to a more orthogonal channel and the impact of inter-stream inter-

ference and residual noise is weakened. Consequently the message’s quality and detection performance are

improved, especially for spatially correlated channel. In order to use lattice reduced system model (4),
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LRA-BP should determines Z-axis constellation at first. Correspondingly, LRA-BP should revise the

message updating rules in (7) according to the lattice reduced channel H̃ and Z-axis transmitted symbol

z. The LLR generation from z is also desirable. We also apply log-domain arithmetic in LRA-BP for

computational complexity reduction.

3.1 Determination of Z-axis constellation

Since xk ∈ Ωx is finite, zk is also finite. The original (X-axis) real-domain constellationΩx is transformed

to the Z-axis real-domain constellation Ω
(k)
z . It should be noted that unlike regular constellation Ωx

which is common for all streams, Ω
(k)
z differs for different stream (i.e., different k). To determine the

exact constellation points of Ω
(k)
z , all possible x should be visited, which leads to a prohibitively high

complexity since there are (Qm/2)2Nt possible combinations. Instead of the full Z-axis constellation, we

use a sub-optimal subset in Z-axis constellation as Ω̃
(k)
z in LRA-BP. In order to make the constellation

point in Ω̃
(k)
z with high probability, Ω̃

(k)
z is centered at the MMSE estimate of zk. The slicing of zk in

integer set [28] is used for computational complexity reduction.

Considering z′ = c · z + v, where v = (1/2) · T−1 · [1, 1, . . . , 1]T2Nt×1 is the displacement vector and c

is the QAM power normalization constant (e.g.,
√
2/2 for QPSK and

√
170/2 for 256-QAM), it is clear

that z′ ∈ Z (the set of integers) [28]. Commonly the possible values of z′k (the kth element of z′) spans

an interval of continuous integers, noted as Θ(k). Like Ω
(k)
z , Θ(k) differs for different k.

Given z’s MMSE estimation

z̄ =

(

H̃H · H̃ +
1

2
σ2 · TH · T

)−1

· H̃H · y, (8)

and ⌊z̄⌉ = round(c · z̄ + v) where round(·) denotes the operation to take nearest integer, the integer

interval Θ(k) can be determined as

Θ(k) =
[

−R+ ⌊z̄⌉k, ⌊z̄⌉k +R
]

, (9)

where ⌊z̄⌉k is the kth element of ⌊z̄⌉ and R is the configurable radius of the interval. The optimal value

of R depends on the post MMSE processing SNR. From simulation we found that a empirical value with

same order of magnitude as the size of X-axis constellation is enough.

The subset of Z-axis constellation used in LRA-BP containing the constellat points with high proba-

bility in Ω
(k)
z , can be derived from Θ(k) as

Ω̃(k)
z

{

zk

∣

∣

∣zk =
1

c
(θ − vk), ∀θ ∈ Θ(k)

}

, (10)

where vk is the kth element of the displacement vector v.

3.2 Message updating

Like MRF-BP, LRA-BP exchanges messages of the probability for Z-axis constellation points in each

edge bidirectionally. Denoting the message from the ith node to the jth node as πi→j(zj), its initial value

is

π
(0)
i→j(zj) =

∣

∣Ω̃(j)
z

∣

∣

−1
. (11)

The message updating rule of LRA-BP for any possible pair of (i, j) can be described as

π
(t)
i→j(zj) = α

∑

zi∈Ω̃
(i)
z







p
(

zj
∣

∣zi,y
)

∏

k∈V (i)\j

π
(t−1)
k→i (zi)







, ∀zj ∈ Ω̃(j)
z

, (12)

where p(zj |zi,y) is the translation function determined by transformed channel H̃ , α is the normalization

coefficient and V (i) \ j denotes all elements in V (i) except j.
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The translation function p(zj|zi,y) is constant during iterations. It can be precomputed before iteration

starts with probability relations as

p
(

zj
∣

∣zi,y
)

=
p
(

y
∣

∣zi, zj
)

p
(

zi, zj
)

p
(

zi,y
) =

p
(

y
∣

∣zi, zj
)

p
(

zj
∣

∣zi
)

p
(

y
∣

∣zi
) . (13)

The Gaussian assumption leads to a conditional MMSE estimator for zj given zi as [11]

y′j|i = h̃T
j K

−1
{j,i}y = aj|i,izi + σ2

j|izj + n′
j|i, (14)

with

K{j,i} =
1

2
σ2I +

∑

k 6=j,i

h̃ktkt
T
k h̃

T
k , (15)

aj|i,i = h̃T
j K

−1
{j,i}h̃i, (16)

n′
j|i = h̃T

j K
−1
{j,i}





∑

k 6=j,i

h̃kzk + n



 , (17)

σ2
j|i = E

∣

∣

∣n′
j|i

∣

∣

∣

2

= h̃T
j K

−1
{j,i}h̃j , (18)

where cj|i is MMSE filtering vector, K{j,i} is the correlation matrix, tk is the kth row of T−1, n′
j|i is

inter-stream interference and residual noise and σ2
j|i is the power of n′

j|i.

With (14), Eq. (13) can be rewritten as

p
(

zj
∣

∣zi,y
)

= p
(

zj
∣

∣zi, y
′
j|i

)

, (19)

then the translation function p(zj|zi,y) can be obtained with following theorem.

Theorem 1.

p
(

zj
∣

∣zi,y
)

=

√

β

2π
edi→j(zj), (20)

where

β = σ2
j|i + σ−2

j , (21)

di→j(zj) = −(βzj − y′j|i + aj|i,izi)
2/(2β). (22)

Proof. With Gaussian assumption, and considering ρ is relative small, Eq. (13) can be rewritten as

p
(

zj
∣

∣zi,y
)

= p
(

zj
∣

∣zi, y
′
j|i

)

=
p
(

y′j|i
∣

∣zi, zj
)

p
(

zj
∣

∣zi
)

p
(

y′j|i
∣

∣zi
) , (23)

where

p
(

y′j|i
∣

∣zi, zj
)

= N
(

y′j|i; aj|i,izi + σ2
j|izj , σ

2
j|i

)

, (24)

p
(

zj
∣

∣zi
)

≈ p
(

zj
)

= N (zj ; 0, σ
2
j ), (25)

p
(

y′j|i
∣

∣zi
)

= N
(

y′j|i; aj|i,izi, σ
2
j|i + σ4

j|iσ
2
j

)

. (26)

With the properties of Gaussian PDF [11,12, 29] as follows:

N
(

x;µ, σ2
)

= N
(

µ;x, σ2
)

= N
(

x− µ; 0, σ2
)

, (27)

N
(

ax+ b;µ, σ2
)

= N
(

x;
µ− b

a
,
σ2

|a|2
)

, (28)

N
(

x;µ1, σ
2
1

)

· N
(

x;µ2, σ
2
2

)

= N
(

x;
σ−2
1 µ1 + σ−2

2 µ2

σ−2
1 + σ−2

2

,
1

σ−2
1 + σ−2

2

)

· N
(

µ1;µ2, σ
2
1 + σ2

2

)

, (29)

we have
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p
(

zj
∣

∣zi, y
′
j|i

)

=
N
(

y′j|i; aj|i,izi + σ2
j|izj, σ

2
j|i

)

· N
(

zj ; 0, σ
2
j

)

N
(

y′j|i; aj|i,izi, σ
2
j|i + σ4

j|iσ
2
j

)

(27)(28)
=====

N
(

zj ;σ
−2
j|i · (y′j|i − aj|i,izi), σ

−2
j|i

)

· N
(

zj; 0, σ
2
j

)

N
(

y′j|i; aj|i,izi, σ
2
j|i + σ4

j|iσ
2
j

)

(29)
=====

N
(

zj ;
y′
j|i−aj|i,izi

σ2
j|i

+σ−2
j

, 1
σ2
j|i

+σ−2
j

)

· N
(

σ−2
j|i · (y′j|i − aj|i,izi); 0, σ

−2
j|i + σ2

j

)

N
(

y′j|i; aj|i,izi, σ
2
j|i + σ4

j|iσ
2
j

)

(28)
===== N

(

zj ; (y
′
j|i − aj|i,izi)/(σ

2
j|i + σ−2

j ), 1/(σ2
j|i + σ−2

j )
)

(21)
===== N

(

zj ; (y
′
j|i − aj|i,izi)/β, 1/β

)

(28)
===== N

(

βzj ; (y
′
j|i − aj|i,izi), β

)

. (30)

Remark 1. If T = I and σ2
j = 0.5, LRA-BP’s message updating rule (12) and (19) is identical to MRF-

BP’s message updating rule (6) and (7). So MRF-BP is a special case of LRA-BP if lattice reduction is

not conducted.

3.3 Log-likelihood ratio generation

After T iterations of message updating rule (12), the probability of the jth Z-axis symbol zj is given by

P (zj) =
∏

k∈V (j)

π
(T )
k→j(zj). (31)

The probability of Z-axis constellation points should be converted back to X-axis for LLR generation.

Similar to the determination of Ω
(k)
z , it is with prohibitively high complexity to exactly convert P (zj) to

P (xj) since all possible x should be visited.

An approximation solution can be obtained based on Gaussian assumption on zj and xj for j ∈ [1, 2Nt].

Denoting µ
(z)
j as the mean of zj and µ

(x)
j as the mean of xj , we have









µ
(x)
1

...

µ
(x)
2Nt









= T ×









µ
(z)
1

...

µ
(z)
2Nt









, (32)

where

µ
(z)
j = E

(

zj
)

=
∑

zj∈Ω̃
(j)
z

P (zj)zj .

Similarly ν
(z)
j and ν

(x)
j , the covariance of zj and xj , is connected with









ν
(x)
1

...

ν
(x)
2Nt









=
(

T ◦ T
)

×









ν
(z)
1

...

ν
(z)
2Nt









, (33)

where ν
(z)
j = E(|zj − µ

(z)
j |2) and T ◦ T stands for Hadamard product of T .

With µ
(x)
j and ν

(x)
j , the probability of the jth X-axis symbol xj can be obtained as

P (xj) = λ · N
(

xj ;µ
(x)
j , ν

(x)
j

)

, (34)

where λ is normalization coefficient for
∑

xj∈Ωx

P (xj) = 1. Then Eq. (3) can be used to generate LLR.
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3.4 Application of log-domain arithmetic

The translation function p(zj |zi,y) in (20) requires to compute lots of exponential function. The com-

putation can be avoided using Jacobian logarithm [30].

By transforming the messages between nodes from the probability of constellation points (noted as

πi→j(zj)) to the log probability (noted as mi→j(zj)), where

mi→j(zj) = log
(

πi→j(zj)
)

, (35)

and applying (20) to (12), the message updating rule can be rewritten as

em
(t)
i→j

(zj) = α
∑

zi∈Ω̃
(i)
z







p
(

zj
∣

∣zi,y
)

∏

k∈V (i)\j

π
(t−1)
k→i (zi)







= α
∑

zi∈Ω̃
(i)
z







√

β

2π
edi→j(zj)

∏

k∈V (i)\j

em
(t−1)
k→i

(zi)







= α

√

β

2π

∑

zi∈Ω̃
(i)
z

exp







di→j(zj) +
∑

k∈V (i)\j

m
(t−1)
k→i (zi)







. (36)

Jacobian logarithm leads to the following approximation:

log(ex + ey) = max
(

x, y
)

+ fc(|x− y|) ≈ max
(

x, y
)

. (37)

Applying (37) to (36) and discarding common constant, we have the message updating rule in log-domain

as

m
(t)
i→j(zj) = argmax

zi∈Ω̃
(i)
z







di→j(zj) +
∑

k∈V (i)\j

m
(t−1)
k→i (zi)







. (38)

Accordingly the message should be initialized as

m
(0)
i→j(zj) = log

(

∣

∣

∣Ω
(j)
z

∣

∣

∣

−1
)

. (39)

At output stage, the log probability of the jth transmitted symbol zj is given by

M(zj) =
∑

k∈V (j)

m
(T )
k→j(zj), (40)

and the probability is obtained with P (zj) = αeM(zj) (α is the normalization coefficient).

With log-domain arithmetic, the complexity for computing exponential function is reduced from

2Nt(2Nt − 1)|Ω(j)
z |2 times to 2Nt|Ω(j)

z | times. Also the multiplications in (12) are converted into ad-

ditions in (38). The overall complexity of LRA-BP reduces significantly.

3.5 Summary of LRA-BP

LRA-BP is summarized as Algorithm 1 shown. If lattice reduction is not conducted, i.e., T = I and

σ2
j = 0.5, LRA-BP rollbacks to a log-domain implementation of MRF-BP. Log-domain MRF-BP is with

much lower complexity than origianl MRF-BP since it converts the multiplications into additions and

requries less exponential function.
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Algorithm 1 LRA-BP

Initialization:

1: m
(0)
i→j(zj) = log(|Ω

(j)
z |−1) for j = 1, 2, . . . , 2Nt.

Pre-processing:

2: K{j,i} = 1
2
σ2I +

∑

k 6=j,i h̃ktkt
T
k
h̃T
k
; y′

j|i
= h̃T

j K
−1
{j,i}

y; aj|i,i = h̃T
j K

−1
{j,i}

h̃i; σ
2
j|i

= h̃T
j K

−1
{j,i}

h̃j .

3: p
(

zj
∣

∣zi,y
)

=
√

β

2π
edi→j(zj), β = σ2

j|i
+ σ−2

j , di→j(zj) = −(βzj − y′
j|i

+ aj|i,izi)
2/(2β).

Iteration: For all possible (i, j) pairs repeat message updating as

4: for t = 1, 2, . . . , T and ∀zj ∈ Ω̃
(j)
z do

5: m
(t)
i→j(zj) = argmax

zi∈Ω̃
(i)
z

{

di→j(zj) +
∑

k∈V (i)\j m
(t−1)
k→i

(zi)
}

.

6: end for

Output:

7: M(zj) =
∑

k∈V (j) m
(T )
k→j

(zj), ∀zj ∈ Ω̃
(j)
z .

8: P (zj) = αeM(zj).
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Figure 3 Comparison of receiver performance: 12 × 12, Rayleigh channel.

4 Simulation results

In this section, the performance of LRA-BP is compared with classical MMSE and MRF-BP.

The performance is measured in terms of packer error rate (PER). To verify the convergence of it-

eration, high-order modulation (256-QAM according to [25]) is used. The size of regular real-domain

constellation for 256-QAM (|Ωx|) is 16. As described in Section 3, the size of Z-axis constellation

(|Ω̃(k)
z |) is configurable. In simulation, we use an interval with radius R = 4 then |Ω̃(k)

z | = 9. For channel

coding, we use 3GPP LTE Turbo code of rate 3/4 and length 3392 along with 3GPP LTE rate matching

(interleaver) [31].

Simulation is conducted by means of Monte Carlo simulations with independent identically distributed

(i.i.d.) Rayleigh channel and the 3D channel model proposed by 3GPP [18].

4.1 Results for Rayleigh channel

Rayleigh channel is widely used in performance evaluation for massive MIMO when Nr and Nt are both

large. Considered the number of supportable spatial streams in massive MIMO is limited by channel

estimation, and the number of 5G pilot sequences is 12, we choose Nr = Nt = 12. According to [11]’s

suggestion, the iteration number of MRF-BP is 5. LRA-BP adopts same iteration number as MRF-BP

in this simulation. Figure 3 shows that LRA-BP (5 iterations) outperforms classical MMSE and classical

MRF-BP (5 iterations) with 10 dB and 2 dB in terms of required signal-to-noise ratio (SNR) for 1%

PER in 12× 12 Rayleigh channel. The performance gain over MRF-BP reveals that LRA-BP effectively

combines the advantage of lattice reduction and belief propagation.
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Figure 4 Comparison of iteration number: 32× 4, 3GPP 3D channel, SU.

4.2 Results for 3GPP 3D channel

For more practical massive MIMO scenario, where Nr ≫ Nt, 3GPP 3D channel model is used to evaluate

LRA-BP performance in uplink transmission. 3GPP 3D channel model defines a series of deployment

scenario. We use urban macro non-light-of-sight scenario (3D-UMa NLOS) in simulation. In 3GPP 3D

channel model, a 2D planar antenna array is defined. There are Nr = M ×N × P antenna elements in

the 2D planar array, where N is the number of columns, M is the number of antenna elements with the

same polarization in each column and P is the number of polarization. Antenna elements are uniformly

placed (0.5λ) in both vertical and horizontal direction.

We use cross-polarized antenna element (P = 2). Considered practical issues like form factor limitation

and easy to install, Ref. [18] suggests M ≫ N and N = 1 (single-column array) or N = 2 (dual-column

array). Accordingly, we choose the value of M to be 16 or 8 to make Nr = 32. With these antenna

configurations, the generated channel is spatially correlated. Since most of scatterers is close to the

ground, single-column 2D planar antenna array leads to higher channel correlation than dual-column

array.

In 3GPP 3D channels, linear receivers like MMSE cannot obtain optimal performance as shown in [32]

and non-linear receivers like LRA-BP show their performance advantage.

Both single-user MIMO (SU-MIMO) and multiuser MIMO (MU-MIMO) are evaluated.

Iteration number of LRA-BP. As Figure 4 shown, LRA-BP converges with 2 iterations. The first

iteration of LRA-BP obtains higher slope in PER curve than MMSE, but suffers SNR loss. This is due

to the impact of a known SNR loss phenomenon associated with the symbol slicing consequent to lattice

reduction [33]. The second iteration of LRA-BP compensates the SNR loss effectively. No more iteration

is necessary. So the following simulations adopt 2 iterations for LRA-BP.

Single-user MIMO. In SU-MIMO, a user equipment (UE) with Nt = 4 antennas transmits data to

base station with 2D planar antenna array described above. Then a 32× 4 MIMO system is established.

Figure 5 shows that LRA-BP outperforms MMSE and MRF-BP with 10 dB (single-column array) and

7 dB (dual-column array) in terms of required SNR for 1% PER in SU-MIMO.

We also found that MRF-BP loses its performance advantage to MMSE in 3GPP 3D channel model.

It is due to the degradation of MRF-BP’s message updating in spatially correlated channel. Lattice

reduction restores the orthogonality between columns of channel coefficients matrix H and compensates

the degradation of MRF-BP’s message updating. It boosts LRA-BP’s performance in spatially correlated

channel.

Since MMSE gets better performance when channel correlation decreases, LRA-BP’s performance gain

over MMSE reduces when switching from single-column antenna array to dual-column array. As Figure 5

shown, LRA-BP’s gain over MMSE differs 3 dB for different antenna arrays.

Multiuser MIMO. In MU-MIMO, two UEs (each with Nt = 2 antennas) transmit data to base
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Figure 5 Comparison of receiver performance: 32× 4, 3GPP 3D channel, SU-MIMO. (a) Nr = 32 (M = 16, N = 1, P =

2), Nt = 4; (b) Nr = 32 (M = 8, N = 2, P = 2), Nt = 4.
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Figure 6 Comparison of receiver performance: 32 × 4, 3GPP 3D channel, MU-MIMO (two uplink 2-antenna UEs).

(a) Nr = 32 (M = 16, N = 1, P = 2), Nt = 4; (b) Nr = 32 (M = 8, N = 2, P = 2), Nt = 4.

station and a 32 × 4 virtual-MIMO system is established. Figure 6 shows that LRA-BP outperforms

MMSE and MRF-BP with 6 dB (single-column array) and 3 dB (dual-column array) in terms of required

SNR for 1% PER in MU-MIMO.

In MU-MIMO, it is seldom for two UEs to locate closely. The channel correlation for MU-MIMO is

lower than SU-MIMO. Consequently MMSE has better performance in MU-MIMO than SU-MIMO. Like

comparing single-column antenna array to dual-column array, LRA-BP’s performance gain over MMSE

reduces 4 dB when switching from SU-MIMO to MU-MIMO, as Figures 5 and 6 shown. But even in

a good channel (dual-column antenna array and MU-MIMO), LRA-BP still outperforms MMSE and

MRF-BP with 3 dB.

5 Complexity analysis

In this section we compare the computational complexity of LRA-BP and MRF-BP. Since log-domain

MRF-BP is with much lower complexity than origianl MRF-BP, we compare LRA-BP with log-domain

MRF-BP at first.

The major computational complexity in common to both LRA-BP and MRF-BP includes the iteration

in (38) and the translation function p(zj|zi,y) in (20). For the translation function, its complexity
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Table 1 General computational complexity (in terms of equivalent additions)

Log-domain MRF-BP LRA-BP

Iteration (38) 2TNt(2Nt − 1)2
∣

∣Ω
∣

∣

2

Translation function (20) 80N2
rNt

LLL reduction 0 24N2
rNt

In total 2TNt(2Nt − 1)2
∣

∣Ω
∣

∣

2
+ 80N2

rNt 2TNt(2Nt − 1)2
∣

∣Ω
∣

∣

2
+ 104N2

rNt

Table 2 Computational complexity with specific parameters (in terms of equivalent additions)

Rayleigh channel 3GPP 3D channel

Log-domain MRF-BP LRA-BP Log-domain MRF-BP LRA-BP

Nr 12 32

Nt 12 4

T 5 5 2
∣

∣Ω
∣

∣ 16 9 16 9

Complexity 16389120 5321592 829440 489488

is mainly for matrix inversion to get K−1
{j,i}. With Sherman-Morrison formula, its complexity can be

estimated as 16N2
rNt multiplications and 16N2

rNt additions. For ease of comparison, we assumes a

multiplication has same complexity as four additions. Then the complexity for translation function,

which is common for MRF-BP and LRA-BP, is estimated to be 80N2
rNt equivalent additions.

For LRA-BP, extra complexity is required to condcut the LLL reduction algorithm and related process-

ing. The LLL reduction algorithm has dynamic complexity. With our observation, it requires 12N2
rNt

equivalent additions to cover most of channel instances. And we doubles this estimation to cover other ex-

tra lattice reduction required operations in LRA-BP, including the determination of Z-axis constellation

in (8) and LLR generation in (32) and (33).

Table 1 summarizes the computational complexity, where T is the number of iterations and |Ω| is the
size of constellation.

In simulation, we use two sets of parameters, e.g., T and
∣

∣Ω
∣

∣, for Rayleigh channel and 3GPP 3D

channel. The detail parameters and corresponding complexity are summarized in Table 2.

Table 2 shows that LRA-BP requires about 33%–60% computational complexity compared with log-

domain MRF-BP for different MIMO configurations and algorithm parameters. Since log-domain MRF-

BP is with much lower complexity than original MRF-BP, LRA-BP is also with much lower complexity

than MRF-BP.

6 Conclusion

In this paper, lattice reduction aided belief propagation (LRA-BP) is proposed for massive MIMO de-

tection. LRA-BP improves MIMO detection performance in spatially correlated channel by applying

message updating rules from MRF-BP in lattice reduced MIMO system model, and it also benefits in

independent channel. Log-domain arithmetic is used in LRA-BP for computational complexity reduction.

For different massive MIMO configurations, LRA-BP outperforms MRF-BP with 3–10 dB in terms of

required SNR for 1% packet error rate. LRA-BP requires 33%–60% computational complexity compared

with log-domain MRF-BP and consequently much lower complexity compared with MRF-BP.
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