
SCIENCE CHINA
Information Sciences

April 2019, Vol. 62 042202:1–042202:11

https://doi.org/10.1007/s11432-018-9450-8

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .

Graph partitions and the controllability of directed

signed networks

Xianzhu LIU1,2, Zhijian JI1* & Ting HOU3

1Institute of Complexity Science, College of Automation and Electrical Engineering, Qingdao University,
Qingdao 266071, China;

2School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China;
3College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, China

Received 13 February 2018/Accepted 3 May 2018/Published online 1 March 2019

Abstract This paper studies the controllability problem of signed networks which is presented by weighted

and directed signed graphs. Graph partitions such as structural balance and almost equitable partitions

(AEPs) are studied. We generalize the definition of AEPs to any graphs, directed or undirected, signed

or unsigned, with or without edge weights. Based on AEP theory, a graph-theoretic necessary condition is

proposed for the controllability of directed signed networks and an algorithm is given for the computation of

the coarsest partition. Besides, the upper bound on the controllable subspace is derived when the system is

uncontrollable.
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1 Introduction

In recent two decades, the problems of consensus [1–13] and controllability [14–34] for networks have

received significant attention. Tanner [15] first proposed the concept of controllability of networks inter-

connected via nearest neighbor rules. Since then, this problem has been studied by a lot of researchers.

The study of the controllability of the networks mainly focuses on how to choose the appropriate nodes

called leaders which can receive the external inputs so that the system can achieve the desired final state

from any initial state within a finite time. The fundamental and challenging issue is how to quickly select

the minimum number of leaders to make the network system controllable. Based on Kalman’s control-

lability rank condition or Popov-Belevitch-Hautus (PBH) test, some necessary and sufficient algebraic

conditions are obtained [15, 16]. To avoid a large amount of complicated computation relating to these

algebraic conditions, the approach based on the graph theory deserves special attention [15]. Tanner [15]

studied the relationship between connectivity and controllability, and concluded that connectivity seems

to have an adverse effect on controllability. Ji et al. concluded that the star graph is uncontrollable for

any choice of one single leader [19], and gave the concept of a destructive node [30]. Refs. [20,32] investi-

gated the controllability of path and cycle graphs. However, how to completely identify the relationship

between the controllability and topological structures is still an open problem. Graph partitions play

an important role in graphical characterization of controllability of the network [17, 35–40]. By using

equitable partition, some necessary conditions were presented for the controllability of networks in the
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sense of graph theory [17,35]. Under the undirected graph, Egerstedt et al. [36,37] proposed the concept

of external equitable partitions (EEPs) and gave a necessary condition for the controllability. Ref. [38]

provided the definition of relaxed equitable partitions (REPs) and gave a necessary and sufficient con-

dition for the controllability of a single leader network which is actually wrong [41]. Both EEPs and

REPs are actually almost equitable partitions (AEPs). Under directed graph, Aguilar et al. [39] gave

a necessary condition for the controllability of networks by making use of AEPs. With this approach,

some uncontrollable cases can be quickly determined. Furthermore, the upper bound for the controllable

subspace could be achieved [40]. It is noted that the definition of AEPs above is characterized by the

fact that every vertex in the same cell has the same number of neighbors as in other cells.

It is also noted that the interactions of the networks studied above are cooperative. However, antag-

onistic interactions may exist in reality. Just like in nature, some animals are cooperative while some

are hostile. Similarly, in society, some companies cooperate while some compete with each other. This

is similar to the significance of the signed graph in which the weights of its edges may be equal to 1 or

−1 [42]. The positive weighted edge represents the cooperative interaction while the negative weighted

edge represents the antagonistic interaction. In this paper, the weights of the signed graph may be

positive or negative numbers. The Laplacian of signed graph is different from that of unsigned graph,

e.g., its row/column sum does not need to be zero and it can be positive definite. In [43], the authors

studied the controllability problem of multi-agent networks under undirected signed graphs and a nec-

essary condition was proposed for signed graphs’ controllability using the so-called generalized almost

equitable partition (GAEP). However, based on the number of positive and negative neighbors, Ref. [43]

cannot give the sufficient condition for a GAEP of a graph. Therefore the definition of GAEP should be

extended to handle more cases. Furthermore, the relationship between two individuals in reality will be

more complicated. For instance, in nature, lions could attack the antelope, but not vice versa. The threat

of a lion to the antelope may be greater than that of a hyena. In general, a directed graph is much more

complicated than an undirected graph. The adjacency matrix and the Laplace matrix of the undirected

graph are symmetric matrices, and the adjacency matrix and Laplacian matrix of the directed graph are

not symmetric matrices. Hence the adjacency matrix and the Laplacian matrix of the directed graph

will lose some good nature. In the paper, we attempt to investigate the graph partitions and provide a

general definition of AEPs. The contribution of this work is threefold. First, a general definition of AEPs

is introduced and then a necessary condition for the controllability is presented. Second, we addressed

that the controllability of the structurally balanced graph is equivalent to that of the associated unsigned

graph. Third, the coarsest AEP and its algorithm are presented. Besides, the upper bound for the

controllable subspace is given.

The rest of this paper is organized as follows. In Section 2, some preliminaries are provided and

the controllability problem of signed networks is formulated. In Section 3, graph partitions including

structural balance and AEP are introduced. In Section 4, the controllability of weighted and directed

signed networks is presented and several examples are provided to illustrate the main results. Finally,

the conclusion is given in Section 5.

2 Preliminaries and problem formulation

Throughout this paper, ei is the identity vector whose i-th element is 1 while the other elements are

0. Given two sets X and Y , X\Y is the set whose elements belong to X but not to Y . For a matrix

M ∈ R
n×n, the column space of a matrix M is denoted by im(M) and |M | can be represented as a matrix

where [|M |]ij = |[M ]ij |.

2.1 Signed graphs

A signed digraph is denoted by G = (V , E , A), where V = {1, . . . , n} and E ⊆ V × V represent the

vertex set and the edge set, respectively. A = [aij ]n is the adjacency matrix of G. aij 6= 0 represents

(j, i) ∈ E , where j is called the parent vertex of i and i the child of j. If the edge points at i from j, j
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is called the parent vertex while i is called the child vertex and we say j is a neighbor of i. We assume

that there are no self-loops, i.e., aii = 0. A directed path in a signed digraph G is a sequence i1, . . . , ik
of distinct vertices with (is, is+1) ∈ E , for s = 1, . . . , k − 1 and a weak path, with either (is, is+1) or

(is+1, is) ∈ E . A digraph G is strongly connected if there is a directed path that starts from i and ends

at j between every pair of distinct vertices i, j in G, and is weakly connected if any two vertices can be

jointed by a weak path. A cycle in a graph G is a sequence {v1, . . . , vr} of r distinct vertices, r > 1, such

that (v1, v2), . . . , (vr−1, vr), (vr , v1) ∈ E . A weak cycle is a sequence {v1, . . . , vr} of r distinct vertices,

r > 1, such that (vi, vi+1), or (vi+1, vi) ∈ E , i = 1, . . . , r, where vr+1 = v1. A positive cycle of a signed

graph is a cycle in which the number of negative edges is even. A negative cycle is not positive [42].

The graph is said an unsigned graph if aij > 0 for all i and j. The neighbor set of i is denoted by

Ni = {j ∈ V : (j, i) ∈ E , j 6= i}. The indegree of the vertex i can be denoted by ci =
∑

j∈Ni
|aij |. The

indegree matrix of a graph G is a diagonal matrix C = diag(c1, . . . , cn). The Laplacian matrix L of a

graph G can be defined as L = C −A. Thus, the entries of the matrix L can be written as

lij =

{

ci, i = j,

− aij , i 6= j.

2.2 Invariant subspace and linear controllability

Definition 1 ([44]). Given M : X → X and a subspace W of X, we say that W is M -invariant (or, if

the map M is supposed to be obvious, simply invariant) if for all x ∈ W we have Mx ∈ W, which can be

written as MW ⊂ W.

Lemma 1 ([45]). For matrices M ∈ R
n×n and P ∈ R

n×r, im(P ) is an M -invariant subspace if and

only if there exists a matrix Q ∈ R
r×r such that MP = PQ.

Lemma 2 ( [44]). Given matrices A ∈ R
n×n and B ∈ R

n×r, we use 〈A,B〉 to denote the smallest

A-invariant subspace containing im(B). The pair (A,B) is called controllable if dim(〈A,B〉) = n.

2.3 Problem formulation

Consider a network described by the signed digraph G. Let xi denote the state of node i, whose dynamics

is described by the protocol

ẋi = −
∑

i∈Ni

(|aij |xi − aijxj), i = 1, . . . , n. (1)

For simplicity, only one dimensional case is considered. The compact dynamics can be written as

ẋ(t) = −Lx(t), where x is the vector of the states and L is the Laplacian of G. Let Vl = {i1, . . . , im} be

the set of leaders controlled by external inputs. Then the dynamical system is

ẋ(t) = −Lx(t) +Bu(t), (2)

where B = [ei1 , ei2 , . . . , eim ] is the control input matrix, and u(t) ∈ R
m is the input vector.

By Kalman’s controllability rank condition [46], system (2) is controllable if and only if the n × nm

controllability matrix Q = [B,LB, . . . , Ln−1B] has full row rank, that is, rank(Q) = n. The controllable

subspace of system (2) is 〈L,B〉 := im(Q).

Lemma 3 ([44]). The following statements are equivalent:

(i) The system (2) is controllable;

(ii) 〈L,B〉 = R
n;

(iii) rank(Q) = n.

3 Graph partitions

The vertices V of G can be partitioned into several subsets with specific properties.
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Figure 1 (Color online) π: C1 = {1}, C2 = {2, 3}, C3 = {4}, C4 = {5}. The solid and dashed lines represent the positive

and negative edges, respectively.

Definition 2. A partition π of V is to partition V into r cells C1, C2, . . . , Cr, where r > 1 and Ci ⊂ V ,

V = ∪r
i=1Ci, Ci ∩ Cj = ∅, i 6= j. Ci is nontrivial if 1 < |Ci| < n, otherwise, it is trivial. The partition π

is nontrivial if it contains at least one nontrivial cell, otherwise it is trivial.

Definition 3. Let π1, π2 be two partitions of the same V . Then we say that π1 is coarser than π2 if

each cell in π1 is a union of cells in π2.

Definition 4 ( [45]). A characteristic matrix P ∈ R
n×r of a partition π of V is a matrix with the

characteristic vectors of the cells as its columns. The entries of the matrix P are

pij =

{

1, if i ∈ Cj ,

0, otherwise.

For example, the characteristic matrix of the partition of the graph in Figure 1 is given by

P =



















1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















.

It is clear that

PTP =















|C1|

|C2|
. . .

|Cr|















.

Because each cell at least has one node, PTP is nonsingular.

3.1 Almost equitable partitions

Unlike the case of unsigned graphs, L of signed graphs can be positive definite and its row/column sum

does not need to be zero. Therefore, the definition of AEPs in unsigned graphs cannot be directly applied

to the signed graphs. For example, according to the definition of AEPs of [39], in Figure 2, π: C1 = {1, 2},

C2 = {3, 4, 5}, is an AEP. In Figure 3, π satisfies this definition but π does not satisfy Theorem 2 of [39].

Therefore, we need to investigate the definition of AEPs in signed graphs.
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Figure 2 (Color online) A weighted directed unsigned

graph.

Figure 3 (Color online) A weighted directed signed

graph.

Definition 5. Suppose that G = (V , E) is a weighted and directed signed graph and L is its Laplacian.

A partition π of V , {C1, C2, . . . , Cr} is said to be an AEP if for all s, t ∈ Ci, i, j = 1, . . . , r, the following

equality holds:
∑

k∈Cj

lsk =
∑

k∈Cj

ltk. (3)

Remark 1. This definition is a mathematical definition which can be applicable to any graphs, directed

or undirected, signed or unsigned, with or without edge weights.

Definition 6. The directed graph with the r cells of π as its vertices and αij :=
∑

k∈Cj
lsk, s ∈ Ci arcs

from the j-th to the i-th cell of π is called the quotient of G over π, which is denoted by G/π. Let Aπ and

Lπ denote the adjacency and Laplacian matrix of G/π, respectively. Then, the entries of the adjacency

matrix of this quotient are given by A(G/π) = αij .

Theorem 1. Let G be a signed graph, L its Laplacian, π = {C1, . . . , Cr} a partition of V , and P the

characteristic matrix of π. Then π is an AEP if and only if there is a matrix Q ∈ R
r×r such that

LP = PQ,

Q = P+LP , where P+ = (PTP )−1PT is the pseudo-inverse of P . If π is an AEP then Q is the Laplacian

Lπ of G/π.

Proof. Given a graph G, π is a partition of V , and P is the characteristic matrix of π. Then

LP =















∑

l1jpj1
∑

l1jpj2 · · ·
∑

l1jpjr
∑

l2jpj1
∑

l2jpj2 · · ·
∑

l2jpjr
...

...
...

∑

lnjpj1
∑

lnjpj2 · · ·
∑

lnjpjr















=















∑

j∈C1
l1j

∑

j∈C2
l1j · · ·

∑

j∈Cr
l1j

∑

j∈C1
l2j

∑

j∈C2
l2j · · ·

∑

j∈Cr
l2j

...
...

...
∑

j∈C1
lnj

∑

j∈C2
lnj · · ·

∑

j∈Cr
lnj















.

Suppose that a matrix Q ∈ R
r×r is

Q =















q11 q12 · · · q1r

q21 q22 · · · q2r
...

...
...

qr1 qr2 · · · qrr















.
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Figure 4 (Color online) π: C1 = {1}, C2 = {2, 3, 4}, C3 = {5, 6, 7}. The solid and dashed lines represent the positive

and negative edges, respectively.

Then

PQ =















qr11 qr12 · · · qr1r

qr21 qr22 · · · qr2r
...

...
...

qrn1 qrn2 · · · qrnr















,

where ri indicates that i belongs to the cell Cri . If s, t ∈ Ci, then

(PQ)sj = (PQ)tj .

(Sufficiency) If LP = PQ, then (LP )sj = (LP )tj , for s, t ∈ Ci. It follows that

∑

k∈Cj

lsk =
∑

k∈Cj

ltk,

that is to say, π is an AEP.

(Necessity) If π is an AEP, then (3) is satisfied. Let Q = Lπ. Then LP = PQ.

Remark 2. Because the definition of GAEP in [43] only uses the number of positive and negative

neighbors, it can neither be extended to the weight graph nor make the necessary and sufficient conditions

for the Lemma 2 of [43] to be obtained. The AEP here is not the same as the GAEP. In fact, the definition

of AEP in the paper is more general than that of GAEP in [43]. A GAEP must be an AEP but not vice

versa. For instance, the graph in Figure 4, π: C1 = {1}, C2 = {2, 3, 4}, C3 = {5, 6, 7} is an AEP but not

a GAEP.

3.2 Structural balance

Definition 7 ([42]). A signed graph G = (V , E , A) is said to be structurally balanced if its vertices set

can be partitioned into two disjoint subsets, such that aij > 0 for two vertices in the same subset, and

aij 6 0 for two vertices in different subsets. It is said structurally unbalanced otherwise.

Remark 3. For a structurally balanced signed graph, one of the two subsets may be empty. For

example, a connected unsigned graph is structurally balanced, however, it contains only positive edges.

Another definition utilizes the positive cycles (for undirected graph) or positive weak cycles (for digraph).

In fact, for a signed digraph, it is structurally balanced if and only if all of its weak cycles are positive [42].

In Figure 5, the two graphs are structurally balanced. In Figure 6, the two graphs are structurally

unbalanced. Lemma 4 would be used.
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Figure 5 Two structurally balanced signed graphs. The dashed lines denote the negative weighted edges.

1 1

2 23 3

Figure 6 Two structurally unbalanced signed graphs. The dashed lines denote the negative weighted edges.

Lemma 4. A signed digraph G is structurally balanced if and only if ∃ D = diag(σ1, . . . , σn), σi ∈ {±1}

such that DAD has all nonnegative entries.

Proof. (Necessity) Suppose that G is structurally balanced. Then its vertices set can be partitioned

into two disjoint subsets V1 and V2, such that aij > 0 for two vertices in the same subset, and aij 6 0

for two vertices in different subsets.

Let D = diag(σ1, . . . , σn), σi = 1 when i ∈ V1, otherwise, σi = −1. Let Ā = DAD. Then [Ā]ij =

σiσjaij .

For ∀vi, vj ∈ Vp, p ∈ {1, 2}, aij > 0, thus σiσj = 1. Therefore [Ā]ij = σiσjaij > 0.

For ∀vi ∈ Vq, ∀vj ∈ Vr, q 6= r, q, r ∈ {1, 2}, aij 6 0, thus σiσj = −1. Therefore [Ā]ij = σiσjaij > 0.

Subsequently, DAD has all nonnegative entries.

(Sufficiency) Suppose that there exists D such that DAD has all nonnegative entries. If σi = 1 then

let vi ∈ V1. Similarly, if σi = −1 then let vi ∈ V2. Assume that Ā = DAD. It follows that A = DĀD

and aij = σiσj [Ā]ij , where [Ā]ij > 0. For ∀vi, vj ∈ Vp, p ∈ {1, 2}, it is easily seen that σiσj = 1.

Consequently, aij > 0. Similarly, for vi ∈ Vq, vj ∈ Vr, q 6= r, q, r ∈ {1, 2}, we obtain σiσj = −1. Thus

aij = σiσj [Ā]ij 6 0. Therefore, G is structurally balanced.

4 Controllability of directed signed networks

According to Lemma 4, if a signed digraph G = (V , E , A) is structurally balanced then ∃ D = diag(σ1, . . . ,

σn), σi ∈ {±1} such that DAD has all nonnegative entries. By the proof of Lemma 4, DAD = |A|.

That is to say, GU (V , E , |A|) is an unsigned graph which is called the corresponding unsigned graph of

G = (V , E , A). Let L̄ denote the Laplacian matrix of GU . We take into account the controllability of

(L,B) and that of (L̄, B). In Theorem 3 of [43], the controllability of (L,B) is equivalent to that of

(L̄, B), however, the leaders need to be chosen from the same subset, i.e., Vl ⊂ V1 or Vl ⊂ V2, where

V1 and V2 are two disjoint subsets of V of G, such that aij > 0 for two vertices in the same subset, and

aij 6 0 for two vertices in the different subsets. In this paper, this premise is removed and the improved

result is provided by Theorem 2.

Theorem 2. Suppose that the signed graph G = (V , E , A) is structurally balanced and its corresponding

unsigned graph is GU = (V , E , |A|). Then the controllability of G under leaders Vl is equivalent to that of

GU under leaders Vl.
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Figure 7 (Color online) π: C1 = {1}, C2 = {2, 3}, C3 = {4}, C4 = {5}.

Proof. The controllability matrix of (L,B) is Q1 = [B,LB, . . . , Ln−1B] and the controllability matrix

of (L̄, B) is

Q2 = [B, L̄B, . . . , L̄n−1B] = [B,DLDB, . . . , DLn−1DB] = D[DB,LDB, . . . , Ln−1DB],

where D is a nonsingular diagonal matrix and B = [ei1 , ei2 , . . . , eim ]. Hence, the rank of Q1 is equal to

that of Q2, and im(B) is equal to im(DB). Thus, the controllability of (L,B) is equivalent to that of

(L,DB). Therefore, the controllability of (L,B) is equivalent to that of (L̄, B). The trivial cells of a

nontrivial AEP play an important role in the study of the controllability of the weighed signed digraph.

Definition 8. Suppose that π = {C1, . . . , Cr} is a nontrivial AEP and all its trivial cells areCr1 , . . . , Crm .

If the leaders set Vl satisfies that Vl ⊆ ∪m
k=1Crk , then π is said to be a nontrivial AEP under leaders Vl.

If π is a nontrivial AEP under leaders Vl and π is coarser than any other nontrivial AEP under leaders

Vl, then π is the coarsest AEP under leaders Vl.

Inspired by [43], an algorithm to compute the coarsest AEP under leaders Vl for a given signed network

is proposed. The algorithm is described as follows.

(1) Let π0 = {i1, . . . , im, Vf} be the initial partition.

(2) Relabel the cells in the current partition: C1, . . . , Cr, Cf . If Cf is a nontrivial cell, for every node

s of Cf , compute qsj =
∑

k∈Cj
lsk, j = 1, . . . , r, f . Suppose that there exists a node t such that qsj = qtj .

Then let s and t group into one cell. Replace the old cell with the newly created cells.

(3) Repeat step (2) until no cell can be split.

Lemma 5. For a signed digraph G, the partition obtained via steps (1)–(3) is the coarsest AEP under

leaders Vl.

Proof. The proof is similar to that of Theorem 2 of [43], and hence is omitted. The following result

characterizes the relationship between the controllability and the AEP.

Theorem 3. Let G be a signed digraph and suppose that π = {C1, . . . , Cr} is a nontrivial AEP under

leaders Vl and P is the characteristic matrix of π. Then

(i) The system is uncontrollable;

(ii) 〈L,B〉 ⊆ im(P );

(iii) dim〈L,B〉 6 r.

Proof. Because π = {C1, . . . , Cr} is an AEP of V and P is the characteristic matrix of π, according to

Theorem 1 and Lemma 1, im(P ) is L-invariant. Because π is a nontrivial AEP, r < n. If π is a nontrivial

AEP under leaders Vl, then im(B) ⊆ im(P ). Therefore, 〈L,B〉 ⊆ im(P ) and dim〈L,B〉 6 r. According

to Lemma 3, the system is uncontrollable.

Example 1. Consider the signed digraph shown in Figure 7. π = ({1}, {2, 3}, {4}, {5}) is a nontrivial

AEP. Each of cells: {1}, {4} and {5} is a trivial cell. By Theorem 3, if leaders belong to the set {1,4,5},

the system would be uncontrollable. For instance, if nodes 1,4,5 are taken as the leaders, the system is

uncontrollable.
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In this case, the Laplacian matrix L and the input matrix B can be written as follows:

L =



















6 3 3 0 0

−1 1 0 0 0

−1 0 1 0 0

0 2 2 6 −2

0 0 0 −1 1



















, B =



















1 0 0

0 0 0

0 0 0

0 1 0

0 0 1



















.

The rank of the controllability matrix is 4. Thus, the system is uncontrollable. If nodes 4 and 5 are

taken as leaders, the Laplacian matrix L and the input matrix B can be written as follows:

L =



















6 3 3 0 0

−1 1 0 0 0

−1 0 1 0 0

0 2 2 6 −2

0 0 0 −1 1



















, B =



















0 0

0 0

0 0

1 0

0 1



















.

The rank of the controllability matrix is 2. Thus, the system is uncontrollable.

Theorem 3 provides an upper bound on the controllable subspace if there exists a nontrivial AEP under

leaders Vl. In the following we utilize the coarsest AEP under leaders Vl to get a tighter upper bound.

Theorem 4. Suppose that P̂ is the characteristic matrix of the coarsest AEP under leaders Vl and P

is the characteristic matrix of a nontrivial AEP π under leaders Vl. Then the controllable subspace of

the system (2) satisfies 〈L,B〉 ⊆ im(P̂ ) ⊆ im(P ).

Proof. According to Theorem 3, π = {C1, . . . , Cr} is a nontrivial AEP under leaders Vl and P is the

characteristic matrix of π. Then 〈L,B〉 ⊆ im(P ). Assume that P̂ is the characteristic matrix of the

coarsest AEP under leaders Vl. Then 〈L,B〉 ⊆ im(P̂ ) and im(P̂ ) ⊆ im(P ). Therefore, 〈L,B〉 ⊆ im(P̂ ) ⊆

im(P ).

Example 2. Consider the graph shown in Figure 4. π1 and π2 are two nontrivial AEPs. π1: C1 = {1},

C2 = {2, 3, 4}, C3 = {5, 6, 7}. π2: C1 = {1}, C2 = {2, }, C3 = {3, 4}, C4 = {5, 6}, C5 = {7}. π1 is coarser

than π2. Suppose that P1 and P2 are the characteristic matrices of π1 and π2, respectively.

P1 =





























1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1





























, P2 =





























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1





























.

If node 1 is taken as the leader, according to Theorem 3, the system is uncontrollable. In this case,

the Laplacian matrix L and the input matrix B can be written as follows:

L =





























3 −1 −1 −1 0 0 0

−1 4 0 0 −1 −1 1

−1 0 3 1 0 0 −1

−1 0 1 3 0 0 −1

0 −1 0 0 2 1 0

0 −1 0 0 1 2 0

0 1 −1 −1 0 0 3





























, B =





























1

0

0

0

0

0

0





























.

The rank of the controllability matrix is 3. 〈L,B〉 = im(P1) ⊂ im(P2).
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Remark 4. It is noted that the condition in Theorem 3 is necessary but not sufficient for the con-

trollability. That is to say, if the leaders belong to a nontrivial cell, the controllability of the system is

inconclusive. For the system in Figure 1, node 2 belongs to the nontrivial cell {2, 3}. If node 2 is taken

as the leader, the rank of the controllability matrix is 5, and accordingly the system is controllable. For

the system in Figure 4, if node 3 is taken as the leader, the rank of the controllability matrix is 4. Thus,

the system is uncontrollable. How to get the sufficient and necessary conditions by graph partitions is

still an open question.

5 Conclusion

In this paper, we developed a general definition of AEPs which offers a universal tool to characterize the

controllability of multi-agent systems with arbitrary structures and link weights, including directed and

undirected, weighted and unweighted, signed and unsigned networks. Our approach that transforms the

network controllability problem into a graph problem greatly facilitates computation and offers a graph

theoretic characterization for the controllability of multi-agent systems. We presented preliminary results

for the characterization of the controllability of weighted and directed signed networks by graph partitions.

By quickly ignoring those cases that cannot be controlled, we just need to judge the remaining cases

although the main result is a necessary condition. We also provided the upper bound on the controllable

subspace and addressed that the controllability of the structurally balanced graph is equivalent to that

of the associated unsigned graph.
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