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Abstract We herein investigate the boundary input-to-state stability (ISS) of a class of coupled hyperbolic

partial differential equation-ordinary differential equation (PDE-ODE) systems with respect to the presence

of uncertainties and external disturbances. The boundary feedback control of the proportional type acts on

the ODE part and indirectly affects the hyperbolic PDE dynamics via the boundary input. Using the strict

Lyapunov function, some sufficient conditions in terms of matrix inequalities are obtained for the boundary

ISS of the closed-loop hyperbolic PDE-ODE systems. The feedback control laws are designed by combining

the line search algorithm and polytopic embedding techniques. The effectiveness of the designed boundary

control is assessed by applying it to the system of interconnected continuous stirred tank reactor and a plug

flow reactor through a numerical simulation.
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1 Introduction

Many complex engineering processes are represented by hyperbolic partial differential equations (PDEs)

coupled with ordinary differential equations (ODEs). Typical examples include the hydraulic model in

oil well drilling [1], gas transport model in diesel engines [2,3], freeway traffic model with on-ramp vehicle

dynamics [4–6], the screw extrusion process in three-dimensional printing [7], and chemical reaction of

interconnected continuous stirred tank reactor (CSTR) and plug flow reactor (PFR) [8].

The backstepping method is primarily used to control the coupled hyperbolic PDE-ODE systems.

Recently, a coupled system including a first-order PDE and second-order ODE system is stabilized using

this approach in [9]. The predictor-like feedback control laws are designed in [10] for a diffusion PDE

(the heat equation) coupled with an LTI ODE model in cascade. In [1], an observer was designed

for a class of hyperbolic PDE-ODE cascade systems with the boundary measurement. An infinite-

dimensional backstepping method is constructed in [11] to guarantee that the closed-loop PDE-ODE

system is exponentially stable. Meanwhile, a strict Lyapunov function based method has been used in [2]

to prove that the hyperbolic PDE-ODE system is stable under different time scales. A general framework

of methods for proving the stability is given in [12–14], thus allowing the study of a wide class of nonlinear

systems.
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It is noteworthy that the input-to-state stability (ISS) has been used in newest research pertaining to the

infinite-dimensional systems [15–17]. These studies are parallel to the work of [18] where a linearization

principle is applied for a class of infinite-dimensional systems in a Banach space. In [19], the equivalence

between the hyperbolic systems and integral delay systems has been established, and sufficient conditions

for the ISS are given. For the time-varying hyperbolic PDEs, ISS Lyapunov functions are constructed

in [20]. When focusing on the quantized control of linear hyperbolic PDEs, the work to compute the ISS

Lyapunov functions also has been performed [21]. The ISS properties of communication networks when

operating at some optimal equilibria are studied in [22]. Ref. [23] further derived the ISS bounds for the

one-dimensional parabolic systems in the presence of boundary disturbances.

We herein consider a class of hyperbolic distributed parameter systems interacting with a lumped

parameter system through a dynamic boundary condition, e.g., the CSTR-PFR models in [8]. The first

contribution of this paper is the sufficient matrix inequality conditions for the boundary ISS by means of

designing the strictly ISS-Lyapunov function with the weighting parameters restricted to be positive. The

numerical computing of the inequality conditions is performed by combining the line search algorithm and

the polytopic embedding techniques. Moreover, the proportional boundary control is applied to stabilize

the hyperbolic PFR-CSTR model with the spatial un-uniform equilibria. Theoretical analyses guarantee

the ISS of the coupled hyperbolic PDE-ODE model with respect to the presence of the uncertainty

disturbances.

This paper is organized as follows. In Section 2, we introduce the ISS and ISS-Lyapunov function for a

class of coupled hyperbolic PDE-ODE systems. Our primary result on the sufficient condition for the ISS

is derived in Section 3. Subsequently, in Section 4, the numerical computational conditions are obtained

using the line search algorithm and the polyhedron approximating techniques. Finally, in Section 5, we

present an application to the PFR-CSTR configuration as a coupled hyperbolic PDE-ODE system.

2 Coupled hyperbolic PDE-ODE systems

We herein consider a coupled hyperbolic PDE-ODE system of the form:

∂tξ(x, t) + Λ∂xξ(x, t) = M(x)ξ(x, t) + δ(x, t), (1)

η̇(t) = Aη(t) +Bu(t) + ǫ(t), (2)

with the following boundary and initial conditions:

ξ(0, t) = η(t), (3)

ξ(x, 0) = ξ0(x), (4)

η(0) = η0, (5)

where x ∈ (0, L), t ∈ [0,∞); ξ : [0, L] × [0,+∞) → R
n, and η : [0,+∞) → R

n denote the state

variables for the hyperbolic PDE and the ODE systems, respectively; δ ∈ L2(0, L) and ǫ ∈ R
n are the

bounded disturbances; u(t) ∈ R
n is the input variable acting on the ODE part and indirectly affecting

the boundary of hyperbolic PDEs at x = 0; Λ = diag{λ1, λ2, . . . , λn} > 0, A ∈ R
n×n and B ∈ R

n×m;

M(x) is a continuous matrix whose entries are functions in L∞(0, L); ξ0(x) ∈ L2(0, L) is a given function

and η0 is a constant vector.

We consider the feedback control u(t) for the coupled system (1)–(5) using only the boundary mea-

surement of hyperbolic PDEs at x = L, i.e.,

u(t) = Kξ(L, t), t ∈ [0,∞), (6)

where K ∈ R
m×n. Our control objective is to design the suitable feedback gain K to achieve the

stabilization of the closed-loop system with respect to the presence of the external disturbance (δ, ǫ) ∈

L2(0, L)× R
n.
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Remark 1. The existence and uniqueness of the solution of such a coupled system (1)–(5) with (6)

have been studied in many researches. For instance, according to [24, Theorem A.6], for every (ξ0, η0) ∈

L2(0, L)×R
n, the Cauchy problem (1)–(6) has one and only one solution (ξ, η) ∈ C0([0,∞), L2(0, L)×R

n).

Hereafter, we define the state space X for the system (1)–(5) as the Hilbert space X = L2(0, L)× R
n

equipped with the norm

‖(ξ, η)‖2X = ‖ξ‖2L2(0,L) + |η|2, (7)

for every (ξ, η) ∈ X . Subsequently, we introduce the notion of ISS and the ISS-Lyapunov function for the

coupled hyperbolic PDE-ODE system (1)–(5) considered herein (see for instance [20, Definition 1] given

in the infinite dimensional context).

Definition 1. The coupled hyperbolic PDE-ODE system (1)–(6) is thought to be input-to-state stable

with respect to the disturbance (δ, ǫ), if there exists a class KL function β and a class K function γ such

that, for any initial state (ξ0, η0) ∈ X , the solution (ξ, η) of (1)–(6) satisfies

‖(ξ, η)‖X 6 β(‖(ξ0, η0)‖X) + γ

(

sup
06τ6t

‖(δ(·, τ), ǫ(τ))‖X

)

. (8)

Definition 2. Let V : X × [0,∞) → R be a continuously differentiable function such that

α1(‖(ξ, η)‖X) 6 V (ξ, η, t) 6 α2(‖(ξ, η)‖X), (9)

V̇ (ξ, η, t) 6 −λV (ξ, η, t) + α3(‖(δ, ǫ)‖X), (10)

for all (ξ, η, t) ∈ X× [0,∞), and (δ, ǫ) ∈ X , where α1, α2 are class K∞ functions, α3 is a class K function,

and λ > 0 is a positive real number. Subsequently, the function V is thought to be an ISS-Lyapunov

function for (1)–(5).

When the coupled hyperbolic PDE-ODE system (1)–(5) with (6) admits an ISS-Lyapunov function V

satisfying (9)–(10) of definition 2, the following inequality

‖(ξ, η)‖X 6 α−1
1 (2e−λtα2(‖(ξ0, η0)‖X)) + α−1

1

(

2

λ
sup

06τ6t

α3(‖(δ(·, τ), ǫ(τ))‖X )

)

(11)

holds, for all solutions (ξ, η) ∈ X . Let β(·) = α−1
1 (2e−λtα2(·)), and γ(·) = α−1

1 (2λ−1α3(·)); using

Definition 1 we find that the coupled hyperbolic PDE-ODE system (1)–(6) is input-to-state stable in the

norm X . This inequality (11) provides an estimation of the influence of disturbance (δ, ǫ) on the solutions

of the coupled systems (1)–(5) with the boundary control (6).

3 ISS stability for hyperbolic PDE-ODE systems

In this section, we first present a sufficient condition for the ISS of the coupled hyperbolic system (1)–(5)

using Lyapunov-based techniques. It is solved with the following theorem.

Theorem 1. Consider the coupled hyperbolic PDE-ODE system (1)–(5). If there exist a feedback gain

K ∈ R
m×n, constants µ > 0, κi > 0, and diagonal positive definite matrices Pi > 0, i = 1, 2, such that

[

ATP2 + P2A+ ΛP1 + κ2λP2
In + µP2 P2BK

KTBTP2 −e−µLΛP1

]

6 0, (12)

−µΛP1 +MT(x)P1 + P1M(x) + κ1λP1
In < 0, (13)

where λPi
is the largest eigenvalue of Pi, the coupled system (1)–(5) with the boundary feedback control

(6) is input-to-state stable.
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Proof. We begin the proof by choosing an appropriate ISS-Lyapunov function candidate V : X → R

defined as

V (ξ, η) =

∫ L

0

ξTP1ξe
−µxdx+ ηTP2η. (14)

Computing the time derivative of V along with the solution to (1)–(6) and using the integration by

parts, we obtain

V̇ = −
[

ξTΛP1ξe
−µx

]L

0
+

∫ L

0

ξT[−µΛP1 +MT(x)P1 + P1M(x)]ξe−µxdx

+ηT(ATP2 + P2A)η + 2ξT(L, t)KTBTP2η +

∫ L

0

2ξTP1δe
−µxdx+ 2ηTP2ǫ

= V1 + V2 + V3, (15)

with

V1 , −
[

ξTΛP1ξe
−µx

]L

0
+ ηT(ATP2 + P2A)η + 2ξT(L, t)KTBTP2η + µηTP2η,

V2 ,

∫ L

0

ξT[−µΛP1 +MT(x)P1 + P1M(x)]ξe−µxdx− µηTP2η,

V3 ,

∫ L

0

2ξTP1δe
−µxdx+ 2ηTP2ǫ.

Owing to the Cauchy-Schwarz inequality, it follows that, for all κi > 0, i = 1, 2,

V3 6 λP1

∫ L

0

(

κ1ξ
Tξ +

1

κ1
δTδ

)

e−µxdx+ λP2

(

κ2η
Tη +

1

κ2
ǫTǫ

)

6 κ1λP1

∫ L

0

ξTξe−µxdx+ κ2λP2
ηTη + λ̄‖(δ, ǫ)‖X

= τ31 + τ32 + λ̄‖(δ, ǫ)‖X, (16)

with τ31 , κ1λP1

∫ L

0 ξTξe−µxdx, τ32 , κ2λP2
ηTη, and λ̄ = max{

λP1

κ1

,
λP2

κ2

}.

By grouping the terms V1 and τ32, and using the boundary condition (3) of hyperbolic PDEs, we obtain

V1 + τ32 = −
[

ξTΛP1ξe
−µx

]L

0
+ ηT(ATP2 + P2A)η + 2ξT(L, t)KTBTP2η + µηTP2η + κ2λP2

ηTη

= ξT(0, t)ΛP1ξ(0, t)− ξT(L, t)ΛP1ξ(L, t)e
−µL

+ηT(ATP2 + P2A)η + 2ξT(L, t)KTBTP2η + µηTP2η + κ2λP2
ηTη

=

[

η

ξ(L, t)

]T [

ATP2 + P2A+ ΛP1 + κ2λP2
In + µP2 P2BK

KTBTP2 −e−µLΛP1

][

η

ξ(L, t)

]

. (17)

It is noteworthy that the condition (12) implies that V1 + τ32 is always negative or zero. Meanwhile,

grouping the terms V2 and τ31, and using the condition (13), we can prove that there exists a small

enough real positive ν > 0 such that

V2 + τ31 =

∫ L

0

ξT[−µΛP1 +MT(x)P1 + P1M(x)]ξe−µxdx− µηTP2η + κ1λP1

∫ L

0

ξTξe−µxdx

6 −ν

∫ L

0

ξTP1ξe
−µxdx− µηTP2η

6 −λV (ξ, η), (18)

with λ = min{ν, µ}. Combing (16)–(18) yields

V̇ 6 −λV (ξ, η) + λ̄‖(δ, ǫ)‖X . (19)
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Following directly from the definition of candidate V and the straightforward estimation, for all solu-

tions (ξ, η) ∈ X , there exists a constant β > 0 satisfying

1

β
e−µL‖(ξ, η)‖X 6 V (ξ, η) 6 β‖(ξ, η)‖X . (20)

Therefore, according to Definition 2, V of (14) is an ISS-Lyapunov function for the coupled hyperbolic

PDE-ODE system (1)–(6) in the norm X ; hence, the system (1)–(6) is input-to-state stable to the

disturbance (δ, ǫ) ∈ X .

This concludes the proof of Theorem 1.

In the following, a boundary controller design (6) for the coupled system (1)–(5) is easily found by

utilizing the result of Theorem 1.

Corollary 1. Consider the coupled system (1)–(5). If there exist a real matrix G ∈ R
n×n, real numbers

µ > 0, κi > 0, and diagonal positive definite matrices Pi > 0, i = 1, 2, such that the following matrix

inequalities

[

ATP2 + P2A+ ΛP1 + κ2λP2
In + µP2 G

GT −e−µLΛP1

]

6 0, (21)

−µΛP1 +MT(x)P1 + P1M(x) + κ1λP1
In < 0 (22)

hold, then Eq. (6) with the feedback gain K = B+P−1
2 G is an ISS control law of the system (1)–(5),

where B+ is the Moore-Penrose pseudoinverse of B.

Proof. The result directly follows the result of Theorem 1 by applying G = P2BK.

4 Computational aspects

The balance term M(x) involves the spatial variable x ∈ [0, L], which leads to inequality constraints (22)

of Corollary 1 becoming infinite. In this section, we use the polyhedron approximating techniques to

obtain the numerical computational conditions.

We first divide the spatial domain [0, L] into N isometric subspaces {xk, k ∈ N , x0 = 0, xN = L} with

xk − xk−1 =
L

N
, N = {0, 1, . . . , N} . (23)

Subsequently, we obtain a sequence of sample matrices M(xk) = (mij(xk)) ∈ R
n×n, for k ∈ N .

Let D(x) = M(x)−M(xk), as xk−1 < x 6 xk, for all x ∈ [0, L]. Because M(x) = (mij(x)) ∈ L∞(0, L),

there exist two real numbers dij , dij , such that dij 6 mij(x) − mij(xk) 6 dij , for every entry mij(x),

i, j = 1, . . . , n. The convex hull D is a set:

D ,







2n2

∑

s=1

αsDs, 0 6 αs 6 1







, (24)

with the vertex matrices Ds = (d
(s)
lk ), for all s ∈ S = {1, . . . , 2n2}, defined as

d
(s)
lk =















dij , as s = 1, . . . , n2; l = i, k = j,

dij , as s = n2 + 1, . . . , 2n2; l = i, k = j,

0, otherwise.

(25)

It is easily shown that the matrix D(x) ∈ D, x ∈ [0, L], for some αs with αs+αs+n2 = 1, s = 1, . . . , n2.

Subsequently, the stability of M(x) is guaranteed by the absolute stability of the sample matrices M(xk),

k ∈ N , and the convex hull D.
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Lemma 1. Given M(x) ∈ L∞(0, L)n×n, if there exist a constant ν > 0 and a common diagonal positive

definite matrix P1 > 0 such that

−µΛP1 +MT(xk)P1 + P1M(xk) + κ1λP1
In < −ν, (26)

DT
s P1 + P1Ds 6

ν

n2
(27)

hold, for all k ∈ N , s ∈ S, then condition (13) of Theorem 1 is satisfied for all x ∈ [0, L].

Proof. Because D(x) lies in the convex hull D, for all x ∈ [0, L], i.e., D(x) ∈ D, we have

DT(x)P1 + P1D(x) 6

2n2

∑

s=1

αs(D
T
s P1 + P1Ds) (28)

for all vertical matrices Ds, s ∈ S. Thus, using (26) and (28), it follows directly that

−µΛP1 +MT(xk)P1 + P1M(xk) + κ1λP1
In

= −µΛP1 +MT(xk)P1 + P1M(xk) +D(x)TP + P1D(x) + κ1λP1
In

< −ν +

2n2

∑

s=1

αs

ν

n2

= 0. (29)

This concludes the proof of Lemma 1.

Remark 2. The constructed convex hull D of (24) includes at most 2n2 vertices. Meanwhile, the

relaxation structure M(x), as the source term of the hyperbolic balance laws, is mostly marginally stable

in practical physical models. It often includes several identical or zero entries in M(x), which leads to

the number of vertical matrices Ds that is significantly smaller than 2n2.

Remark 3. As the division number N of the convex hull D increases, dij and dij might reduce to

zero. Subsequently, an iterative procedure with N → N +1 could be designed to finally obtain a feasible

solution of the inequalities (26) and (27).

Remark 4. The sufficient condition (21) of Corollary 1, and the conditions (26) and (27) of Lemma

1 are nonlinear with respect to the unknown variables µ, κi and Pi, i = 1, 2. However, because µ,

κi are scalar variables, one may combine a linear search algorithm with the semi-definite programming

technologies to solve (21), (26) and (27).

The following result is thus obtained as a corollary of Theorem 1.

Corollary 2. Consider the coupled system (1)–(5). If there exist a real matrix G ∈ R
n×n, real numbers

ν > 0, κi > 0, and two diagonal positive definite matrices Pi > 0, i = 1, 2, such that the following matrix

inequalities

[

ATP2 + P2A+ ΛP1 + κ2λP2
In + µP2 G

GT −e−µLΛP1

]

6 0, (30)

−µΛP1 +MT(xk)P1 + P1M(xk) + κ1λP1
In < −ν, (31)

DT
s P1 + P1Ds 6

ν

n2
(32)

hold, for all k ∈ N , s ∈ S, then Eq. (6) with the feedback gain K = B+P−1
2 G is an ISS control law.

Proof. Following the results of Lemma 1, the condition (22) of Corollary 1 is satisfied under the new

inequalities (31)–(32), for all x ∈ [0, L].
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Fin

c

Figure 1 (Color online) Coupled hyperbolic PFR-CSTR model.

5 Application to the hyperbolic PFR-CSTR model

5.1 The coupled hyperbolic PFR-CSTR model

The distributed chemical processes are often coupled with the lumped parameter processes, which are

typically modeled as a combination of PDE and ODE models. In this subsection, we consider the PFR-

CSTR configuration, shown in Figure 1, as a coupled hyperbolic PDE-ODE system. The exothermic

reactions occur in both the CSTR and PFR, in which component A is the reactant and B is the desired

product. The liquid flows directly into the PFR after a quick reaction in the CSTR. Here, we consider

the following chemical reaction:

A → bB,

where b > 0 denotes the stoichiometric coefficient of the reaction and we set b = 1 for simplicity.

The objective is to control the components’ concentration CA, CB , C
p
A and C

p
B , and the temperatures

T , T p of the CSTR and PFR, using the cooling rate Qc as the manipulated variable. It is noteworthy

that Qc acts directly on the CSTR and indirectly on the PFR through the CSTR.

With the assumption of a constant fluid velocity in the PFR with respect to the spatial coordinate,

constant physical properties, and incompressible fluid [8, 25], the mathematical model of the system is

given as

∂C
p
A

∂t
+ v

∂C
p
A

∂x
= −ke

−E

RTp C
p
A, (33)

∂C
p
B

∂t
+ v

∂C
p
B

∂x
= ke

−E
RTp C

p
A, (34)

∂T p

∂t
+ v

∂T p

∂x
=

k

ρcp
e

−E
RTp C

p
A (−∆H)− β (T p − Tj) , (35)

dCA

dt
=

Fin

Vc

(C in
A − CA)− ke

−E

RT CA, (36)

dCB

dt
= −

Fin

Vc

CB + ke
−E
RT CA, (37)

dT

dt
=

1

ρcp
ke

−E

RT CA(−∆H) +
Fin

Vc

(Tin − T ) +
Qc

ρcpVc

, (38)

where v is the fluid velocity in the PFR given by v = Fin

Vp
; Fin is the inlet flow rate; k is pre-exponential

constant; E is the activation energy; R is the universal gas constant; Vc and Vp are the volumes of the

CSTR and the PFR, respectively; ∆H is the heat of reaction; ρ and cp are the average fluid density and

specific heat, respectively; β is the heat transfer coefficient, given by β = 4h
ρcpd

, where h and d are the

wall heat transfer coefficient and the reactor diameter, respectively; Tj is the coolant temperature of the

PFR’s jacket. Some parameter values used in the simulation are given in Table 1.
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Table 1 PFR-CSTR model parameters

Process parameter Notation Value

Kinetic constant k 225.225 × 106 s−1

Activation energy/universal gas constant E/R 9758.3 K

Steady inlet flow rate Fin 0.0041 m3/s

Steady cooling rate Qss −1.36 kJ/s

Inlet reactant concentration Cin

A
3 kmol/m3

Inlet temperature Tin 429 K

Heat of reaction for reactions 1 ∆H −4200 kJ/kmol

Volume of the CSTR Vc 0.01 m3

Volume of the PFR Vp 0.022 m3

Average fluid density ρ 934.2 kg/m3

Specific heat cp 3.01 kJ/kgK

Heat transfer coefficient β 0.2 s−1

At the left boundary of the PFR, x = 0, we have















C
p
A(0, t) = CA,

C
p
B(0, t) = CB ,

T p(0, t) = T.

(39)

We consider the following initial conditions















CA(0) = C in
A ,

CB(0) = 0,

T (0) = Tin,

(40)

and














C
p
A(x, 0) = C

p
A,0(x),

C
p
B(x, 0) = 0,

T p(x, 0) = T
p
0 (x).

(41)

5.2 The linearized hyperbolic PFR-CSTR model

Let ξ = [Cp
A, C

p
B, T

p]T, and η = [CA, CB , T ]
T. No explicit solution exists for the hyperbolic PDE-ODE

system (33)–(38). To better understand the dynamics of the PFR-CSTR model, we linearize the model

around the steady states (ξss(x), ηss), given as

ξss(x) =
[

C
p
Ass(x) C

p
Bss(x) TP

ss (x)
]T

, (42)

ηss =
[

CAss CBss Tss

]T

. (43)

The equilibrium temperature in the PFR is assumed to be consistent with the steady-state temperature

in the CSTR, that is TP
ss (x) = Tss, 0 < x < L. Subsequently, it can be easily shown that the equilibria

concentrations are given by

C
p
Ass(x) = CAsse

−αx, 0 < x < L, (44)

C
p
Bss(x) = CAss(1− e−αx) + CBss, 0 < x < L, (45)

where α is the positive constant

α =
k

v
e−

E
RTss > 0, (46)
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Figure 2 (Color online) Steady states in the PFR.

and we can also obtain the equilibrium condition of Tj , which is given by

Tjss(x) = Tss +
∆Hdv

4h
αCAsse

−αx. (47)

As the jacket temperature Tj is held at its stead state Tjss, we can cause TP
ss (x) to be constant. The

small deviations from the nominal profile are defined as

ξ̃ = ξ − ξss(x), (48)

η̃ = η − ηss. (49)

The model equations (33)–(38) are linearized around the steady state to yield the linear system (1)–

(5) on L2(0, 1)
3 ⊕ R

3. Here, M(x) ∈ L∞(0, 1)3×3 and A are the Jacobian matrices of (33)–(35), with

respect to C
p
A, C

p
B, T

p, and (36)–(38) with CA, CB , and T , evaluated at the steady states, respectively;

Λ = −Fin

Vp
diag(1, 1, 1); δ(x, t) and ε(t) are the higher-order terms of the nonlinear PDE and ODE, where

M (x) = e
−E
RTss









−k 0 −k E
RT 2

ss

C
p
Ass (x)

k 0 k E
RT 2

ss

C
p
Ass (x)

−∆Hk
ρcp

0 −∆Hk
ρcp

E
RT 2

ss

C
p
Ass (x) −

4h
ρcpd

e
E

RTss









, (50)

A = e
−E
RTss









−Fin

Vc
e

E
RTss − k 0 −k E

RT 2
ss

CAss

k −Fin

Vc
e

E
RTss k E

RT 2
ss

CAss

−∆Hk
ρcp

0 −∆Hk
ρcp

E
RT 2

ss

CAss −
Fin

Vc
e

E
RTss









, (51)

B =
[

0 0 1
ρcpVc

]T

. (52)

5.3 Simulations

Let the length of the PFR be L = 1 m. By using the parameters values given in Table 1, we can obtain

the steady states (ξss(x), ηss) depicted in Figure 2. In this case, the system matrices M(x), Λ, A, and B

are given as

M (x) =









−3.10 0 −0.46e−αx

3.10 0 0.46e−αx

4.63 0 0.68e−αx − 20









× 10−2, Λ =









0.1864 0 0

0 0.1864 0

0 0 0.1864









,
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Figure 3 (Color online) Time evolution of the concentra-

tion Cp
A

in the PFR.

Figure 4 (Color online) Time evolution of the concentra-

tion Cp
B

in the PFR.

A =









−44.10 0 −0.46

3.10 −41 0.46

4.63 0 −40.32









× 10−2, B =









0

0

3.56









× 10−2.

Using N = 10, and solving the conditions (30)–(32) of Corollary 2, we obtain µ = 0.3, and κ1 =

4.400× 10−3, κ2 = 4.679× 10−5, and

G =









0 0 0

0 0 0

0.8257 1.6468 0.7824









× 103,

P1 =









1.6044 0 0

0 2.0462 0

0 0 0.8257









× 103, P2 =









1.6467 0 0

0 0.7824 0

0 0 60.7943









× 103.

Subsequently, we obtain the boundary feedback gain

K =
[

0.3815 0.7609 0.3615
]

.

To numerically compute the solutions of the system (33)–(38), we discretize them using a two-step

variant of the Lax-Wendroff method in [26]. We select the following initial deviations















C̃
p
A (x) = 0.05C in

A sin(6πx),

C̃
p
B (x) = 0.05 sin(6πx),

T̃ p (x) = 0.07Tin sin(6πx),

(53)

and the disturbances
{

δ (x, t) = 2.4× 10−3 sin (xt) ,

ε (t) = 6.8× 10−3 sin (t) .
(54)

Figures 3–5 show the time evolutions of the concentrations Cp
A, C

p
B , and the temperature T p in the PFR,

respectively. We observed that C
p
A, C

p
B, T p converge to the bounded domains of their steady-states

C
p
Ass(x), C

p
Bss(x), T

p
ss(x), respectively, as time progresses, as expected from Theorem 1. Figure 6 depicts

the concentrations of CA CB , and T in the CSTR that enters some bounded domains ultimately. The

variations in the boundary control Qc are also depicted in Figure 7.
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Figure 5 (Color online) Time evolution of the tempera-

ture T p in the PFR.

Figure 6 (Color online) Time evolutions of the concen-

tration CA, CB , and the temperature T in the CSTR.
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Figure 7 (Color online) Time evolution of the control input Qc.

6 Conclusion

This paper described the boundary ISS for a class of coupled hyperbolic PDE-ODE systems. Some

sufficient conditions in terms of matrix inequalities are provided using the strict Lyapunov function.

The boundary feedback control is applied to stabilize a coupled hyperbolic PFR-CSTR model. This

study leaves many open questions. It is natural to extend the theoretical results, such as Theorem 1

and Corollary 2 to more general nonlinear PDE-ODE systems and consider the proportional-integral

boundary control.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61374076,

61533002) and Beijing Municipal Natural Science Foundation (Grant No. 1182001).

References

1 Hasan A, Aamo O M, Krstic M. Boundary observer design for hyperbolic PDE-ODE cascade systems. Automatica,

2016, 68: 75–86

2 Tang Y, Prieur C, Girard A. Stability analysis of a singularly perturbed coupled ODE-PDE system. In: Proceedings

of the 54th IEEE Conference on Decision and Control, Osaka, 2015. 4591–4596

3 Zhou H C, Guo B Z. Performance output tracking for one-dimensional wave equation subject to unmatched general

disturbance and non-collocated control. Eur J Contr, 2017, 39: 39–52

4 Zhang L G, Prieur C. Necessary and sufficient conditions on the exponential stability of positive hyperbolic systems.

IEEE Trans Automat Contr, 2017, 62: 3610–3617

5 Zhang L G, Prieur C, Qiao J F. Local exponential stabilization of semi-linear hyperbolic systems by means of a

boundary feedback control. IEEE Control Syst Lett, 2018, 2: 55–60

https://doi.org/10.1016/j.automatica.2016.01.058
https://doi.org/10.1109/TAC.2017.2661966
https://doi.org/10.1109/LCSYS.2017.2724141


Zhang L G, et al. Sci China Inf Sci April 2019 Vol. 62 042201:12

6 Zhang L G, Prieur C. Stochastic stability of Markov jump hyperbolic systems with application to traffic flow control.

Automatica, 2017, 86: 29–37

7 Diagne M, Bekiaris-Liberis N, Krstic M. Time- and state-dependent input delay-compensated bang-bang control of a

screw extruder for 3D printing. Int J Robust Nonlin, 2017, 27: 3727–3757

8 Moghadam A A, Aksikas I, Dubljevic S, et al. Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs.

Automatica, 2013, 49: 526–533

9 Krstic M, Smyshlyaev A. Backstepping boundary control for first-order hyperbolic PDEs and application to systems

with actuator and sensor delays. Syst Control Lett, 2008, 57: 750–758

10 Krstic M. Compensating actuator and sensor dynamics governed by diffusion PDEs. Syst Control Lett, 2009, 58:

372–377

11 Li J, Liu Y G. Stabilization of coupled pde-ode systems with spatially varying coefficient. J Syst Sci Complex, 2013,

26: 151–174

12 Karafyllis I, Jiang Z P. Stability and Stabilization of Nonlinear Systems. London: Springer-Verlag, 2011

13 Zhao C, Guo L. PID controller design for second order nonlinear uncertain systems. Sci China Inf Sci, 2017, 60: 022201

14 Yang C D, Cao J D, Huang T W, et al. Guaranteed cost boundary control for cluster synchronization of complex

spatio-temporal dynamical networks with community structure. Sci China Inf Sci, 2018, 61: 052203

15 Ito H, Dashkovskiy S, Wirth F. Capability and limitation of max- and sum-type construction of Lyapunov functions

for networks of iISS systems. Automatica, 2012, 48: 1197–1204

16 Geiselhart R, Wirth F. Numerical construction of LISS Lyapunov functions under a small gain condition. In: Pro-

ceedings of the 50th IEEE Conference on Decision and Control, Orlando, 2012. 25–30
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