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Abstract Resolvability is an important performance for radars or other sensors. In this paper, a new solu-

tion of multiple-input multiple-output (MIMO) radar waveform design is proposed for improving the angular

statistical resolution limit (SRL) performance of two closely spaced targets. Exploring Taylor expansion

at the known angular center of two targets and making an orthogonal projection, the original resolution

problem can be transformed into a detection one, so the criteria of waveform design for target detection can

be applized. We have shown that in the presence of signal-dependent interferences, maximizing the output

signal-to-interference-plus-noise ratio (SINR) and maximizing the relative entropy, will resort to the same

non-convex model. With the model, we have adopted an existing alternative optimization to design the

optimal waveform. Simulations demonstrate that the optimal waveform outperforms the orthogonal and the

coherent waveforms in term of the resolution performance in the presence of signal-dependent interferences.
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1 Introduction

Resolution is always an important performance for radars or other sensors [1]. Traditionally, the angular

resolution limit is decided by the size of the antenna aperture, named as Rayleigh limit [2]. However,

with the advent of high-resolution spectral estimation, it is necessary to measure the super-resolution

performance.

The earliest definition of super-resolution was in an observed way. For example, it was pointed out that

there would be a hollow between the spectra of two separated signals [3], so the problem was transformed

into detecting whether the hollow was existing or not. Later a zero-crossing method based on the second-

order characteristics of directional spectrum had been presented [4], which could avoid the error caused

by the offset of the estimation directional spectrum. However, these methods regarded the resolution

problem as a determined one, not considering the influence of noise and clutter. Thus, some works from

the statistical viewpoint, based on the notion of the Cramer-Rao bound (CRB), have been put forward.

For example, the larger CRB of parameters of interest (POIs) of two signals was taken as a criterion

in [5], further the CRB of the interval of POIs was taken in [6]. In this way, the limit corresponds to

a certain probability, reflecting the statistical characteristics of the echo, therefore is called statistical

resolution limit (SRL).
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Recently, a new definition of the SRL in the context of hypothesis testing, have been widely stud-

ied [7–11]. The angular SRL of two point targets in three-dimensional space was deduced in presence of

Gaussian white noise [7]. Then the work was extended to the case that the point source interferences were

present [8], where the orthogonal projection theory was carried out to eliminate the unknown parameters.

In the same way, the angular statistical resolution limit (SRL) of colocated MIMO radar was discussed

in [9], and the information theory criterion was applied in [10]. Recently, the general likelihood rate

test (GLRT) is extended to Rao detection in [11]. We resolve SRL using a general model with unknown

center of the POIs in [12]. These studies have demonstrated that the SRL is related not only to the

signal-interference-plus-noise ratio (SINR), but also to the transmitted signal waveforms.

However, no research has been conducted on how to design the waveforms to achieve a better resolution.

It is widely known, that MIMO radars allow each array element to transmit different waveforms. The

additional degrees of freedom (DOFs) offered by the diversified waveforms can be used to maximize the

SINR in the presence of signal-dependent interferences [13]. Up to now, the research of waveform design for

MIMO radar mainly includes: the synthesis of the waveforms with the desired beam response [14–16], the

maximum of the probability of detection [17–21] and minimizing estimation error [22]. To maximize the

detection probability, one widely used criteria is the maximum of SINR [17–19], another is maximizing the

relative entropy [20,21]. These two approaches are consistent in some scenarios [23]. In fact, the waveform

design of MIMO radar in presence of interference is how to allocate energy spatial distribution [24]. It

has been widely accepted that, the phased-array radar has best energy focusing, but its DOFs for the

interference suppression are less. On the contrary, the orthogonal MIMO radar has the most DOFs,

which can be used for clutter suppression, but the energy transmitted in the target direction is less as

it is evenly distributed in the whole space. Therefore, the essence of waveform design is how to balance

the performances between the interference suppression and the target detection, which can be achieved

by maximizing the output SINR or the information entropy, so these two criteria has been widely used

for design standard in the radar detection. However, they cannot be used directly to solve our resolution

model, where there are two signals in the echo.

To eliminate the unknown parameters, the projection theory has been brought in [8], which inspired us

to design the colocated MIMO radar waveforms for angular resolution. With our Gaussian distribution

assumption, we will show that the criteria of maximizing the output SINR and maximizing the information

entropy is consistent, and resort to a same model. To solve the unified non-convex model, we employ

the existing alternative optimal method. Compared with the orthogonal and coherent waveforms, our

optimal waveform can improve the resolution rate for two closely-spaced targets in the presence of signal-

dependent interferences.

From the statistical aspect, the SRL is actually related to the resolution rate and the false-alarm rate,

the former reflects the probability of correctly resolving two closely-spaced sources, while the latter is

the probability of falsely resolving two sources when only one is present. The resolution performance of

MIMO radar can be measured in two aspects—one is the minimum interval of two close parameters that

can discriminate with a given resolution rate; the other is to maximize the resolution rate with a given

interval. According, the waveform design for resolution can also be divided into two approaches—one is

to minimize the resolution limit with a given probability; the other is to maximize the resolution rate

with a given separation of the two POIs. In fact, the two methods are same, and we will focus on the

latter one in this study.

The rest of our paper is arranged as follows: Section 2 presents the model of our resolution problem, and

Section 3 shows the consistency of the two criteria for our model. In Section 4 we present an alternative

optimal algorithm to solve the non-convex model, whose performance is simulated in Section 5. Finally

Section 6 concludes our paper.
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2 Resolution Model

The sketch of the colocated MIMO radar is shown in Figure 1, where a far-field and narrow-band signal

model is assumed. To point out that, the degrees of arrival(DOA) and departure(DOD) are same for

colocated MIMO radar. However, for easy comprehension we plot a bi-static sketch here. We assume

that the DOAs of two targets are nearly the same. The MIMO radar has Nt transmitting elements and

Nr receiving elements, while the former has an interval of Nr times of half wavelength and the latter a

half wavelength. Take the first element as the phase reference, and then the transmit and receive array
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Figure 1 Sketch of colocated MIMO radar.

steering vector can be expressed as{
aaat(ωp) = [1, e−jNrωp , e−2jNrωp , · · · , e−(Nt−1)jNrωp ]T

aaar(ωp) = [1, e−jωp , e−2jωp , · · · , e−(Nr−1)jωp ]T
, (1)

where ωp = πsinθp, p = 1, 2, denoting the angular frequency of two targets. The superscript ()T is the

transpose of a matrix or a vector.

Denote the transmitted signals SSS ∈ CNt×L as SSS = [s1, s2, . . . , sNt
]T , where sn ∈ CL×1, n = 1 : N

is a L-length complex signal transmitted by the n-th element, L is the sampling number. It should

be paid attention that, the signals transmitted by different elements may not be orthogonal with each

other. On the contrary, we aim to design these non-orthogonal signals to yield the best performance. Not

considering the propagation attenuation, the collection of the transmitted signals at the spot of target

with wp angle frequency can be written as aaat(ωp)
TSSS. The signals reflected by the targets then received

by the array, which is αpaaar(ωp)aaat(ωp)
TSSS, where αp is the complex response of the p-th target, reflecting

the two-round attenuation and its radar cross section(RCS).

We consider K signal-dependent point interferences, and denote βk as the response of the k-th interfer-

ence, and ωk and nk are the angular frequency and the range cells occupied by the k-th interference, re-

spectively. Similarly, the interference signals in the echo can be presented as βkaaar(ωk)aaat(ωk)TSJSJSJnk
,where

Jnk
is the shifting matrix, with ones on the nk-th diagonal and zeros elsewhere. Then the echo matrix

of all the receiving elements can be expressed as

YYY =

2∑
p=1

αpaaar(ωp)aaat(ωp)
TSSS +

K∑
k=1

βkaaar(ωk)aaat(ωk)TSJSJSJnk
+ N , (2)

where Y ,N ∈ CNr×L, the latter is the noise matrix [18].
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With the transformation vec(ABC) = (CT ⊗ A)vec(B), where ⊗ is the operation of Kronecker

product, vec() is the vectorization of a matrix by stacking all its column vectors. Let y = vec(Y ),n =

vec(N),s = vec(S) ∈ CNtL×1, the echo matrix can be converted into a vector as

y =

2∑
p=1

αpAps +

K∑
k=1

βkBks + n, (3)

where Ap = IL ⊗
(
ar(ωp)at(ωp)

T
)

and Bk = Jnk
⊗
(
ar(ωk)at(ωk)T

)
.

Here we assume that the separation of two signals, i.e., δω = ω2 − ω1, are very small, and the center

value of POIs is ω0 = (ω1 + ω2)/2, is assumed to be known as a priori. Therefore we can make the

first-order Taylor expansion at ω0, and reserve it as the approximation of the two signals, so we obtain

y ≈(α1 + α2)A0s + (α1 − α2)
δω
2
Ȧ0s +

K∑
k=1

βkBks + n, (4)

where A0 = IL⊗ (ar(ω0)at(ω0)T ), Ȧ0 = IL⊗
(
ȧr(ω0)at(ω0)T

)
+ IL⊗

(
ar(ω0)ȧt(ω0)T

)
is the first-order

derivation of A0 at ω0. ȧt(ω0), ȧr(ω0) are the first-order derivation of at(ω0) and ar(ω0) at ω0.

As previously stated, we use the orthogonal projection to convert the original resolution model into a

detection one. Matrix A0 is not column-full-rank, so we take these uncorrelated columns of the matrix

to compose a new matrix X. Then the projection matrix on the subspace spanned by the columns of the

matrix A0, can be expressed as

P⊥A0
= INrL −X(XHX)−1XH , (5)

where the superscript ()H denotes the conjugation and transpose of a matrix or vector, the superscript

()⊥ is the orthogonal projector. As rank{A0} = L, there is rank{P⊥A0
} = (Nr − 1)L , Q. Make the

orthogonal decomposition as P⊥A0
= UUH , which meets UHU = IQ. Let ỹ = UHy and ñ = UHn.

Multiplying UH to the two sides of (4), we get a detection model as

ỹ = (α1 − α2)
δω
2
UHȦ0s +

K∑
k=1

βkU
HBks + ñ. (6)

Let t = Hθ, where H = UHȦ0s, θ = (α1 − α2) δω2 , c =
∑K
k=1 βkU

HBks, a binary hypothesis model

can be established as

ỹ =

{
c + ñ, H0

t + c + ñ, H1

. (7)

We should decide whether hypotheses H0 or H1 is true. For H0, there is θ = 0, denoting only one target

is present; while for H1, there is θ 6= 0, denoting there are two targets.

Assuming that each target, each interference and noise are independent with each other, obeying to

Gaussian distribution, i.e.,αp ∼ CN (0, σ2
p), p = 1, 2, so there is

Rt = E{ttH} = (σ2
1 + σ2

2)
δ2ω
4
UHȦ0ss

HȦH
0 U , (8)

where E{} denotes the operation of expectation. While for the interferences, there is βk ∼ CN (0, σ2
c,k), k =

1 : K, so the covariance matrix of interferences is Rc = E{ccH} =
∑K
k=1 σ

2
c,kU

HBkss
HBH

k U . The noise

will remain white after project transformation, as there is Rn = E{ññH} = UHE{wwH}U = σ2
nIQ.

Therefore the covariance matrix of the noise and interference is

Rnc = Rc + Rn =

K∑
k=1

σ2
c,kU

HBkss
HBH

k U + σ2
nIQ. (9)
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Therefore we can get the distributions of ỹ under two hypotheses as

ỹ ∼

{
CN
(
0,Rnc

)
, H0

CN
(
0,Rt + Rnc

)
, H1

. (10)

Then one can see that, with our assumptions, the echoes under both hypotheses are Gaussian distribu-

tions, with different variance matrices.

3 Waveform Design Criteria

According to (10), the probability density functions (PDFs) under two hypotheses are{
p0(ỹ) = 1

πQ|Rnc|e
−ỹHR−1

nc ỹ, H0

p1(ỹ) = 1
πQ|Rt+Rnc|e

−ỹH(Rt+Rnc)
−1ỹ, H1

. (11)

As a result, we can rsolve the likelihood rate test. Here we will bring two existing criteria to resolve it.

3.1 Maximum of SINR

According to the distributions in (11), the likelihood rate function can be expressed as

lnLRT (ỹ) =lnp1(ỹ)− lnp0(ỹ)

=ln|Rnc|+ ỹHR−1nc ỹ

− ln|Rt + Rnc| − ỹH(Rt + Rnc)
−1ỹ. (12)

Omitting these items unrelated to the data, we get a new statistic as

T (ỹ) = ỹH
(
R−1nc − (Rt + Rnc)

−1)ỹ. (13)

As Rε , R−1nc −(Rt+Rnc)
−1 is Hermite and positive semidefinite, we can get its Cholesky factorization

as Rε = TTH . Let y = TH ỹ, we can get the distribution of y as

y ∼

{
η20χ

2
2P , H0

η21χ
2
2P , H1

, (14)

where η20 = tr
(
IP −Rnc(Rt + Rnc)

−1) and η21 = tr
(
R−1nc (Rt + Rnc)− IP

)
= tr(R−1ncRt).

As rank{Rt} = 1 (8), there is decomposition Rt = vvH , where

v = (σ2
1 + σ2

2)1/2UHȦ0s. (15)

With the matrix inverse lemma (A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1, η20 can be

expressed further as

η20 =tr
(
IQ −Rnc(vv

H + Rnc)
−1)

=tr
(
IQ −Rnc(R

−1
nc −R−1nc v(I2 + vHR−1nc v)−1vHR−1nc )

)
=(1 + vHR−1nc v)−1tr(R−1ncRt). (16)

From (14), the false-alarm rate pf can be expressed as

pf =P (T (ỹ) > γ|H0)

=P (η20χ
2
2Q > γ) = P (χ2

2Q > γ/η20). (17)

With the given pf , the threshold can be got as γ = η20Q
−1
χ2
2P

(pf ), where Q−1
χ2
2Q

() is the inverse function of

Qχ2
2Q

(), which is the the right-tail function of Chi-Square distribution with 2Q degrees.
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Similarly, the detection rate pd can be expressed as

pd =P (T (ỹ) > γ|H1)

=P (η21χ
2
2Q > γ) = P (χ2

2Q > γ/η21)

=Qχ2
2Q

(
η20/η

2
1Q
−1
χ2
2Q

(pf )
)
, (18)

which is actually the resolution probability of original model.

From (18), one can see the resolution rate is monotonically decreasing with η20/η
2
1 , so maximizing the

resolution rate is equivalent to

maxsη
2
1/η

2
0 = maxs(1 + vHR−1nc v)

↔ maxsv
HR−1nc v

↔ maxss
HȦH

0 UR−1ncU
HȦ0s. (19)

where the second to last item is just the expression of output SINR, as vHR−1nc v = R−1ncRt, where Rnc

and Rt denote the power of the noise-plus-interference and signals, respectively. Therefore maximizing

the output SINR is widely accepted as a criteria.

With the constraint of transmitting energy, we establish an optimal problem via (19) as

P1

{
argmaxs sHȦH

0 UR−1nc (s)UHȦ0s

s.t. sHs 6 pt
, (20)

where one can see that, the waveform s is in the inverse of Rnc, which makes it non-convex and cannot

be resolved directly. Then we have to find out the efficient solution, which will be presented in Section 4.

3.2 Maximum of KL divergence

On the other hand, the waveform design has also been discussed to maximize KL divergence in [22]. This

is based on the Stein lemma, which describes the relations of the probability of detection pd and KL

divergence D(p0||p1) under the given probability of the false-alarm, as

D(p0||p1) = lim
N→∞

(
− 1

N
log(1− pd)

)
, (21)

where N is the dimension of the random variable.

According to (11), we can obtain the expression of the KL divergence by inserting the two distribution

under different hypothesis, as

D(p0||p1) =

∫
p0(ỹ)log

p0(ỹ)

p1(ỹ)
dỹ

=logdet(Rt + Rnc)− logdet(Rnc)

+ tr
(
(Rt + Rnc)

−1Rnc

)
−Q, (22)

where det() denotes the determinant operator.

With the decomposition Rt = vvH , and the fact that Rnc is positive semidefinite, the KL divergence

can be further expressed as

D(p0||p1) =logdet(vvH + Rnc)− logdet(Rnc)

+ tr
(
(vvH + Rnc)

−1Rnc

)
−Q

=logdet(R−1/2nc vvHR−1/2nc + IQ)

+ tr
(
R−1/2nc vvHR−1/2nc + IQ)−1

)
−Q, (23)

where the first item is equal to logdet(vHR−1nc v + 1) + Q − 1 [21], and the second item is equal to

tr
(
(vHR−1nc v+1)−1

)
[25]. Therefore we obtainD(p0||p1) = log(1+m)+(1+m)−1−1, wherem = vHR−1nc v.
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It is obvious that D(p0||p1) is a monotonous function when m > 0 [22], after inserting the expression of

v in (27), the maximum of the KL divergence can be recast as

max
s

vHR−1nc v ↔ max
s

sHȦH
0 UR−1nc (s)UHȦ0s. (24)

Therefore, the optimal problem is be equitant to the P2 in (26).

4 Alternate Optimization Algorithm

As for the non-convex model in (26) in above Section, we present an alternate optimization algorithm.

The algorithm is firstly improved in [17], which tackles the model by solving the s and w alternatively,

as follows:

Denote by the filter coefficient w ∈ CQ×1, and then the expression of output SINR via (6) is

SINR =
(σ2

1 + σ2
2)δ2ω

4

wHUHȦ0ss
HȦH

0 Uw

wHRncw
, (25)

where the optimal filter is the minimum variance distortionless response (MVDR) filter, which can keep

the signal non-variant but minimize the output of the interference and noise, respecting that

P2

{
argminw wHRncw

s.t. wHUHȦ0s = 1
. (26)

Resolving P1, the MVDR filter can be expressed as

w =
R−1ncU

HȦ0s

sHȦH
0 UR−1ncUHȦ0s

. (27)

By plugging the expression of w into (25), we obtain the SINR which is only related to the signal s as

SINR =
(σ2

1 + σ2
2)δ2ω

4
sHȦH

0 UR−1nc (s)UHȦ0s, (28)

With some transformations, the SINR in (25) can be rewritten as

SINR =
(σ2

1 + σ2
2)δ2ω

4

sHȦH
0 UwwHUHȦ0s

sHR′ncs
, (29)

where R
′

nc ,
∑K
k=1 σ

2
c,kB

H
k UwwHUHBk +

σ2
n

pt
wHwINtL. Then for fixed w, the optimal s can be got

as

P3

{
argmins sHR

′

ncs

s.t. sHȦH
0 Uw = K1

, (30)

where K1 is a constant to guarantee the constraint of the power. The solution of the minimum problem

is similar with P1 in (20), which is s1 = γ(R
′

nc)
−1Ȧ0U

Hw, where γ is a constant to meet the constraint

of energy. Then the optimal waveform can be obtained as

s =
√
pts1/||s1||. (31)

By solving the optimal s and w alternatively, the optimal solution of (26) can be achieved.

The AOA algorithm is presented in algorithm 1. Denoted the cyclic time of the algorithm as T . The

complexity of algorithm is mainly contributed by the inverse operation of matrix in step 5 and 6, which

is O
(
T (P 3 +N3

t L
3)
)

flops, where P = (Nr − 1)L.
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Algorithm 1 Alternate Optimization Algorithm

Input: the center parameter ω0, the initial signal s(0), a small constant value ε and the maximum cycle count M ;

Output: sopt,topt and SINRopt;

1. with ω0, calculate P⊥A0
from (5);

2. make decomposition, meeting P⊥A0
= UUH and UHU = IP ;

3. with U , solve the detection model (6);

4. m← 0, with s(m), get SINR(m) via (28);

5. with s(m), solve w(m) via (27);

6. with w(m), solve s(m+1) via (31);

7. with s(m+1), obtain SINR(m+1) via (28);

8. m = m+ 1, repeat step 5-7, until |SINR(m) − SINR(m−1)|/SINR(m−1) < ε or m = M ;

9. output the optimal value.

5 Simulation Results

In this Section we will take several simulation examples to make some delights of our above results.

The numbers of the transmitting and receiving array elements are set as Nt=4 and Nr=8, and the snap

number is L=10. Two signals are located at 10◦ and 12◦, respectively, whose separation is about 34.9% of

the Rayleigh limit, which can be calculated by π/(NrNt). The signal-to-noise rate (SNR) of two signals

are all 0 dB, i.e., σ2
k/σ

2
n = 1. The the interference-noise-rate (INR) is calculated by σ2

c,k/σ
2
n. The range

cell of the k-th interferences is set N=2. We set the maximum count M=1000 or error ε=10−5 to stop

the cycle. We make an comparison with the orthogonal and coherent waveforms, where the latter is linear

frequency modulation signals, Scoho ∈ CNT×L, as follows

Scoho(nt, l) =

√
pt
NtL

ej
(
Nr(nt−1)ω0+π

(
l−1
L

)2)
, nt = 1 : Nt, l = 1 : L. (32)

Example 1: In this example, we set the interferences lie between [30◦,40◦] with a stride internal

angular 1◦; hence K=11. We plot the resolution rate versus the transmit energy and INR in Figure 2 and

Figure 3, respectively. One can see that, either with fixed INR=20dB and vary the transmit power, or with

fixed transmit power Pt=20dB and vary INR, our optimal waveform can outperform the orthogonal and

coherent waveforms. Noticing that the coherent waveform exceeds the orthogonal waveform in the low-pt
area but becomes inferior in the high-pt area. To highlight this, we plot the transceiver beamforming in

the Example 2.
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Figure 2 Comparison of different waveforms with INR=20dB.(a) SINR; (b) Resolution Rate.

Example 2: With INR=20dB, we plot the beam pattern for both the transmitting and receiving
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Figure 3 Comparison of different waveforms with Pt=20dB.(a) SINR; (b) Resolution Rate.

beam in Figure 4 for Pt=10dB and Pt=40dB, by the following equation

BP =
|wHȦH

0 Us|2

NrNt|w|2|s|2
=
|sHUHȦ0R

−1
nc Ȧ

H
0 Us|2

NrNt|R−1nc ȦH
0 Us|2

. (33)
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Figure 4 Transceiver beamforming with INR=20dB.(a) Pt=10dB; (b) Pt=40dB.

From Figure 4, one can see that in the high-pt area (Pt=40dB), the orthogonal waveform has a higher

gain at the two target angles than the coherent waveform, so it can achieve a better performance; while

in the low-pt area (Pt=10dB), compared with other waveforms, it has a similar gain at the target angles

but a higher gain at the interference angles. In addition, one can see that the all three waveforms have

formed a zero-point at the middle angular of two signals, which is caused by the orthogonal projection

transformation at the center POI (for this simulation it is 11◦).

6 Conclusions

Based on the hypothesis testing theory, we have studied the colocated MIMO waveform design for angular

resolution. Our innovations are as follows:

(1) By exploring the Taylor expansion at the known value of angular frequency of two targets and

making an orthogonal projection, the original resolution model has been transformed into a detection

one. Then, the existing criteria, maximizing SINR criterion and maximizing information entropy, can be

implemented.
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(2) We have shown the above two criteria to be unified to a universal non-convex model. Then we bring

in an alternative optimization algorithm to design the optimal waveform, whose performance outweighs

the orthogonal and the coherent waveforms.

Our study provides a new perspective for the MIMO radar waveform design, based on the covariance

matrix of the interferences and DOAs of the two targets are known exactly. As this is hard to meet

in the reality, some robust design should be considered. In addition, we optimize the waveforms only

with the constraint of transmitting energy to highlight our points, some practical conditions such as the

constant-modulus and similarity with the given signal waveforms should also be considered.
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