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Abstract In recent years, the performances of radar resolution, coverage, and detection accuracy have been

significantly improved through the use of ultra-wideband, synthetic aperture and digital signal processing

technologies. High-resolution radars (HRRs) utilize wideband signals and synthetic apertures to enhance

the range and angular resolutions of tracking, respectively. They also generate one-, two-, and even three-

dimensional high-resolution images containing the feature information of targets, from which the targets

can be precisely classified and identified. Advanced signal processing algorithms in HRRs obtain important

information such as range-Doppler imaging, phase-derived ranging, and micro-motion features. However, the

advantages and applications of HRRs are restricted by factors such as the reduced signal-to-noise ratio (SNR)

of multi-scatter point targets, decreased tracking accuracy of multi-scatter point targets, high demands of

motion compensation, and low sensitivity of the target attitude. Focusing on these problems, this paper

systematically introduces the novel technologies of HRRs and discusses the issues and solutions relevant to

detection, tracking, imaging, and recognition. Finally, it reviews the latest progress and representative results

of HRR-based research, and suggests the future development of HRRs.
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1 Introduction

During World War II, radar was invented as a remote sensor with all-weather, all-time capability. Over

the past 80 years or thereabouts, radar has provided humans with clairvoyance and clairaudience and

has been widely applied in both national defense and civilian activities [1–17]. The examples include

surveillance, reconnaissance, navigation, fire control, and traffic control.

The first practical radar system, developed by Britain in the 1930s, detected targets using a single pulse.

At the end of World War II, the moving target indication radar was invented, which could distinguish

moving targets from clutter by the phase changes of the echoes in adjacent transmitter–receiver periods.

In the 1950s, the United States developed the pulse-Doppler (PD) radar, which obtained the Doppler

frequency from the phase changes of the target echoes in multiple successive pulse cycles. Therefore, the

PD radar could suppress clutter more effectively and measure the target velocity with higher accuracy

than the previous radars. In the mid-1950s, the United States also developed the phased-array radar, in

which a beam of radio waves generated by a computer-controlled array of antennas could be electronically

steered in different directions. Unlike the mechanical scanning radar, the phased-array radar searches,
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detects, and tracks multiple batches of targets in different directions simultaneously, with quick switching

of the beam direction. Its benefits include multi-functionality, agility, change celerity, high data rate,

strong anti-interference ability, and high reliability [1–5].

Radar waveforms have always played an important role in radar development [6]. In 1943, North [7]

pointed out the importance of a matched filter (the basis of radar signal processing) in detecting the

targets among echo signals with known transmitted waveforms. In 1953, Woodward [8] evaluated the

range and Doppler resolution of transmitting waveforms by using an ambiguity function, laying the

foundation of radar waveform design. Dicke [9] proposed the use of linear frequency modulation signals

in matched filtering, where a signal with a time-bandwidth product larger than one effectively solved the

contradiction between the range resolution and signal energy. Linear frequency modulation has replaced

the early unmodulated rectangular waveform as the most commonly utilized type of radar signal.

Narrowband signals are widely used in low-resolution radars (LRRs) because they can be easily gen-

erated and processed. Accordingly, the echo data are relatively low-volume, and can be easily realized

in engineering activities. In general, LRRs work well for simple tasks such as detection and ranging.

However, the development of electronic devices has increased the demand for advanced functions such as

imaging and target recognition. Owing to their low-range resolution, LRRs obscure the fine structural

information of complex targets, and can only approximately estimate the motion parameters. They also

have weak anti-interference and anti-clutter ability [10]. Moreover, a target with multiple scattering

centers causes an angular glint under narrowband conditions [14], and multipath echoes and the direct

wave distance cannot be resolved at small elevation angles [15]. These limitations significantly reduce the

tracking performance of LRRs. In addition, narrowband signals contain limited target-feature informa-

tion, reducing the effectiveness of classifying and identifying the targets [11–14]. Therefore, LRRs cannot

meet the requirements of target recognition.

Meanwhile, radar targets and the detection environment have become increasingly challenging [16–18].

Space surveillance is challenged by the proliferation of fast, highly mobile, dense, and weakly detectable

targets (spacecraft and space debris, warheads, and decoys from ballistic missile defense systems and dense

unmanned aerial vehicle colonies), which inhabit space, the atmosphere, and the ground. In addition,

the rapid development of electronic countermeasures [19, 20] causes strong active jamming, which may

impact effective target detection. Effectively distinguishing the target among the jammed signals has

become the core of improving radar performance.

To meet the increasingly complex requirements of target recognition, modern research has focused on

high-resolution radars (HRRs) with high range resolution and high angle resolution [11–14, 21, 22]. The

unique advantages of HRRs in detection, tracking, imaging, and parameter measurement have improved

the performance of target recognition. First, the increased radar-signal bandwidth of an HRR reduces the

range resolution to below the target size. The target is distributed among multiple range-resolution units,

thereby suppressing its radar cross-section (RCS) fluctuations and improving the detection performance.

The superior detection and tracking performances of HRRs are especially evident under clutter and

jamming conditions. Second, the synthetic aperture radar (SAR) and inverse synthetic aperture radar

(ISAR) can effectively compensate the platform or uncoordinated movements of the target during the

tracking period, obtaining two-dimensional high-resolution images [23–29]. Third, the measurement

accuracy of HRRs can be improved by advanced signal processing algorithms, enabling high-precision

phase-derived velocity measurement (PDVM) [30, 31] and micro-motion feature extraction [32–35].

In general, accurate target recognition is benefitted by abundant target information (such as the micro-

characteristics of the target and echo amplitudes of the scattering points), high measurement accuracy,

and a high tracking-data rate. However, the advantages and applicability of HRRs are restricted by

factors such as low signal-to-noise ratio (SNR), several false alarms (which decreases the tracking accuracy

of multi-scatter point targets), high demands of motion compensation, and sensitivity of the target

attitude [11–14]. These limitations cause problems in detection, tracking, imaging, and recognition by

HRRs, as outlined below:

(1) In HRR detection, the echo energy of the target is dispersed into multiple range units, which

decreases the SNR. In addition, the range resolution unit of HRRs is very small. Therefore, as the target
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moves between adjacent pulses, the target-echo envelope often moves across the range unit, affecting the

long-term integration of the target echo. Both problems reduce the target detection performance and

shorten the operating range of the HRR.

(2) In HRR tracking, the enlarged signal bandwidth decreases the size of the radar range resolution

unit, increasing the false-alarm density. Together with the decreased SNR of detection, the increased

false-alarm density raises the performance demands on the data association module and track filter

module.

(3) In HRR imaging, the enlarged imaging range reduces the SNR. To correct this problem, radar

imaging research has focused on the motion compensation technique and imaging methods that cope

with low SNR data. ISAR motion compensation and imaging algorithms are required under discontinuous

or sparse conditions. Multi-target ISAR imaging technique is gaining relevance in today’s increasingly

complex imaging environments.

(4) Finally, the fairness of the data in classifying and recognizing targets in one-dimensional high-

resolution images is influenced by three factors, namely target-aspect sensitivity, translation sensitivity,

and amplitude sensitivity. The training samples are usually ideal data obtained with a sufficiently high

SNR, whereas the test data are collected in variable environments with differing SNRs. When the

signal energy is low, the one-dimensional image is affected by environmental noise, clutter, and other

interferences, which seriously reduce the recognition performance of the HRR.

Focusing on these problems, this paper systematically introduces the novel technologies of an HRR

and discusses the relevant issues and solutions in detection, tracking, imaging, and recognition by the

HRR. Finally, it presents the latest progress and representative results of HRR-based research, and the

prospective development of HRRs.

2 Development of HRR

The development of HRR originated from the demands of space-target observations [14,21]. Space targets

include man-made satellites (such as space stations and spacecraft), space debris, ballistic missiles, and

other objects launched into the atmosphere. As the space target is far away, the detection range of

ground-based instruments must be as long as possible, perhaps up to 5000 km. The required detection

range of space-target radar generally ranges from 1000 to 5000 km. Meanwhile, to image satellites and

space debris and to distinguish multiple targets, the space-target radar requires a high range resolution,

which is usually achieved by enlarging the signal bandwidth. Finally, the space-target radar should

achieve rapid beam scanning and beam forming, as well as multi-target detection and tracking.

Obviously, space-target detection would improve the implementations of national air defense, anti-

missile actions, strategic early warnings, and command automation of sovereign countries. For this

purpose, it is necessary to innovate the radar system, signal waveform, and signal processing. These

innovations have largely promoted the development of HRRs. How to improve radar detection, param-

eter estimation, continuous estimation, imaging identification, and recognition comprise the technical

challenges of “integration of HHRs detection and tracking”.

HRRs are mainly applied in the military field. To effectively resolve and identify the warheads and

decoys in ballistic missile defense systems, the Lincoln Laboratory of the United States began researching

wideband radars in the 1960s. This study culminated in the world’s first wideband radar ALCOR [36]

in 1970, which utilized waveforms with a bandwidth of 512 MHz in reentry tracking. In the 1990s, the

wideband phased-array ground-based radar (GBR) working in the X-band was an important component

of national missile defense and the U.S. terminal high altitude area defense (THAAD) system. GBR per-

forms a series of tasks such as target detection, tracking, and threat classification. Antimissile tests using

GBR-P, a GBR prototype developed by Raytheon Company (headquartered in Waltham, Massachusetts,

USA), were successfully carried out in September 20001)2). The sea-based X-band radar operates over a

1) http://www.fas.org/spp/starwars/program/news00/bmd-001012.html.
2) http://defensenewsstand.com/Inside-Missile-Defense/Inside-Missile-Defense-10/04/2000/menu-id-291.html.
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bandwidth of 1 GHz [37]. To improve the operational capability of the ballistic missile defense system

in detecting outer space movements, the United States developed transportable FBX-T radar, which en-

larges the signal bandwidth of THAAD-GBR from 500 MHz to 1 GHz. The tracking and imaging radar

(TIRA) system developed in Germany works in both the L- and Ku-bands. The Ku-band is used for

wideband imaging with an initial bandwidth of 800 MHz. After continuous upgrading, the Ku bandwidth

of TIRA has reached 2.1 GHz [38].

3 Range-spread target detection technology

When the range resolution is lower than the target size, the original ideal point target is spatially resolved

into several scattering cells, thereby becoming a range-spread target. The resulting spatial-scattering

density provides abundant information on the target (such as its length, structure, and attitude), and

decreases the fluctuations in the received signals. These advantages improve the detection performance

of the radar, especially in cluttered environments [39].

However, spatially distributed target detection is disadvantaged by low SNR. High-range resolution

disperses the echo power into multiple range cells, but in a certain noise-temperature situation, high-range

resolution means a larger signal bandwidth, and consequently, a larger noise power at the receiver. Both

factors decrease the detection performance and reduce the operating range of HRRs. As the traditional

matched filter cannot completely integrate the echo energy, the typical detection method is no longer

applicable, and must be replaced by algorithms that detect range-spread targets.

Over the past few decades, many studies have integrated the energies of the scattering cells and

extracted the characteristics of the target signature [39–55]. Some outcomes of these studies are elaborated

below.

First, the classical point-target detector was modified for range-spread targets by the energy integra-

tion detector and the M out of N (M/N) detector. The typical scattering density dependent generalized

likelihood ratio test (SDD-GLRT) detector [39], which consists of a nonlinear map followed by an inte-

grator along the range cells, detects a range-spread target among white Gaussian noise. If the scattering

density parameter is known, the performance of SDD-GLRT improves. However, the efficiency of SDD-

GLRT solutions is decreased by the exponential and logarithmic operations. The M/N detector is a

typical double-threshold detector of spatially distributed targets. Owing to its efficient structure, this

detector can be easily realized in engineering and has been widely applied. Therefore, it has attracted

much interest and has been often modified to improve its robustness and efficiency [40, 41, 55].

Second is the adaptive detector, which utilizes multiple high-resolution range profiles (HRRPs) col-

lected from consecutive pulses or antenna subarrays to cope with cluttered backgrounds [42–49]. The

authors of [42] introduced a GLRT-based adaptive detector of range-spread targets in a partially uni-

form cluttered environment. The authors of [45] considered range-spread target detection in spherically

invariant random-vector clutter, and developed different detectors with a constant false alarm rate by

exploiting the order-statistics theory. In [46], a generalized matched subspace detector and a general

adaptive subspace detector in the frequency domain were developed for range-spread targets with range-

walking in a partially homogeneous clutter. The authors of [49] developed adaptive decision schemes that

reveal extended targets along with structured unwanted components in random interference (clutter and

thermal noise).

Third, to cope with the abundant information of the target signature, researchers have proposed

range-spread target detectors using multiple HRRPs in various environments. These systems detect

range-spread aircraft with maneuvering flights [50–54]. The detector proposed in [50] is based on the

cross time-frequency distribution features of two adjacently received signals, whereas that in [51] exploits

the waveform entropy of the arithmetic average of multiple successive HRRPs. The detector in [52] uses

a two-dimensional nonlinear shrinkage map related to the local statistics of a range-pulse image. The

authors of [53] proposed a heuristic detector that exploits the characteristics of target HRRPs extracted

from real target radar data. A range-spread target detector based on the time–frequency decomposition
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Figure 1 (Color online) Flowchart of GLRT-DT detector.

Table 1 Scattering center of target

Model number Name Scattering energy distribution

Model 1 Sparse uniform distribution The target is composed of 5 scatterers, each containing 20%

of the target energy.

Model 2 Sparse nonuniform distribution The target is composed of 1 strong scatterer, 1 weak scat-

terer, and 3 weaker scatterers containing 70%, 20%, and 3.33%

(each) of the target energy, respectively.

Model 3 Dense uniform distribution The target is composed of 128 weak scatterers, each containing

0.78% of the target energy.

Model 4 Dense nonuniform distribution The target is composed of 2 strong scatterers and 126 weak

scatterers, each containing 20% and 0.48% of the target en-

ergy, respectively.

of two adjacent mixer outputs using the cross S-method was devised in [54].

Although some detectors of range-spread targets perform well, they are very time consuming and

cannot be easily realized in engineering practice. We have extended the M/N detector to form the

generalized likelihood ratio test double threshold (GLRT-DT) [55]. To improve the robustness of the

detector and avoid energy loss, we added a non-quantified accumulator to the M/N detector and adjusted

the detection procedure accordingly. GLRT-DT performs well even when the number of scatterers and

the target location are missing. The detector is robust and delivers high detection performance. The

proposed detector is schematized in Figure 1.

The detection performances of GLRT-DT have been compared with those of the integrator detector,

SDD-GLRT detector, and M/N detector in Monte Carlo simulations. The scattering center of the target

can encounter four situations, as shown in Table 1.

Figure 2 shows the detection performances of the integral detector, M/N detector, SDD-GLRT detec-

tor, and GLRT-DT detector under the above parameters. As shown in the figure, the proposed detector

significantly outperformed the integrator detector and M/N detector. Its performance even surpassed

that of the SDD-GLRT detector in a sparse scattering environment, and approached that of the SDD-

GLRT detector in a dense scattering environment. Therefore, the proposed detector robustly operates in

both sparse and dense scattering environments.

4 High precision phase-derived velocity measurement technology

With the rapid development of radar technology, the application demands of high-precision ranging

and target velocity measurements have increased in various fields. For example, micro-motion measure-

ments [33, 34, 56] have always been active topics in target detection and recognition. However, owing to

their small amplitudes and imprecise motion compensation, micro-motions are difficult to characterize.

This bottleneck is most effectively broken through by improving the accuracy of the range and velocity

measurements [34, 57].

Theoretically, the precisions of the radar range and velocity measurements in conventional radar sys-

tems can be improved by increasing the signal bandwidth and integration time, respectively. However,
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Figure 2 (Color online) Performance comparison of four detectors (integral, M/N , SDD-GLRT, and GLRT-DT).

(a) Model 1: sparse uniform distribution; (b) model 2: sparse nonuniform distribution; (c) model 3: dense uniform distri-

bution; (d) model 4: dense nonuniform distribution.

increasing the signal bandwidth reduces the range resolution of the cells, whereas increasing the integra-

tion time increases the range migration. Therefore, the range migration of a high-sped target within the

integration time exceeds the range resolution of the cell. Balancing large-signal bandwidths and long-time

integration is usually a difficult task.

Range and velocity measurement methods utilizing phase information have been developed since the

1970s. In the 2000s, Raytheon Company patented two methods of phase-derived range measurement

(PDRM) [30, 31]. The PDRM technique extends the measurement of the target motion from macro to

micro, providing more effective characteristic reference information for target recognition.

Inspired by the PDRM concept, we proposed PDVM, which measures the target velocity from the

range rate of the target echoes between two adjacent frames [58]. Figure 3 shows the implementation

of the high-precision phase-derived range and velocity measurements. Because the range measurement

represents the range increment between two adjacent frames, the velocity of the target can be measured

at high precision by dividing the range increment by the time interval between the adjacent frames.

Meanwhile, the high-precision PDRM of the target can be derived by summing the range increments

of two adjacent frames. The range-increment measurements can be filtered after solving the ambiguity,

further improving the accuracy of the range and velocity measurements.

The measurement accuracy of the range increment between adjacent frames was simulated under

different SNR conditions. The simulated envelope ranging measurement (EVM) and accuracies of the

PDRM are shown in Figures 4 and 5, respectively. In the SNR range 16–35 dB, the root mean squared
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Figure 4 (Color online) Simulated accuracies of EVMs in different SNR environments. (a) SNR range: 13–35 dB;

(b) SNR range: 16–35 dB.

error (RMSE) reached the order of centimeters or millimeters in EVM and the order of millimeters or

sub-millimeters in PDRM. The detection probability of the target decreased at SNRs below 16 dB. If

the detection fails, the EVM and PDRM cannot be analyzed. In practice, when the joint target track

information is obtained, PDR can be applied in lower-SNR environments.

Subsequently, the PDVM technique has been applied to ISAR images [59] and micro-motion mea-

surements [35, 60]. We proposed a high-quality method that obtains ISAR images by compensating the

target motion using accurate velocity information. The novel ISAR motion compensation approach has

been conjugated with the PDVM technique to extract the micro-motion features of the target [35]. The

phase error induced by the discrete Fourier transform (DFT) was analyzed in [61], and a novel correction

method for the phase unwrapping error under low-SNR conditions was developed in [59].

5 Range-spread target tracking technology

HRR improves the accuracy, amount of target information, and performance of target-tracking in clut-

tered environments. In addition, tracking with a wideband waveform replaces the narrowband waveform

of conventional tracking radars and reduces the waste of radar energy, which is important in radar system

design. However, high-range resolution also reduces the SNR and introduces false alarms, placing greater

performance demands on the data association module and tracking filtering module during tracking.
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Figure 6 shows the interrelationships among HRR characteristics.

Uncertainties in measurement origins are often reduced by data association algorithms. The typical

narrowband tracking theory and its algorithms are based on the point target model. The input ob-

servations are used for determining the existing tracks and for initiating a new track [62]. However,

HRRs resolve the target into many scattering cells, invalidating the typical narrowband tracking algo-

rithm. The challenge in multiple range-spread target tracking is associating the observations, targets,

and tracks. Multiple targets and scattering cells also cause a multiplication of observations, significantly

increasing the computation complexity of data association (Figure 7).

5.1 Integrated detection and tracking algorithm

A traditional radar system is split into two independent subsystems-target detection and target track-

ing [63] – which are implemented in series. In detection, the Neyman-Pearson (NP) criterion is widely used

to minimize the false alarm rate and maximize the detection probability. In tracking, the uncertainty in

the measurement origin is reduced by data association algorithms such as the probabilistic data association

filter (PDAF) [64] and the multiple hypothesis tracker [62]. The traditional detection and tracking

algorithm is illustrated in Figure 8.

However, optimizing the subsystems does not necessarily optimize the general system. This topic

has attracted the attention of experts globally. To connect the detection and tracking subsystems,

some researchers have proposed non-simulation performance prediction (NSPP) methods [65–67]. The

performance of the PDAF algorithm has been analyzed by methods based on the modified Riccati equa-

tion [65, 66] and the hybrid conditional average (HYCA) [67]. Both methods characterize the impact of

false alarms and missed detections during tracking by using the information reduction factor (IRF) [68,69].
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In recent efforts, the tracking algorithm based on NP detection has been improved and the joint

optimization of detection and tracking has been considered [70]. The optimization parameters in joint

optimization are the detection probability and false alarm probability. The filtering performance (filtering

covariance) is predicted and the detection parameters are optimized based on the NSPP result.

Besides optimizing the detection threshold, some scholars have also analyzed the influence of radar

waveform parameters on the tracking performance, and have proposed several optimization methods

for these parameters [71–75]. The authors of [71] proposed a dynamic waveform selection algorithm

to strive for tracking error minimisation for manoeuvering target tracking in clutter. The proposed

dynamic waveform selection algorithm can improve tracking performance considerably, especially in terms

of track loss probability. The authors of [72] combined an autoregressive (AR) model into the Kalman

filter for target tracking, and optimized the waveform by minimizing the Cramer–Rao lower bound for

estimating the target range. After more in-depth research on this topic, the relevant theoretical results

were summarized into a theoretical system of cognitive radar.

Although the above method improves the tracking performance, some major problems must be resolved

before the method is feasible in practice. First, IRF cannot be analytically expressed in terms of NP

detection. Performance prediction requires a numerical calculation method, which is difficult to adapt

to the high requirements of radar data processing in real time. Second, the target-feature information

provided by the tracking module is not used in the detection process, meaning that the information flow

remains unidirectional.

Quite different to NP detection is Bayesian detection [76–78]. The PDAF algorithm with Bayesian

detection (PDAF-BD) [76] feeds back the filtered target-position information to the detection module and

introduces a spatial variation threshold, reducing the false alarm rate and improving the detection and

tracking performances. The Bayesian detector increases the information interaction between the tracking

system modules, which suppresses the number of false alarms and is theoretically suitable for wideband

radar. However, the cost of Bayesian detection and the pre-determined threshold of the detector are

difficult to estimate. If the detector parameters are not properly selected, the tracking performance will

be degraded. This problem largely limits the application of Bayesian detection.

To mitigate these problems, we proposed an HYCA method for the PDAF-BD algorithm [79]. For a
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Figure 10 (Color online) Schematic of the range-spread target-data association method.

given scene and algorithm parameters, the HYCA method predicts the track loss probability and errors

in the tracking algorithms at different times by observing the number of probability distributions and

iterating the computation of the filtering covariance matrix. We also proposed an integrated detection and

tracking algorithm based on Bayesian detection, which applies the performance prediction method [80]

of the above PDAF-BD algorithm as a sub-module of the tracking algorithm. During the tracking

process, the tracking performance under varying detection parameters is predicted from the tracking

status of the current frame. The detection parameters are dynamically optimized to maximize the

tracking performance. The integrated detection and tracking algorithm based on Bayesian detection is

illustrated in Figure 9.

5.2 Multiple target tracking with switching of attribute states

Multi-target tracking (MTT) attempts to relate the tracking to an observation. For this purpose, all

possible associated events must be exhaustively considered by a “hard-association” class algorithm. This

subsection presents two alternatives to exhaustive searching: indirect data-association and direct data-

association. Figure 10 shows the differences between the two methods.

(1) Indirect data-association method. The indirect data-association method reprocesses the range-

spread target observations to obtain the center of the multiple scattering cells as the target observation.

This method, which constitutes a type of “clustering” processing, is followed by target observation and

track association.

Koch [81] proposed a method that associates an observation with a target when the multiple range-

spread targets are sparsely distributed. The observation-target association is completed by applying

the nearest-neighbor method within an ellipse. Salmond [82] established the object-target affiliation by

applying the Bayesian association method on the combined observations.

The range-spread target association method is clear and reduces the computational complexity. Al-
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though the classical multi-target association method directly processes the associated data, it does not

form a closed-loop structure; rather, the information flows in the observation-target and target-track

associations are unidirectional, meaning that the former cannot obtain the a priori information fed back

by the latter. When the numbers of false alarms and missed detections are significant, the observation–

target association will largely deviate, decreasing the accuracy of the target-parameter estimation. These

errors will accumulate over time and the target-track correlation process will eventually fail. The inability

to improve the estimation using the time information, and to ensure the performance of the scattering

point–target correlation, are the bottlenecks of the entire association process, restricting the performances

of data-association methods to some extent.

(2) Direct data-association method. The direct data-association method assigns multiple observations

to a certain track at the same time. The assignment is based on the characteristics of the association

between the range-spread target observation and the track [83]. Therefore, such a method is directly

extendible to the target- tracking problem of HRRs. The most representative method is the probabilistic

multi-hypothesis tracker (PMHT) method based on the expectation maximization (EM) algorithm [84].

Owing to its flexibility and scalability, PMHT has attracted the attention of scholars around the world

and PMHT improvements have been actively sought in MTT theory. The accurate measurements and

abundant target information of PMHT reduce the number of missed associations and improve the tracking

performance. How to assist the association by exploiting the target-feature information is essential

for improving the target tracking performance [85, 86]. Previous studies have incorporated the feature

information into PMHT [87–97]. In some of these studies [92–94], the target is spatially expanded by the

ellipsoid model and the tracking is assisted by the structural information of the target. The PMHT with

classification measurements (PMHT-C) method assists the association using the target classification

features within the PMHT framework [95, 96]. The attribute measurements and targets are related

through a matrix that is independent of time and observations. The method improves the correlation

performance when the motion states are blurred.

However, the matrix correlating the measured attributes and target features may change in practice.

For example, the observed number of scattering points is not only affected by false alarm detections and

fluctuations but also depends on the target attitude. The PMHT-C algorithm cannot cope with switching

of the target-feature states, and its performance degrades in this circumstance.

To resolve these problems, an EM-based attribute-aided tracking algorithm has been developed [97].

Figure 11 is a flowchart of this attribute-aided tracking method. The attribute characteristics are de-
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scribed by a hidden Markov model and a joint probabilistic model of the kinematic and attribute proper-

ties is derived. Based on these derivations, an EM-based iterative algorithm is developed. The kinematic

and attribute information in multiple frames is used for association and filtering. The performance of

this algorithm improves when the target attributes are available.

6 ISAR imaging technology

The ISAR obtains range-Doppler images of non-cooperative moving targets. For this reason, it has become

an attractive option in recent years. Using the relative rotational and translational motions between a

target and the radar’s line of sight, ISAR reconstructs a two-dimensional high-resolution image of the

target. The desired relative motion is uniform rotational motion without translational motion. The

undesired translational component causes range migration and phase modulation, both of which degrade

the quality of the ISAR image [98,99]. Accordingly, this component is removed by a motion compensation

technique.

Complicated movements of a target involve nonuniform rotational motions. Therefore, well-focused

ISAR images usually require rotational motion compensation (RMC) [100–108]. Over the past few years,

extensive RMC methods have been proposed. ISAR imaging of maneuvering targets is handled by

different time-frequency analysis methods [100–103], such as adaptive Doppler spectrum extraction [100],

fractional Fourier transform [101], and modified Wigner-Ville transform [102]. In RMC, images can

be focused without constructing a parametric rotational motion model and estimating its parameters.

Another method is based on the adaptive joint time frequency (AJTF) algorithm [104]. The authors

of [104] optimized a cost function using the AJTF algorithm, and then estimated the polynomial phase

signal of the dominant scatterer used to remove the target’s nonuniform rotational motion. Recently,

Kang et al. [106] proposed a new ISAR RMC method that formulates the polynomial phase signal of the

dominant scatterer using the polynomial-phase transform. Liu et al. [108] proposed a novel estimation and

compensation method that removes the nonuniform rotational motions of maneuvering targets, thereby

compensating the nonlinear migration through the range cells and the high-order terms in the range-cell

echoes. They constructed a rotational motion model with constant angular acceleration, and analyzed

its influence on the image quality. The rotational motion parameters were estimated by particle swarm

optimization.

In addition, the unwanted translational motion of the target must be removed by reliable transla-

tional motion compensation (TMC) [109–116]. TMC methods, which include Doppler centroid tracking

(DCT) [109], phase gradient autofocus (PGA) [110, 111], minimum entropy phase autofocus [112], and

maximum contrast phase autofocus [112], estimate and compensate the phase error caused by transla-

tional motion. If the target’s rotational motion can be ignored and no prominent point exists, the phase

error estimation obtained by DCT becomes a maximum likelihood estimation [109]. As the target’s rota-

tional motion cannot be ignored and prominent points may exist, the assumptions of DCT may be invalid

in real applications. Instead, PGA integrates the information of several prominent scatterers to more

precisely estimate the phase error in the translational motion [110]. However, selecting the prominent

scatterers is a difficult task. Recently, subspace algorithms based on eigenvalue decomposition (EVD)

have been proposed [113–116], which are robust and more effective for ISAR phase autofocus than PGA.

More specifically, Cao et al. [113] proposed a minimum-entropy ISAR autofocus algorithm (MESA),

which optimizes the weights of the principle eigenvectors by an iterative optimization method, and then

estimates the phase error in the translational motion. Suppose that a relatively strong scatterer exists

on the target. After constructing the EVD of the covariance matrix from the complex range-aligned

echoes, the translational motion phase error can be estimated as the single eigenvector corresponding

to the largest eigenvalue. This method is called single eigenvalue autofocus (SEA) [114]. Recently, the

efficiency of TMC has been improved by a new concept called eigenimage, which defines the fast Fourier

transform output of the principal eigenvectors [115]. However, the methods in [113, 115] require com-

plicated iteration and optimization procedures. In addition, the computational complexity of EVD is of
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the order of O(M3), where M is the dimension of the covariance matrix with respect to the number of

pulse samples [113–115]. To enhance the cross-range resolution of the given pulse repetition frequency, a

larger observation pulse number is usually requested. Consequently, all of the above EVD-based autofo-

cus methods are disadvantaged by the high computational complexity of processing the high-dimensional

covariance matrix.

To avoid the high computational complexity of EVD-based autofocus methods, the authors of [116]

proposed an alternative approach that generates the covariance matrix more efficiently. First, HRRPs

are obtained by compressing the original range. The data are then range-aligned and inserted into a

matrix. Subsequently, the numbers of range bins are compared with those of pulse samples. If there

are more range bins than pulse samples, the covariance matrix can be constructed by a conventional

EVD-based method. Otherwise, the dimension of the covariance matrix can be reduced by transposing

the range-aligned data matrix and performing successive phase autofocuses. This approach significantly

reduces the computational complexity of EVD. Figure 12 is a flowchart of this alternative method.

Airplane echo data have been recorded by an S-band experimental ISAR system. Using a stepped

frequency signal with a synthetic bandwidth of 320 MHz, this experiment collected 256 pulses with an

average pulse SNR of 16 dB in the range-aligned data. Figure 13 shows the results of DCT, PGA, and the

modified SEA and MESA algorithms (M-SEA and M-MESA, respectively) on these real aircraft data.

The targets in the ISAR images obtained by DCT and PGA (panels (c) and (d) of Figure 13, respec-

tively) are almost merged by noise. The focus qualities of the images obtained by M-MESA and M-SEA

(panels (e) and (f) in Figure 13, respectively) are vastly improved. The contrasts of ISAR images obtained

by the four methods are compared in Table 2. The higher the contrast, the better is the focus quality. In

Table 2, the contrast values of DCT and PGA were lower than those of M-MESA and M-SEA, consistent

with the above discussion. Furthermore, M-MESA yielded a better result than M-SEA because M-MESA

uses more eigenvectors that contribute to the signal subspace.
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Figure 13 (Color online) Results of measured airplane data. (a) Envelope alignment by ACM; (b) first 80 eigenvalues of

the covariance matrix; (c) DCT; (d) PGA; (e) M-SEA; (f) M-MESA.

Table 2 Contrast comparison of different autofocus methods

Method DCT PGA M-SEA M-MESA

Contrast 10.5218 14.0038 23.9199 24.3422

7 Automatic target recognition technology

Radar automatic target recognition (RATR) is a specific application of the pattern recognition theory

in the radar field. RATR extracts the discernible features from the frequency, phase, amplitude, and

polarization information of the scattered field echo signals generated by the target in the far field of the
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radar, and identifies the target using the a priori target information [117–121]. A typical RATR system is

divided into four modules: data acquisition, preprocessing, feature extraction, and selection (also known

as classifier training or decision-making). The data used for identification are divided into training data

and real data. The framework of RATR implementation is shown in Figure 14.

The RATR tasks can be classified into the following three levels:

(1) Discrimination of target attributes such as the warheads, number of aircraft in the formation,

satellites, and space debris [122].

(2) Determination of the targets, which may be helicopters, propellers, jets, wheeled and tracked

vehicles, or other objects.

(3) Determination of the target model, for example, jet aircraft Su-35 and F-22 and ground track

vehicles T-90 and M1A2.

RATR is gradually developed from low-level discrimination to high-level classification and identifica-

tion. In general, the target becomes more difficult to identify as the level increments, requiring more

target information and finer images.

7.1 HRRP attitude sensitivity problem

The HRRP of the target is the projection of the target scattering center in the direction of sight. HRRP,

which reflects the geometric and structural features of the target, is among the main methods of wideband

radar target recognition [117, 123–126]. The echo of each resolution cell of the target’s HRRP is formed

by superposing the echoes of multiple scattering centers in the resolution cell. When the target position

changes relative to the radar’s line of sight, the radial range of the scattering center also changes, causing

a phase change of the echo. In turn, the phase change alters the vector superposition result and the

shape of the HRRP appears to undulate. The sensitivity of HRRP to attitude variations increases with

increasing (decreasing) carrying frequency (wavelength) of the wideband radar. When the angle of view

varies significantly, the distribution of the scattering center in the sight direction may be significantly

changed by the shielding effect, which may distinctly alter the HRRP.

HRRP target recognition must resolve three main problems: orientation sensitivity, translation sensi-

tivity, and amplitude sensitivity. Researchers worldwide have conducted in-depth research on these issues

and proposed various solutions.

Orientation sensitivity refers to the notable shape changes in HRRP for small changes in the orienta-

tion angle when there is relative rotation between the radar and the target. It is sourced from the relative

change in the radial distance of each scattering point on the target, and is the most difficult and critical

issue. At present, the main solution is to divide the HRRP sequence into several subsets, each cover-

ing a small range of orientation angles. A training template is then constructed for each subset, which

can be considered as orientation-insensitive. Orientation sensitivity is usually relaxed by equally spac-

ing the entire azimuthal domain; each angular domain is then analyzed by an analytical mathematical

model [127]. The authors of [128] adaptively divided the azimuthal domain using the factor analysis

model and the Riemann manifold bending rate model, and calculated the average range profile to achieve

target recognition.
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Table 3 Typical HRRP features

Feature category Example

Waveform characteristics

Scale characteristics Length, number of scattering points

Fluctuation characteristics Mean, variance

Structure characteristics Symmetry, wave, entropy descaling

Transformation characteristics

Spectral characteristics Spectrum, bispectrum, high order spectrum

Multiscale feature Wavelet transform

Subspace characteristics PCA, LLE

The translation sensitivity problem is caused by the relative motion of the target and the radar,

meaning that the relative position of the target range migrates within the length of the wave-gate window.

Translation sensitivity is usually handled by one of the two methods: (1) alignment method, which mainly

involves correlation alignment and absolute alignment, and (2) HRRP translation-invariant features. The

commonly used features include the Fourier transform spectrum amplitude, bispectrum features, high-

order spectral features [129], and central moment features [130].

The amplitude sensitivity problem refers to the unfairness of the data in the subsequent classification

and recognition. This problem is caused by the inconsistency in the magnitude-scale standards of the

range image (due to differences between the radar and the target range, transmission power, antenna

gain, and other uncontrollable phenomena). It is commonly solved by normalizing the amplitude based

on measured criteria or by searching for the optimal amplitude-matching factor.

7.2 Hierarchical target recognition algorithm

In general, radar target recognition consists of two steps: feature extraction and classification. Feature

extraction isolates a set of features representing the essential attributes of the target from HRRP. Feature

classification maps the feature set to the corresponding class of the target by machine learning [117–130].

Feature extraction must identify the information reflecting the essential attributes of the target, which

form the basis of the classification. Table 3 shows the commonly employed features in HRRP recognition.

The waveform features directly reflect the shape of HRRP. Typical waveform features include the scale,

statistical, and structural features. The scale features reflect the radial length, number of scattering

centers, and other scale properties of the target. The statistical features reflect the amplitude change

information, and the structural features reflect the spatial distribution information of the scattering

center. The transformation features are extracted by a specific transform of HRRP. The spectral and

multi-scale features are obtained by a transform function (such as a Fourier or bispectrum transform)

and a wavelet transform, respectively, and the subspace characteristics are formed by dimensionality

reduction methods such as principal component analysis (PCA) and local linear embedding.

However, the traditional HRRP feature-extraction method requires advanced human experience, and

a universal set of features is difficult to form. In specific applications, feature extraction and selection

often consume much manpower and time, largely restricting the application of HRRP recognition.

In multi-feature recognition, we need to select the appropriate feature subset and construct the cor-

responding classifier that recognizes different targets in different environments. If all features are fused

blindly, the dimension of the feature vector will be greatly increased, which not only increases the com-

putation effort and storage but may also reduce the recognition performance. Moreover, features differ

in their physical meanings and usages.

A hierarchical recognition method handles different features by different classifiers. When designing

classifiers at different levels, the classifier must be optimized by considering the physical meanings and

statistical distributions of the features. For example, features such as target size and scattering center

can be classified by a simple threshold discriminant classifier or a decision tree classifier, whereas the

structural and statistical features of the scattering centers can be discriminated by a support vector

machine classifier. Before making the final decision, the results of different classifiers can be combined

by an ensemble classification method.
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Figure 15 (Color online) HRRP recognition using a convolution neural network.

Table 4 Parameters of the X-band high-resolution monopulse precision-tracking test radar

Parameter Value

Frequency band X

Signal bandwidth 1 GHz

Peak power 4 kW

Antenna aperture 2.5 m

Azimuth 0◦–360◦

Elevation −3◦–180◦

For adaptive feature extraction, we can exploit the end-to-end capability of deep neural networks.

Deep learning avoids the high dependence of the traditional machine learning algorithm on human experi-

ence [118–121]. Deep neural networks include deep autoencoders, deep convolution neural networks, and

deep recurrent neural networks. Among these, the deep convolution neural network is most commonly

used. Figure 15 is a block diagram of HRRP recognition using a deep convolution neural network.

The network includes a convolution layer, a pooling layer, and a fully connected layer. The stacked

convolution layer and pooling layer map the original data directly to the high-level abstract features,

which are then mapped to the target through the fully connected layer. The entire process requires no

human intervention.

8 Applications of HRR

8.1 High-resolution monopulse precision-tracking test radar

Based on theoretical research of HRR algorithms, the Beijing Institute of Technology has developed an

X-band high-resolution monopulse precision-tracking test radar. The main parameters of the system

are shown in Table 4. In January 2016, the wideband test radar successfully realized full-bandwidth

closed-loop tracking of civil aircraft in real time, and verified the key technologies of signal processing

and data processing in wideband detection, tracking, high-precision measurement, imaging, and other

procedures. As an important test platform, the wideband radar provides continuously measured data

support for subsequent wideband detection and tracking research. Figure 16 is a photograph of the

X-band wideband test radar.

The X-band wideband radar records the echo data of an Airbus A320 airplane. The bandwidth of

the wideband signal is 500 MHz. Initially, the radar system is led to the target by optical or ADS-B

guidance. Once the radar system has captured the target, it switches to monopulse automatic tracking.
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Figure 16 (Color online) Photograph of the X-band high-resolution monopulse precision-tracking test radar.

:  r =0.00, a=0.00, v=0.00

r =92649.195, a=−0.1549, e=0.0805

Figure 17 (Color online) Real-time closed-loop tracking of a civil aircraft.

Figure 17 demonstrates the real-time closed-loop tracking of the civil aircraft. The maximum detection

range of the target exceeded 90 km, implying that the aircraft was successfully tracked. This result justifies

the use of signal-processing technology in wideband detection and tracking.

The envelope velocities and phase-derived velocities measured over 12 s, obtained from 2048 frames of

airplane echo data, are plotted in panel (a) of Figures 18 and 19, respectively. Panel (b) of each figure

plots the velocity fluctuation error, defined as the difference between the measured data (blue plot) and

the least-squares fitting result (red line). The RMSEs of the EVM and PDVM are 2.3 and 0.055 m/s,

respectively.

The adjustment amount required for envelope alignment was computed from the PDVM results of

frames 513–768 in the ISAR echo data. The ISAR imaging results of the civil aircraft were obtained after

TMC and are plotted in Figure 20.

8.2 Foreign object debris high-resolution radar

Wideband radar target-recognition technology can detect foreign object debris (FOD) on airport runways.

FOD defines any foreign material, debris, or object that may damage the aircraft in the operational airport

area. If not removed, FOD can damage the aircraft at the most critical stage of the flight (taxiing and

takeoff), resulting in catastrophic losses.

Traditional FOD detection relies on human vision, which is poor-quality and inefficient. The flight

capacity can be improved by installing photoelectric equipment, but such automated photo-detection

is degraded by bad weather conditions (such as rain, fog, and haze). In recent years, the millimeter

wave (MMW) radar has shown promising performance in FOD detection. MMW radar operates under

both daytime and nighttime conditions, is highly sensitive to small foreign objects, has high positioning
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Figure 18 (Color online) Analysis of the measured civil aircraft envelope velocities. (a) Velocity measurements; (b)

velocity fluctuation errors.
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Figure 19 (Color online) Analysis of the phase-derived velocity measurements of the civil aircraft. (a) Velocity measure-

ments; (b) velocity fluctuation errors.
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Figure 20 (Color online) ISAR imaging results of the civil aircraft.
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Figure 21 (Color online) FOD radar.
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Figure 22 (Color online) One-dimensional images captured by FOD radar on an airfield. (a) Aircraft; (b) vehicles;

(c) foreign objects.

accuracy for both distance and angle, and is strongly adaptable to bad-weather conditions. Moreover,

when combined with photoelectric equipment and Beidou positioning equipment, the MMW radar can

position and report FOD with high accuracy and high speed, greatly improving the quality and efficiency

of detection, and hence, the safety and navigation ability of the airport operation.

The FOD detection radar developed by the Beijing Institute of Technology is a high-resolution W-band

radar using a linear frequency-modulated continuous wave, as shown in Figure 21.

Panels (a), (b), and (c) of Figure 22 show the measured HRRPs of the aircraft, ground vehicles, and

foreign objects, respectively. These objects can be distinguished by their scale-structure characteristics,
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Figure 23 (Color online) Measured dual-polarized one-dimensional images of houses (a) and vehicles (b), and their

polarization features (c).

realizing automatic target recognition.

8.3 Dual polarization high-resolution radar

Combined with polarization measurements, high-resolution imaging technology can capture the distribu-

tion of the “spatial-polarimetric” scattering characteristics of a target. From this information, one can

extract the spatial structure of the target and the characteristics of polarization scattering, and form

the shape features of the target structure. This dual technology holds great potential in radar target

recognition [131–133].

Polarization measurement methods are divided into full polarization and dual polarization modes. Full

polarization obtains the whole polarimetric scattering matrix, but requires complex hardware, waveform

design, and signal processing. At present, full polarization has been applied in spaceborne SAR, shipborne

radars, and GBRs.

The dual polarization mode measures a single column of the target polarization scattering matrix.

Although dual polarization provides less information than the full polarization radar, it provides more

target information than traditional single-polarization radar while reducing the hardware complexity of

the system. The dual polarized high-resolution radar developed by the Beijing Institute of Technology

uses a stepped frequency chirp signal in the W-band [134]. The maximum synthetic bandwidth is 1.2 GHz.

Figure 23 shows the dual polarized HRRPs and polarization characteristics of houses and vehicles collected

by this radar. The HRRPs of both targets have certain similarities and are difficult to distinguish with

reliability. However, their extracted polarization features are well separated, meaning that both targets

are reliably identified in the dual polarization mode.
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9 Summary and prospects

HRRs can potentially improve the detection ability of space targets in complicated environments. They

improve the accuracy of target detection, obtain more feature information of the target, and are more

aware of the environment than traditional radars, highlighting the feasibility of diverse and intelligent

signal processing algorithms in radar applications. However, to satisfy diverse military and civilian needs,

HRR performance must be further improved.

This paper reviewed the latest research on HRRs, including target detection, tracking, imaging, and

recognition by HRRs. It also discussed the relevant issues and solutions and analyzed the representative

HRR systems, exemplifying them by experimental results. An HRR efficiently suppresses the target RCS

fluctuations, angular glint, clutter, and other interferences, and is regarded as the direction of radar

research and development. However, its resolution remains insufficient for general applications and the

bandwidth should suit the scattering characteristics of the specific target. Resolving these problems will

be the focus of future research.

Judging from the existing methods of high-resolution signal processing, we anticipate that more attrac-

tive and effective methods will be proposed in the future, enabling the HRR tracking of complex targets

in complex environments. Innovations in this field will boost the development and applicability of HRRs.
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