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Dear editor,
The Boolean network (BN) was introduced by
Kauffman [1] to model a genetic network . In such
a network, the nodes (genes, proteins, or other
molecules) assume only two values, 1 (ON) and
0 (OFF), and the interactions between nodes are
determined by Boolean functions. Owing to the
complexity of nonlinear logical relations, a con-
venient tool has been lacking until an algebraic
framework was developed by Cheng et al. [2] via
a semi-tensor product; further, extensive studies
on BNs have been performed in the past decade
from the perspective of system and control, e.g.,
the monography [2].

A nonlinear feedback shift register (NFSR) is
a finite automaton and has the same mathemat-
ical model as the BN. To assure information se-
curity, NFSRs have been used in many stream ci-
phers. Grain [3], a hardware-oriented finalist in
the eSTREAM Stream Cipher Project, uses a cas-
cade connection of a linear feedback shift register
(LFSR) into an NFSR. Based on Grain, some new
stream ciphers such as Plantlet [4] and Lizard [5]
were recently designed. However, unlike Grain and
Plantlet, Lizard uses a cascade connection of an
NFSR into another NFSR.

NFSRs are generally implemented in the Fi-
bonacci or Galois configuration. Two NFSRs are
equivalent if their sets of output sequences are
equal [6]. As a particular Galois NFSR, a cas-
cade connection of two NFSRs is equivalent to a
Fibonacci NFSR, but it is preferable owing to its

potentially shorter propagation time and higher
throughput [6]. An NFSR is nonsingular if its state
diagram only contains cycles. To avoid state col-
lisions, NFSR-based stream ciphers must use non-
singular NFSRs. A Fibonacci NFSR is nonsingular
if and only if its feedback function is nonsingular;
but this is not true for a general Galois NFSR [7].

An NFSR is said to be decomposable if it is
equivalent to a cascade connection of two NFSRs.
Decomposing an NFSR as a cascade connection
of an NFSR into an LFSR was studied using the
linearity of the LFSR to factorize the character-
istic function of the former NFSR [8]. However,
the linear methods involved are not applicable to
a general cascade connection. As in [8], the decom-
position of NFSRs herein means the decomposition
of Fibonacci NFSRs.

This study views NFSRs as Boolean networks
to address the decomposition of an NFSR into a
cascade connection of two NFSRs. It first shows
that a cascade connection of two NFSRs is non-
singular if and only if the feedback functions of
both NFSRs are nonsingular, which is an easily
verifiable condition. It then reduces the decom-
position of (nonsingular) NFSRs to the Kronecker
product decomposition of (permutation) matrices
whose columns are canonical vectors. A new and
simple method is proposed to the Kronecker prod-
uct decomposition of such matrices. This letter
also reveals that only two factors affect the decom-
position type and indicates that the decomposition
is not unique if an NFSR is decomposable.
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Notations. Let N denote the set of nonnega-
tive integers, and In represent the identity matrix
of dimension n. δin stands for the i-th canonical
vector of size n, i.e., the i-th column of In with
i ∈ {1, 2, . . . , n}. ∆n denotes the set of all canoni-
cal vectors of size n. Ln×m is the set of n×m ma-
trices, whose columns belong to ∆n. If L ∈ Ln×m,

then L = [δi1n δi2n · · · δimn ]. For simplicity, we write
L in a compact form, as L = δn[i1 i2 · · · im].
Colj(A) stands for the j-th column of matrix A.
⌈r⌉ denotes the smallest integer no less than a real
number r. ⊕ and ⊙ are, respectively, the addition
and multiplication over the binary field F2.

Boolean function. A Boolean function f with
n variables is a mapping from F

n
2 to F2. Let i

be the decimal number corresponding to the bi-
nary (i1, i2, . . . , in) via the mapping i = i12

n−1 +
i22

n−2 + · · · + in. Subsequently, i ranges from 0
to 2n − 1. Let f(i) = f(i1, i2, . . . , in). [f(2n −
1), f(2n − 2), . . . , f(0)] is called the truth table of
f , arranged in the reverse alphabet order. The
matrix

F =

[

f(2n − 1) f(2n − 2) . . . f(0)

1− f(2n − 1) 1− f(2n − 2) . . . 1− f(0)

]

is called the structure matrix of f [2]. f =
[f1 f2 . . . fn]

T is a vectorial function if its com-
ponents f1, f2, . . . , fn are all Boolean functions.

Mathematical model of BNs. A BN with n nodes
and m inputs can be described by the following
nonlinear system:

X(t+ 1) = gu(U(t),X(t)), t ∈ N, (1)

where X = [X1 X2 · · · Xn]
T ∈ F

n
2 is the state,

U = [U1 U2 · · · Um]T ∈ F
m
2 is the input, and

the vectorial function gu = [gu1 gu2 . . . gun]
T is

the state transition function.

Definition 1 ([2]). Let A and B be matrices of
dimensions n×m and p× q, respectively, and let
α be the least common multiple of m and p. The
(left) semi-tensor product of A and B is defined
as an nα

m
× qα

p
matrix, given by

A⋉B =
(

A⊗ I α
m

)

(

B ⊗ Iα
p

)

, (2)

where ⊗ represents the Kronecker product.

Lemma 1 ( [2]). Let x = [X1 X1 ⊕ 1]T ⋉

[X2 X2 ⊕ 1]T ⋉ · · · ⋉ [Xn Xn ⊕ 1]T with each
Xi ∈ F2. Then x ∈ ∆2n . Moreover, the state X =
[X1 X2 · · · Xn]

T ∈ F
n
2 and the state x = δ

j
2n ∈

∆2n with j = 2n − (2n−1X1 +2n−2X2 + · · ·+Xn)
are one-to-one correspondent.

Lemma 2 ( [2]). The nonlinear system (1) de-
scribing a BN with inputs can be equivalently ex-
pressed as a linear system:

x(t+ 1) = Lu ⋉ u(t)⋉ x(t), t ∈ N, (3)

where x ∈ ∆2n is the state, u ∈ ∆2m is the input,
and Lu ∈ L2n×2n+m is the state transition matrix,
satisfying

Colj(Lu) = Colj(Gu1)⊗ · · · ⊗ Colj(Gun) (4)

for all j = 1, 2, . . . , 2n+m, with the structure ma-
trix Gui of the i-th component gui of the vectorial
function gu in (1) for any i ∈ {1, 2, . . . , n}.

In (1), if U(t) ≡ 0 for any t ∈ N, which means
a BN without input, then its linear system repre-
sentation (3) is reduced to x(t + 1) = Lx(t) with
state transition matrix L ∈ L2n×2n [2].

NFSRs. Figure 1 describes a cascade connection
of an m-stage NFSR1 into an n-stage NFSR2, in
which the Boolean functions g and f are, respec-
tively, their feedback functions. Here, NFSR1 is a
Fibonacci NFSR, while NFSR2 is an NFSR with
a single input, described by the nonlinear system:






















X1(t+ 1) = X2(t),
...

Xn−1(t+ 1) = Xn(t),

Xn(t+ 1) = U1(t)⊕ f(X1(t), X2(t), . . . , Xn(t)).

(5)

NFSR1 can be represented by the linear system [9]:

u(t+ 1) = Lu(t), t ∈ N, (6)

where L ∈ L2m×2m is the state transition matrix,
satisfying
{

Col2m−1+j(L) = δ
2j−q

2m−1+j

2m ,

Colj(L) = δ
2j−qj
2m , j = 1, 2, . . . , 2m−1,

(7)

with the truth table [q1, q2, . . . , q2m ] of g, arranged
in the reverse alphabet order.

+

Figure 1 A cascade connection of an m-stage NFSR1

into an n-stage NFSR2.

Let G = (V,A) and Ḡ = (V̄ , Ā) be the state di-
agrams of two n-stage NFSRs, where V and V̄ are
the sets of their states, while A and Ā are the sets
of their edges. G and Ḡ are said to be isomorphic
if there exists a bijection mapping ϕ : V → V̄ such
that for any edge E ∈ A from state X to Y , there
exists an edge Ē ∈ Ā from ϕ(X) to ϕ(Y ).

Theorem 1. NFSR2 can be equivalently ex-
pressed as a linear system:

x(t+ 1) = Lu ⋉ u1(t)⋉ x(t), t ∈ N, (8)

with state x ∈ ∆2n , input u1 ∈ ∆2, and state
transition matrix Lu ∈ L2n×2n+1 satisfying

Colj(Lu) = δ
2[(j−1) mod 2n−1+1]−sj
2n (9)
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for all j = 1, 2, . . . , 2n+1, where [s1, s2, . . . ,
s2n+1 ] is the truth table of the function
fn(U1, X1, . . . , Xn) = U1 ⊕ f(X1, X2, . . . , Xn),
arranged in the reverse alphabet order, with
NFSR2’s input U1 and feedback function f .

Theorem 2. Let L = [L1 L2] with L1,L2 ∈
L2m×2m−1 be the state transition matrix of
NFSR1, and let Lu = [Lu1 Lu2] with Lu1,Lu2 ∈
L2n×2n be the state transition matrix of NFSR2.
Then

L̄c = [L1 ⊗Lu1 L2 ⊗Lu2] (10)

is the state transition matrix of the cascade con-
nection of NFSR1 into NFSR2.

Theorem 3. If an n-stage Fibonacci NFSR and
an n-stage Galois NFSR are equivalent, then their
state diagrams are isomorphic.

Corollary 1. A cascade connection of NFSR1
into NFSR2 is nonsingular if and only if its equiv-
alent Fibonacci NFSR is nonsingular.

Theorem 4. A cascade connection of NFSR1
into NFSR2 is nonsingular if and only if the feed-
back functions of both NFSRs are nonsingular.

Define J1 = {(i − 1)2n + j|i = 1, 2, . . . , 2m, j =
1, 2, . . . , 2n−1} and J2 = {1, 2, . . . , 2m+n}\J1. Let
Q2n be the set of permutation matrices of dimen-
sion 2n; further, we define two sets as follows:

P2m+n = {δ2m+n [i1 i2 · · · i2m+n ] ∈ Q2m+n |ik ∈ J1

and i2m+n−1+k ∈ J2

for all k = 1, 2, . . . , 2m+n−1
}

,

R2r = {δ2r [i1 i2 · · · i2r ] ∈ Q2r |is, i2r−1+s

∈ {2s− 1, 2s} for all s = 1, 2, . . . , 2r−1}.

Theorem 5. An (m+n)-stage Fibonacci NFSR
can be decomposed into a cascade connection of
an m-stage NFSR1 into an n-stage NFSR2 if and
only if there exists a permutation matrix P =
[Pl Pr] ∈ P2m+n with Pl,Pr ∈ L2m+n−1 , such that
PLfP

−1
l = L1 ⊗ Lu1 and PLfP

−1
r = L2 ⊗Lu2,

where Lf ∈ L2m+n×2m+n is the state transition
matrix of the Fibonacci NFSR, [L1 L2] is the
state transition matrix of NFSR1 with L1,L2 ∈
L2m×2m−1 , and [Lu1 Lu2] is the state transition
matrix of NFSR2 with Lu1,Lu2 ∈ L2n×2n .

Theorem 6. An (m + n)-stage nonsingular Fi-
bonacci NFSR can be decomposed into a cascade
connection of an m-stage NFSR1 into an n-stage
NFSR2 if and only if there exists a permutation
matrix P ∈ P2m+n such that PLfP

−1Q0 = L ⊗
Lu2, where Lf ∈ L2m+m×2m+n is the state transi-
tion matrix of the Fibonacci NFSR, L ∈ R2m is
the state transition matrix of NFSR1, Lu2 ∈ R2n

is the state transition matrix of NFSR2 with its
input maintained at zero, and

Q0 =

[

I2m−1 ⊗ P0 0
0 I2m+n−1

]

is a permutation matrix with P0 = δ2n [2
n−1 +

1 2n−1 + 2 · · · 2n 1 2 · · · 2n−1].

Theorems 5 and 6 demonstrate that the decom-
position type of a Fibonacci NFSR is only relative
to two factors: the stage number decomposition
and the state permutation of the Fibonacci NFSR.
Even if the stage number decomposition is fixed,
different state permutations may result in differ-
ent decomposition types, which can be easily seen
from Property 4 of Lemma 1 in [8]. All these facts
demonstrate that the decomposition is not unique
if an NFSR is decomposable.

Theorem 7. Let A = δm[α1 α2 · · · αr] ∈
Lm×r, B = δn[β1 β2 · · · βs] ∈ Ln×s, and P =
δmn[γ1 γ2 · · · γrs] ∈ Lmn×rs. Then, P = A ⊗B

if and only if

{

β(i−1) mod s+1 = (γi − 1) mod n+ 1,

α⌈ i
s
⌉ = ⌈γi

n
⌉, i = 1, 2, . . . , rs.

For more details, please refer to Appendixes A–
C.
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