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Dear editor,

The Boolean network (BN) was introduced by
Kauffman [1] to model a genetic network . In such
a network, the nodes (genes, proteins, or other
molecules) assume only two values, 1 (ON) and
0 (OFF), and the interactions between nodes are
determined by Boolean functions. Owing to the
complexity of nonlinear logical relations, a con-
venient tool has been lacking until an algebraic
framework was developed by Cheng et al. [2] via
a semi-tensor product; further, extensive studies
on BNs have been performed in the past decade
from the perspective of system and control, e.g.,
the monography [2].

A nonlinear feedback shift register (NFSR) is
a finite automaton and has the same mathemat-
ical model as the BN. To assure information se-
curity, NFSRs have been used in many stream ci-
phers. Grain [3], a hardware-oriented finalist in
the eSTREAM Stream Cipher Project, uses a cas-
cade connection of a linear feedback shift register
(LFSR) into an NFSR. Based on Grain, some new
stream ciphers such as Plantlet [4] and Lizard [5]
were recently designed. However, unlike Grain and
Plantlet, Lizard uses a cascade connection of an
NFSR into another NFSR.

NFSRs are generally implemented in the Fi-
bonacci or Galois configuration. Two NFSRs are
equivalent if their sets of output sequences are
equal [6]. As a particular Galois NFSR, a cas-
cade connection of two NFSRs is equivalent to a
Fibonacci NFSR, but it is preferable owing to its
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potentially shorter propagation time and higher
throughput [6]. An NFSR is nonsingular if its state
diagram only contains cycles. To avoid state col-
lisions, NFSR-based stream ciphers must use non-
singular NFSRs. A Fibonacci NFSR is nonsingular
if and only if its feedback function is nonsingular;
but this is not true for a general Galois NFSR [7].

An NFSR is said to be decomposable if it is
equivalent to a cascade connection of two NFSRs.
Decomposing an NFSR as a cascade connection
of an NFSR into an LFSR was studied using the
linearity of the LFSR to factorize the character-
istic function of the former NFSR [8]. However,
the linear methods involved are not applicable to
a general cascade connection. As in [8], the decom-
position of NFSRs herein means the decomposition
of Fibonacci NFSRs.

This study views NFSRs as Boolean networks
to address the decomposition of an NFSR into a
cascade connection of two NFSRs. It first shows
that a cascade connection of two NFSRs is non-
singular if and only if the feedback functions of
both NFSRs are nonsingular, which is an easily
verifiable condition. It then reduces the decom-
position of (nonsingular) NFSRs to the Kronecker
product decomposition of (permutation) matrices
whose columns are canonical vectors. A new and
simple method is proposed to the Kronecker prod-
uct decomposition of such matrices. This letter
also reveals that only two factors affect the decom-
position type and indicates that the decomposition
is not unique if an NFSR is decomposable.
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Notations. Let N denote the set of nonnega-
tive integers, and I,, represent the identity matrix
of dimension n. ¢ stands for the i-th canonical
vector of size n, i.e., the i-th column of I,, with
i€{1,2,...,n}. A, denotes the set of all canoni-
cal vectors of size n. L, «xm is the set of n x m ma-
trices, whose columns belong to A,. If L € L, xm,
then L = [§% 622 ... §im]. For simplicity, we write
L in a compact form, as L = §,[i1 iz -+ im).
Col;(A) stands for the j-th column of matrix A.
[r] denotes the smallest integer no less than a real
number r. @& and ® are, respectively, the addition
and multiplication over the binary field F.

Boolean function. A Boolean function f with
n variables is a mapping from Fy to Fy. Let ¢
be the decimal number corresponding to the bi-

nary (iq,i2,...,4,) via the mapping i = ;2" ! +
192" 72 4 ... 4 4,. Subsequently, i ranges from 0
to 2" — 1. Let f(i) = f(i1,iz,...,in). [f(2" —
1), f(2" = 2),..., f(0)] is called the truth table of

f, arranged in the reverse alphabet order. The
matrix

F =

fer=1)  f(2n-2) ... f(0)
1—f2n—1) 1— f(2"—2) ... 1— f(0)

is called the structure matrix of f [2]. f =
[fi f2 ... fa]T is a vectorial function if its com-
ponents fi, fa, ..., fn are all Boolean functions.
Mathematical model of BNs. A BN with n nodes
and m inputs can be described by the following
nonlinear system:
X(t+1)=

gu(U(t), X (1), teN, (1)

where X = [X; X, --- X,|T € F} is the state,
U=1[U Uy - Up|*t € FY is the input, and
the vectorial function gy = [gu1 Gu2 --- Gun)T is
the state transition function.

Definition 1 ([2]). Let A and B be matrices of
dimensions n x m and p X ¢, respectively, and let
« be the least common multiple of m and p. The
(left) semi-tensor product of A and B is defined

as an 2% x % maftrix, given by
AxB=(Acls)(Bols), (2

where ® represents the Kronecker product.
Lemma 1 ([2]). Let z = [X; X; @ 1]T
(Xo Xo @17 X [X, X, @ 1] with each
X; € Fy. Then « € Agn. Moreover, the state X =
(X1 X2 -+ X,V € F% and the state x = &, €
Agn with j =2" — (2" 71X, +2" 2 Xy + -+ X,,)
are one-to-one correspondent.

Lemma 2 ([2]). The nonlinear system (1) de-
scribing a BN with inputs can be equivalently ex-
pressed as a linear system:

x(t+1) =Ly xu(t)x x(t), teN, (3)
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where & € Agn is the state, u € Agm is the input,
and L,, € Lonyon+m is the state transition matrix,
satisfying

COlj (Lu) = COlj(Gul) (9

for all j = 1,2,...,2""™ with the structure ma-
trix G'y; of the i-th component g,; of the vectorial
function gy in (1) for any i € {1,2,...,n}.

n (1), if U(t) = 0 for any ¢ € N, which means
a BN without input, then its linear system repre-
sentation (3) is reduced to x(t + 1) = Lx(t) with
state transition matrix L € Lonyon [2].

NFSRs. Figure 1 describes a cascade connection
of an m-stage NFSR1 into an n-stage NFSR2, in
which the Boolean functions g and f are, respec-
tively, their feedback functions. Here, NFSR1 is a
Fibonacci NFSR, while NFSR2 is an NFSR with
a single input, described by the nonlinear system:

- ®Colj(Gun)  (4)

Xa(t+1) = Xo(t),
: (5)
Xno1(t+1) = X,(8),
Xn(t+1) = Us(t) © f(Xa (1), Xa(t), .., Xu(1))-
NFSRI1 can be represented by the linear system [9]:
u(t+1) = Lu(t), teN, (6)

where L € Lomyom is the state transition matrix,
satisfying

DY I

{0012m Ly (L) = G

7
Coly(L) = 0,0 ¥, j=1,2,..., "

m—1
2m,

with the truth table [¢1, g2, . ..
in the reverse alphabet order.

,qam] of g, arranged

NFSR2 NFSR1
Figure 1 A cascade connection of an m-stage NFSR1
into an n-stage NFSR2.

Let G = (V,A) and G = (V, A) be the state di-
agrams of two n-stage NFSRs, where V and V are
the sets of their states, while A and A are the sets
of their edges. G and G are said to be isomorphic
if there exists a bijection mapping ¢ : V — V such
that for any edge E € A from state X to Y, there
exists an edge E € A from ¢(X) to p(Y).
Theorem 1. NFSR2 can be equivalently ex-
pressed as a linear system:

x(t+1) =L, x uy(t) x x(t),

with state € Agn, input u; € As, and state
transition matrix L, € Lonyon+1 satisfying

teN, (8)

) =4 2[(j—1) mod 2"~ 41]—s (9)

on

COlj (L
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for all j = 1,2,...,2"" where [s1,s0,...,
Sgn+1] is  the truth table of the function
U, Xq,...,Xy) = Ul @ f(X1, Xo,..., X0),

arranged in the reverse alphabet order, with
NFSR2’s input U; and feedback function f.
Let L = [Ll Lg] with Ly, Ly €
Lomyom—1 be the state transition matrix of
NFSR1, and let L, = [Ly; Lyo] with Lyq, Ly €
Lonwon be the state transition matrix of NFSR2.
Th =

@ Le=Li@La LoLel  (10)
is the state transition matrix of the cascade con-
nection of NFSR1 into NFSR2.

Theorem 3. If an n-stage Fibonacci NFSR and
an n-stage Galois NFSR are equivalent, then their
state diagrams are isomorphic.
Corollary 1. A cascade connection of NFSR1
into NFSR2 is nonsingular if and only if its equiv-
alent Fibonacci NFSR is nonsingular.
Theorem 4. A cascade connection of NFSR1
into NFSR2 is nonsingular if and only if the feed-
back functions of both NFSRs are nonsingular.
Define J; = {(i — 1)2" +jli = 1,2,...,2™ j =
1,2,....2" 1 and 7o = {1,2,...,2" "3\ J;. Let
Qon be the set of permutation matrices of dimen-
sion 2"; further, we define two sets as follows:

ixr €N

Theorem 2.

’L'2m+n] € Qomin
and igm+n-14p € Jo
forallk =1,2,...,2mtn=11,
Rgr = {527~[i1 ig oo 7;27'] c Qgr ’is,igr—1+s
€{2s—1,2s}foralls =1,2,...,2" 1},

Theorem 5. An (m -+ n)-stage Fibonacci NFSR
can be decomposed into a cascade connection of
an m-stage NFSR1 into an n-stage NFSR2 if and
only if there exists a permutation matrix P =
[P, P.] € Pym+n with P;, P, € Lom+n-1, such that
PL;{P;' =L ® Ly and PLyP7' = Ly ® Ly,
where Ly € Lom+nyom+n is the state transition
matrix of the Fibonacci NFSR, [L; Ls] is the
state transition matrix of NFSR1 with L, L, €
Lomyom-1, and [Ly; Ly2| is the state transition
matrix of NFSR2 with L1, Lys € Lonyon.
Theorem 6. An (m + n)-stage nonsingular Fi-
bonacci NFSR can be decomposed into a cascade
connection of an m-stage NFSR1 into an n-stage
NFSR2 if and only if there exists a permutation
matrix P € Pym+n such that PLyP7'1Qo = L ®
L5, where Ly € Lom+myom+n is the state transi-
tion matrix of the Fibonacci NFSR, L € Rom is
the state transition matrix of NFSR1, Lys € Ron
is the state transition matrix of NFSR2 with its
input maintained at zero, and

Qy— [Lri®Py 0

O IQ-ern— 1

P27n+7L - {627n+7L [21 'L’Q st
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is a permutation matrix with Py = daon [2"’1 +
1 2nt42...27m 1 2 ... 2770

Theorems 5 and 6 demonstrate that the decom-
position type of a Fibonacci NFSR is only relative
to two factors: the stage number decomposition
and the state permutation of the Fibonacci NFSR.
Even if the stage number decomposition is fixed,
different state permutations may result in differ-
ent decomposition types, which can be easily seen
from Property 4 of Lemma 1 in [8]. All these facts
demonstrate that the decomposition is not unique
if an NFSR is decomposable.

Theorem 7. Let A = a1 as ay] €
mera B = 6n[ﬂl 52 o ﬁs] S Enxsa and P =
5mn['71 Y2 o '77'5] € Lonnxrs- Then, P = A® B
if and only if

Bli—1) mod s+1 = (7 — 1) mod n 41,

Oé"l“:’—%-l, i:172,...,TS.

For more details, please refer to Appendixes A—

C.
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