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Appendix A Nonlinear Feedback Shift Registers

Figure A1l describes an r-stage Fibonacci nonlinear feedback shift regisger (NFSR). Here small squares represent binary
storage devices, also called bits, whose contents are labelled as Yi7,Ys,...,Y; from left to right. They together form
the state of the NFSR, denoted by Y = [¥; Y2---Y;]T. The nonlinear Boolean function h in the rectangle is called
the feedback function of the NFSR. If the feedback function h is degenerated to a linear Boolean function, then the
NFSR is reduced to a linear feedback shift register (LFSR). The content Y7 is the output of the NFSR. The NFSR is
nonsingular if and only if its feedback function h is nonsingular, ie., h(Y1,Y2,...,Y;) = Y1 @ iL(YQ, ..., Yr) [1]. The
function he(Y1,Y2,...,Yr41) = Yeg1 @ h(Y1, Yo,...Y:) is called the characteristic function of the NFSR. The NFSR can
be described by the nonhnear system:

Yi(t+1) =Ya(t),
(A1)

Yr_1(t+1) =Y (1),
Y (t+ 1) = h(Y1(t), Ya(2), . .., Yir (D).
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Figure A1 An r-stage Fibonacci NFSR.

A cascade connection of an m-stage NFSR1 into an n-stage NFSR2, is a particular Galois NRSR, in which NFSRI1 is
a Fibonacci NFSR, and NFSR2 is an NFSR with a single input, and the input of NFSR2 is just the output of NFSR1. If
the input of NFSR2 holds constantly at zero, then NFSR2 is reduced to a Fibonacci NFSR. Let g. and fc be characteristic
functions of NFSR1 and NFSR2, respectively. The cascade connection of NFSR1 into NFSR2 is equivalent to an (m + n)-
stage Fibonacci NFSR whose characteristic function is [2]:

hc(Yh ey Ym+n+1) = gc * fc(Yh ceny Ym+n+1) = gc(fc(yh ce Yn+1) fc(Y27 . n+2) fc(Ym+17 ce Yn+m+1))-
Clearly, one way to solve the decomposition of a Fibonacci NFSR is to factorize its characteristic function in the sense of
x-product decomposition, like that used in [3,4].

The state diagram of an n-stage NFSR is a directed graph consisting of 2™ nodes and 2™ edges, in which each node
represents a state of the NFSR, and each edge represents a transition between two states. An edge from state X to state
Y means that the state X is shifted to the state Y. X is called a predecessor of Y, and Y is called the successor of X.
The state with more than one predecessors is called a branch state, while the state without predecessors is called a starting
state. A sequence of p distinct states, X1, X0, ..., X), is called a cycle of length p if X1 is the successor of X, and X; 41
is a successor of X; for any ¢ € {1,2,...,p — 1}. Similarly, a sequence of p distinct states, X1, Xa,...,Xp, is called a
transient of length p, if the following conditions are satisfied: 1) none of them lies on a cycle; 2) X is a starting point; 3)
X+1 is a successor of X; for any ¢ € {1,2,...,p — 1}; 4) the successor of X, lies on a cycle.
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Appendix B Proofs of the Theorems

All proofs in this appendix are based on an algebraic framework of Boolean networks (BNs), developed by Cheng et al. via
the semi-tensor product [5]. Before we provide detailed proofs, we first review some related concepts and results.
A BN with n nodes and m inputs can be described by the following nonlinear system:

X(t+1)=gu(U(t),X(t)), t N, (B1)
where X = [X1 X2 -+ Xn]T € F} is the state, U = [Uy Uz --- Up]T € FI is the input, and the vectorial function
gu = [Gul Gu2 --- gun}T is the state transition function.

Definition 1 ( [5]). Let A and B be matrices of dimensions n X m and p X g, respectively, and let « be the least common

multiple of m and p. The (left) semi-tensor product of A and B is defined as an % X % matrix, given by
AD(B:(A@I&)(B@IQ). (BQ)
™ P
where ® represents the Kronecker Product.
Definition 2 ( [6]). Let A = (a;;) and B be matrices of dimensions n x m and p x g, respectively. The Kronecker

product of A and B, is defined as an np X mgq matrix, given by

a11B ai2B -+ a1 B

as1B a22B -+ asm B

AQB= (B3)

an1B ap2B - anmB

Lemma 1 ( [5]). Letz=[X; X1 @17 x [Xo Xo® 1T x -+  x [Xy, Xn ®1]T with each X; € F2. Then @ € Agn.
Moreover, the state X = [X1 X2 --- X]T € F% and the state & = 6§n € Agn with j = 27— (271X +27 72X+ -+ X))
are one-to-one correspondent.

Lemma 2 ( [5]). The nonlinear system (B1) describing a BN with inputs can be equivalently expressed as a linear system
z(t+1) = Ly x u(t) x 2(t), t €N, (B4)
where © € Agn is the state, u € Agm is the input, and Ly € Lon on+m is the state transition matrix, satisfying
Col;(Ly) = Colj(Gu1) @ - - - ® Colj(Gun) (B5)
for all j = 1,2,...,27T™ with the structure matrix Gy; of the i-th component gy; of the vectorial function g, in (B1) for
any i € {1,2,...,n}.

In (B1), if U(t) = 0 for any ¢t € N, which means the BN without input, then its linear system representation (B4) is
reduced to @ (¢t + 1) = La(t) with state transition matrix L € Lonxan [5].

Definition 3 ( [5]). An mn xmn swap matrix W, ) is defined in the following way: label its columns as (11,12,...,1n,
...,ml,m2,...,mn) and its rows as (11,21,...,ml,...,1n,2n,...,mn), and assign the entry w{(7, v, (u,»)] at the position
(U, V), (u,v)] as
_J1, U=wuvandV =v,
YOV, ()] = {0, otherwise.
Lemma 3 ( [5]). The semi-tensor product has the following properties.

1) Let A and B be, respectively, m X n and p X ¢ matrices, and let X and Y be vectors of dimensions n and g,
respectively. Then (AX) x (BY)=(A® B)(X xY).

2) Let A be an m X np matrix, and B be a p X ¢ matrix. Then A x B = A(B® I,).
3) If x € Ag, then z X x = Mz with the power-reducing matrix M = d4[1 4].
4) Let X and Y be two column vectors of dimensions n and m, respectively. Then X xY = Winn XY x X = XQY.

5) W[m)n]:w[;lm]:[cs}“xa}n P R SRR, LV, NP, L Y Lia

Appendix B.1 Proof of Theorem 1

For a cascade connection of an m-stage NFSR1 into an n-stage NFSR2, Theorem 1 gives a linear system representation of
NFSR2.

Theorem 1. NFSR2 can be equivalently expressed as a linear system
z(t+1)=Lyxu(t) xx(t), teN, (B6)
with state € Agn, input u; € Ag, and state transition matrix Ly € Lon yon+1 satisfying

. n—1 .
COlj (Lu) _ 65&(]—1) mod 2 +1]—s; (B?)

forallj =1,2,...,2"%1 where [s1, s2, ..., Syn+1] is the truth table of the function f, (U1, X1, ..., Xn) = U1&f(X1, X2, ..., Xn),

arranged in the reverse alphabet order, with NFSR2’s input U; and feedback function f.
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Proof. NFSR2 can be represented by a nonlinear system

Xi1(t+1) = Xa(t),

Xn-1(t+1) = Xn(t),
Xn(t+1) =U1(t) ® f(X1(2), Xa(t),. .., Xn(2)).
Let f;(U1, X) = Xi4+1 and let F; be the structure matrix of f; for any s € {1,2,...,n—1}. Then, according to the definition
of structure matrix, we can easily obtain that
Fy=[F, - F ],where F} =§[1---1 2---2],
1 =[] F1 1 |, where Fy 2[ ]

22 on—2 on-2

F,=[F,---F],where Fy = §3[1---1 2-.-2],
b=[F 5], w b = 02| ]
23 oan—3 on—3

Foo1=[F,_1- F,_1],where F,,_; = 63[12].
N————
on
Suppose the structure matrix of f, to be F,,. From Lemma 2, for all j = 1,2,...,2"t!, we have
Colj (Lu) = CO]j (F1) K- ® Colj (Fn—l) X Colj (Fn)

Let Colj(B) = Col;(F1) ® - -- ® Col;(F,,—1). According to the structure feature of Fjs for all ¢ = 1,2,...,n — 1, we can
easily see that

B=[B B B Bj, (B8)

where the 271 x 271 matrix B is to be determined. From Lemma 3, X®Y = X x Y for any two column vectors X

and Y. Thus, according to Lemma 1, we can easily compute that Col;(B) = 5;”_1 for all j =1,2,...,2" 1. Since each

Colj(Fp) =[s; s;® 1T = 5§_Sj, we have Col;(Ly) = Col;(B) ® Col;(F,,) = 6;1;_53 for all j = 1,2,...,2" 1. Together
taking Eq. (B8) into consideration, we can conclude that the result holds. o

Appendix B.2 Proof of Theorem 2

For a cascade connection of an m-stage NFSR1 into an n-stage NFSR2, Theorem 2 reveals the relation of its state transition
matrix with those of both NFSRs. Before giving the detail proof of Theorem 2, we first review/give some related results.
NFSRI1 can be represented by a linear system [7]:

u(t+1) = Lu(t), t €N, (BY9)

where L € Lom xom is the state transition matrix, satisfying

2j—Gom—1 ;
Colym-14;(L) =bym = 7,

a (B10)
Colj(L) = 60 ¥, j=1,2,...,2m~1,

with the truth table [g1,q2,...,q2m] of the feedback function of NFSRI1, arranged in the reverse alphabet order. L is
nonsingular if and only if the feedback function of NFSR1 is nonsingular [7]. It is notable to point out that Eq. (B10) can

be unified as: _ .
Coly(L) = a7 7D mod 2™ =y 5 g g om, (B11)

Similarly, NFSR2 with input holding constantly at zero can be represented by
z(t+ 1) = Loz(t), t €N, (B12)
with Lo € Lan xon satisfying
. n—1,91_,.
Coly(Lo) = 500 "D mod 2Ry 5y o om, (B13)
and the truth table [p1,p2,...,p2n] of the feedback function of NFSR2, arranged in the reverse alphabet order. Lg is
nonsingular if and only if the feedback function of NFSR2 is nonsingular.

Proposition 1. A cascade connection of an m-stage NFSR1 into an n-stage NFSR2 can be represented by a linear system
Z(t+1) = L.2(1), (B14)
where Z € Agm+n is the state, and L.c Lom+nyom+n is the state transition matrix, satisfying
L.=(L®Ly)(A® Izn) (B15)
with state transition matrices L in (B9) of NFSR1 and Ly in (B6) of NFSR2, and a 21! x 2™ matrix
A=W om)(M ® Iym-1), (B16)

and a swap matrix Wiz omj, and the power-reducing matrix M = 04[1 4].
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Proof. Note that NFSR1 and NFSR2 can be represented by the linear systems (B9) and (B6), respectively. Multiplying
both equations in the sense of semi-tensor product, we have

w(t+1) x 2t + 1) = [Lu(t)] x {Lafur () x 2(t)]} = (L ® Lu)[w(t) x ui (t) x z(t)]
= (L ® Lo)[Wigam) x w1 (t) x w(t) x ()] = (L ® Lu)[Wig am) x M x u(t) x (t)]
= (L® L) {[Wia,om) (M & Ly —1)] & [u(t) x @(t)]} = (L © Lu)(A ® In)[u(t) x 2(t)].

In the above inference, the first equation uses the associative law of the semi-tensor product, the second applies Property 1
of Lemma 3, the third utilizes its Property 4, and the fourth uses its Property 3, while the fifth and sixth apply its Property
2. Set Z = u x x. Then the result follows. m|
Remark 1. In Proposition 1, the state £ = u X & € Aym4n uniquely corresponds to the state Z = [UT XT|T ¢ FJ*+™.
If we set z = & x u that uniquely corresponds to Z = [XT UT]T, then from Property 4 of Lemma 3, the system (B14)
becomes z(t + 1) = ch(t)_with Lc = Wigm gn)LcWign gm). As Wign gm| = W[;lngn], L. is similar to L.. Note that,
either Z = [XT UT|T or Z = [UT XT|T can be viewed as the state of the cascade connection of NFSR1 into NFSR2.
Hence, L. is also a state transition matrix of the cascade connection.

In the following, we aim to further reveal the relation of the columns of the state transition matrix of a cascade connection
of two NFSRs with those of the state transition matrices of both NFSRs. To achieve this goal, we first give a lemma.

Lemma 4. The matrix A in (B16) satisfies

{Coljm) =507

Colym—14;(A) =620, j=1,2,...,2m" L.

(B17)

Proof. The matrix A is related to a swap matrix. First, we prove the swap matrix W/, ) satisfies

[(5—1) mod n]m~+[L]

COlj(W[m,n]) =94 n j=12,...,mn.

Partition Wiy, ) as Wiy ) = W1 W3 .- W] with each W, € Lynxn. According to Property 5 of Lemma 3, we
have W; = [}, x &5, -+ &7 x 6},] for all i = 1,2,...,m. Clearly, the j-th column of W, , is the [(j — 1) mod n + 1]-th

j L j — nlm+[L
(i for any j € {1,2,...,mn}. Therefore, Col;(W,, ,,)) = sy mod n1 5£n”] = 5£ffn 1) mod nim+T5] for

allj=1,2,...,mn.
Next, we prove Eq. (B17). Clearly,

column of W

A = Wi om (64l 4] ® Iym—1) = Wig gmidgm+1[1 2 --- 2771 3.2m~1 41 3.9m=1 49 ... gm+l]

Hence, for all j = 1,2,...2™~1, we have Col;(A) = Col;(W]z am) = 622, , and Colym—1, ;(A) = Colg ym—1;(Wiz,2m]) =
2™ 42
62m+1 7. ]
Proposition 2. Let the state transition matrices of NFSR1 and NFSR2 be L = dam[m m2 ... m2m]| and Ly =
d2n[C1 C2 ... Cyn+1], respectively. Then the state transition matrix of the cascade connection of NFSR1 into NFSR2, L.
in (B14), can be expressed as
L.= [Lcl Lo ... chm] with
EC<277L71+7:) = Ogmn[(Ngm—14; — 1)2" +Canq1 (Mym-14; — 2" +Cang2 ... (Mam-14; — 1)2" + Gon1],
Lei=6gmin[(mi —1)2"+C (mi—1)2"+Ca ... (i —1)2" +(an],i=1,2,...,2m7 L

Proof. Note that L. = (L ® Ly)(A ® Ion) with A in (B16). Then, from Lemma 4, for all i = 1,2,...,2™ 1 we have
Col;(A) ® Inn = Somant1[(1 — 1)27TL 41 (1 —1)2n+L +2 ... (- 1)2n+! 4+ 27] and
Colym—1.;(A) @ Izn = Sgmins1[(2™ +2i — 1)27 + 1 (2™ 42— 1)27 42 .- (2™ 4 20)2"].

Let LQ Ly =[Ly Lo -+ Lom+1] with Ly € Lomiynyon foralli=1,2,..., 2+l Clearly, L ® Ly, = [6g}n ® Ly 5;7,2" ®
Ly, --- 82" ® Ly), and for all 4 = 1,2,...,2™, we have

638 ® Lu = dgmin[(m: —1)2" + 1 (i — 12" +C2 -+ (1 — 1)2™ + Con1] = [L2i—1 Loy
Therefore, we can deduce that

Lo=(L®Ly\)(A®Ix)=[L1 Ly -+ Lym+1][Col1(A) ® Isn Cola(A) ® Ipn -+ Colom (A)®an]
=[Ly L3 --- Lam_y Lam4o Lam4yg -+ Lomy1].

Hence, Le; = La;—1 and I_’c(2m*1+i) = Lomyo; foralli=1,2,..., 2m—1_ Thus, the result follows. ]
Theorem 2. Let L =[Ly Lg] with Ly, L2 € Lym yom-1 be a state transition matrix of NFSR1, and let Ly = [Lyu1 Ly2]
with Ly, Lya € Lanxon be a state transition matrix of NFSR2. Then

Ec - [Ll ® Lul L2 ® LHQ}- (Blg)

is a state transition matrix of the cascade connection of NFSR1 into NFSR2.

Proof. The result directly follows from Proposition 2 and the definition of Kronecker product. |
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Appendix B.3 Proof of Theorem 3

Theorem 3. If an n-stage Fibonacci NFSR and an n-stage Galois NFSR are equivalent, then their state diagrams are
isomorphic.

Proof. Let Qf and Q4 be the sets of output sequences, respectively, of the Fibonacci NFSR and of the Galois NFSR.
Since they are equivalent, we have Qf = Q.

For any given output sequence a = (a;);>0 of the Fibonacci NFSR, let K, be the preperiod of a, and P, be the least
period of a, that is, K, is the least nonnegative integer such that a; p, = a; for alli > K,. Since any sequence generated by
an NFSR is ultimately periodic, P, must be a positive integer. Moreover, the sequence a is formed by the first components
of Ko + P, consecutive states of the Fibonacci NFSR, denoted by X1, Xo>,..., Xk, +p,. Let b = (bj)j>k,. Then bis a
sequence of period P,.

Since a € €2y, we have a € Qg4. Hence, there exist Ny = Ko + BoPu + Co Pa consecutive states of the Galois NFSR such
that their first components form the sequence a, where B, P, consecutive states are on a transient with nonnegative integer
Bg > 0, and Cy P, consecutive states are on a cycle with positive integer C, > 1, and the first components of Bg Py + Cq Py
consecutive states form the sequence b.

If B, 4+ Cq > 1, then there exist two different initial states of the Galois NFSR such that the output sequences resulting
from both initial states are the sequence b. It implies that the cardinality of Q4 satisfies |Qq4| < 2. Thus Q| < 2™
as well, which is in contradiction with the fact that an n-stage Fibonacci NFSR totally has 2" output sequences. Hence,
Ba+C, = 1. Note that B, is a nonnegative integer and Cy, is a positive integer. Then, B, = 0 and C, = 1. It indicates that
there are K, + P, consecutive states of the Galois NFSR, denoted by Y1,Y5,..., Yk 4 p,, such that their first components
form the sequence a. Therefore, the exists a bijection mapping ¢ : X; — Y;,i =1,2,..., K4 + Py, such that for any given
edge from X;, to X, in the state diagram of the Fibonacci NFSR, there is an edge from ¢(X;,) to ¢(X;,) in the state
diagram of the cascade connection. Due to the arbitrariness of the sequence a, the result follows. m|

Based on Theorem 3, the following corollary is immediately gotten.

Corollary 1. A cascade connection of NFSR1 into NFSR2 is nonsingular if and only if its equivalent Fibonacci NFSR is
nonsingular.

Appendix B.4 Proof of Theorem 4

Proposition 3. The state transition matrix L, in (B6) of NFSR2 and the state transition matrix Lo in (B12) of NFSR2
with input holding constantly at zero, satisfy

1) Colgny;(Ly) = Colj(Lo), j =1,2,...,2"

2) Moreover, if the feedback function of NFSR2 is nonsingular, then Col;(Lu) = Colgn—1, ;(Lo) and Colgn—-1, ;(Lu) =

Col;(Lo) for all j =1,2,...,2"~ 1

Proof. Let Uy and f be the input and feedback function of NFSR2, respectively, and let [p1,p2,...,p2n] be the truth
table of f, arranged in the reverse alphabet order. We also let [s1,s2,...,89n+1] be the truth table of the function
Fan(U1, X1,...,Xn) = U1 @ f(X1, X2, ..., Xn), arranged in the reverse alphabet order as well. For any j € {1,2,...,27t1},
let [Ul(J> X{” X,(L”]T denote the vector [U1 X1 --- X,]T that corresponds to the decimal number 2711 — j, that is,
2"U§]) + 2"’1X£J) + -+ XT(LJ) =27+l — 4. Similarly, for any k € {1,2,...,27}, let [X§k) Xék) XT(Lk)]T denote the
vector [X1 Xz --- Xn]T that corresponds to the decimal number 2" — k.

Clearly, U" ™) = 0 for all j = 1,2,...,2". Thus, we have

son iy = fu(UE D x @D @Dy 2 px @D @D =0 on,

Note that [X2"+) ... x@"+1T — (x®) . xT as k& = 5, and pp = F(XP,. ., X)) for all k = 1,2,...,27.
Therefore, sony; = p; for all j =1,2,...,2". According to Egs. (B13) and (B7), Item 1 follows. Item 2 can be proved in
a similar way. m]
Lemma 5. An n-stage NFSR represented by System s(t + 1) = As(t) with state s € Agn is nonsingular if and only if
the state transition matrix A is nonsingular.

Proof. Since s(t + 1) = As(t) with s € Aan, we have A € Lonyxon. An NFSR is nonsingular if and only if its state
diagram only contains cycles, which is equivalent to that each state of the NFSR has only one predecessor and only one
successor. For any two distinct states 5%2, i = 1,2, we have Aégi,/ = Coly, (A), which implies that J%in is a predecessor of
Coly, (A), and that Colj, (A) is the successor of 5%’;,,.

Sufficiency: If A is nonsingular, then all of its columns are distinct. Thus, Col;, (A) # Col,, (A). Due to the arbitrariness
of the states 5%2, i = 1,2, we can conclude that each state of the NFSR has only one predecessor and only one successor.

Necessity: If an NFSRs is nonsingular, then each state of the NFSR has only one predecessor and only one successor.
Therefore, Colj, (A) # Col,, (A). Due to the arbitrariness of Col;, (A) and Coly, (A), we deduce that all columns of A are
distinct. Thus, A is nonsingular. m]
Corollary 2. A cascade connection of NFSR1 into NFSR2 represented by System (B14) is nonsingular if and only if its
state transition matrix L. in (B14) is nonsingular.

As stated in Remark 1, a cascade connection of NFSR1 into NFSR2 can also be represented by z(t+1) = L.z(¢). Thus,
the cascade connection is nonsingular if and only if L. is nonsingular, which is just the result given in [8]. However, both
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state transition matrices L. and L. are of large size in general. Hence, using state transition matrices is not an efficient
way to the nonsingularity of a cascade connection of two NFSRs. Alternatively, the following gives an efficient way.

Theorem 4. A cascade connection of NFSR1 into NFSR2 is nonsingular if and only if the feedback functions of both
NFSRs are nonsingular.

Proof. As before, we let L = dam[n1 n2 ... m2m] and Ly = 62n[¢1 (2 ... (gn+1], respectively, be the state transition
matrices of NFSR1 and NFSR2. We also let L. in (B14) be the state transition matrix of the cascade connection.

From Proposition 2, we can deduce that all columns of L. are distinct if and only if the following three properties
are satisfied: 1) n1,7m2,...,m2m are distinct; 2) (1,(2,...,(2n are distinct; 3) Cony1,lony2,...,(yn+1 are distinct. First,
n1,M2,...,n2m are distinct if and only if the feedback function of NFSRI1 is nonsingular. On the other hand, according to
Eq. (B7), we have ¢;, Canyi € {2a; — 1,2a;} with a; = (i — 1) mod 27~ 4+ 1 for all s = 1,2,...,2"™. Hence, (1,(a,...,an
(resp. Cang41,Can42,...,Cn+1) are distinct if and only if they take all possible values of 1,2,...,2™. Therefore, 2) and 3)
are equivalent. From Property 1 of Proposition 3, we can infer that that (an1,{2n42,...,{3n+1 are distinct if and only if
the feedback function of NFSR2 is nonsingular. Thus, all columns of L. are distinct if and only if the feedback functions
of NFSR1 and NFSR2 are nonsingular. Note that L. € Lom+nygmtn. Then all columns of L. are distinct if and only if
L. is nonsingular. Thus, the result follows from Corollary 2. a

Theorem 4 can be proved in another way. For a cascade connection of NFSR1 into NFSR2 and its equivalent Fibonacci
NFSR, their characteristic functions satisfy he = gc * fc [2], where gc, fc and h. are the characteristic functions of NFSRI1,
NFSR2 and the Fibonacci NFSR, respectively. Moreover, h. is nonsingular if and only if g. and f. are nonsingular [9].
Note that the characteristic function of a Fibonacci NFSR is nonsingular if and only if its feedback function is nonsingular.
Hence, for a cascade connection of NFSR1 into NFSR2 and its equivalent Fibonacci NFSR, the feedback functions of NFSR1
and NFSR2 are nonsingular if and only if the feedback function of the Fibonacci NFSR is nonsingular, which is equivalent
to that the Fibonacci NFSR is nonsingular. Corollary 1 has shown that a cascade connection of NFSR1 into NFSR2 is
nonsingular if and only if its equivalent Fibonacci NFSR is nonsingular. Thus, Theorem 4 follows.

Example 1. Consider a cascade connection of a 3-stage NFSR1 into a 3-stage NFSR2, in which the feedback function of
NFSR1 is g(U1,Us2,Usz) = U1 @ Us @ UaU3 @ 1, and the feedback function of NFSR2 is f(X1, X2, X3) = X1 ® X2X5.

By direct computations we obtain the state diagram of the cascade connection only contains two cycles: 1) a cycle of
length 56, i.e., 63 - 55 -39 -7 —> 14 521 -43 —-30 61 - 50 37T =2 —> 12 - 17 - 42 —+ 29 — 59 — 54 —
36—-0—-+8—>16—>40—+25—-58 =53 34 —>5—-11—>23 46 +28 -57 =51 >38—>4—-9—>18 =44 — 24 —
56 — 49 +35 —>8 13 +19 547 -+ 31 - 62 - 52 -+ 32 -1 — 10 — 20 — 41 — 27 — 63; 2) and a cycle of length
8, i.e., 60 — 48 —+ 33 —» 3 — 15 — 22 — 45 — 26 — 60, where all integers are the decimal numbers corresponding to the
states over ]Fg On the other hand, both g and f are, clearly, nonsingular. From Theorem 4, we deduce that the cascade
connection is nonsingular, consistent with the fact that its state diagram only contains cycles.

However, if we modify the feedback function of NFSR2 as f(Xl, X2,X3) = X1 ®X1X2® X2X3. By direct computations
again, we found that both states that correspond to the decimal numbers 63 and 59 are two predecessors of the state that
corresponds to the decimal number 54, which implies that the state diagram of the modified cascade connection contains
some branch state. On the other hand, since f is clearly not nonsingular, we can deduce from Theorem 4 that the modified
cascade connection is singular, which is consistent with the fact that its state diagram contains some branch state.

Appendix B.5 Proof of Theorem 5

Lemma 6. A Fibonacci NFSR represented by System Y (¢t 4+ 1) = H(Y (t)) with state Y € F} is equivalent to a cascade
connection of two NFSRs represented by System Z(t+1) = F(Z(t)) with state Z € F7, if and only if there exists a bijective
mapping ¢ : Y — Z such that o(H(Y)) = F(e(Y)) and [1 0 ---0jp(Y) =[10 ---0]Y for all Y € F3.

Proof. Necessity: Clearly, for each Y &€ F7, there exists an edge from state Y to state H(Y') in the state diagram of
the Fibonacci NFSR, Similarly, for each Z € F}, there exists an edge from state Z to state F(Z) in the state diagram
of the cascade connection. If a Fibonacci NFSR is equivalent to a cascade connection of two NFSRs, then according to
Theorem 3, their state diagrams are isomorphic, which is equivalent to that there exists a bijective mapping ¢ : ¥ — Z
such that ¢(H(Y)) = F(Z) = F(¢(Y)) for each Y € FJ. Moreover, Since the output of an NFSR is the content of the
first bit, each state Y and its correspondingly transformed state Z have the same first component, which is equivalent to
[10---0lp(Y)=[10 ---0]Y for each Y € F5.

Sufficiency: If there exists a bijective mapping ¢ : Y — Z such that o(H(Y)) = F(p(Y)) and [1 0 ---0]e(Y) =
[10 ---0]Y forall Y € F%, then according to the necessity proof, the state diagrams of the Fibonacci NFSR and the cascade
connection are isomorphic, and each state and its correspondingly transformed state have the same first component. Hence,
the Fibonacci NFSR and the cascade connection have the same set of output sequences. Thus, they are equivalent. o

Proposition 4. A Fibonacci NFSR represented by System y(t + 1) = Lyy(t) with state y € Agn is equivalent to a
cascade connection of two NFSRs represented by System z(t+ 1) = L.z(t) with state z € Agn, if and only if there exists a
permutation matrix V' = dan [j1 j2 ... jon]satisfying 1 < j; <27 P and 2" ' +1 < jyn-1,; <27 foralli=1,2,...,2"7 1,
such that Lo = VL;V~L

Proof. Note that the states over F§ and the states over Agn are one-to-one correspondent. Then we can set z =
Vy, where V is a permutation matrix determined by the bijection mapping ¢ in Lemma 6. Since all states in the set
S1 = {6§n 7 =1,2,..., 2”’1} correspond to the states over 3 whose first components are 1, and all states in the set
So = {6gn |7 =27"141,27n"1 +2 ... 2"} correspond to the states over F3 whose first components are 0, we can easily
infer the result from Lemma 6. m]
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Theorem 5. An (m + n)-stage Fibonacci NFSR can be decomposed into a cascade connection of an m-stage NFSR1
into an n-stage NFSR2, if and only if there exists a permutation matrix P = [P, Pr] € Pym+n with P;, Pr € Lom+4n—1,
such that PLfPf1 = L1 ® Ly1 and PLfPf1 = L2 ® Ly2, where Ly € Lymtnyom+n is a state transition matrix of
the Fibonacci NFSR, [L1 L2] is a state transition matrix of NFSR1 with L1, L2 € Lom yom—1, and [Ly1 Ly2] is a state
transition matrix of NFSR2 with L1, Ly2 € Lanxan.

Proof. A Fibonacci NFSR can be decomposed into a cascade connection of NFSR1 into NFSR2 if and only if they are
equivalent. According to Proposition 4 , we know that the Fibonacci NFSR and the cascade connection are equivalent if
and only if there exists a permutation matrix V' = dym+n[j1, J2 ... Jom+n] such that the state transition matrix L.
of the cascade connection satisfies L. = VLfV’l7 where 1 < j; < 2mt7—1 and 2m+n—-1 11 Jom4n—14; < gm+n
for all i = 1,2,...,2m*T"~1  According to Theorem 2, L.= [L1 ® Ly1 L2 ® Ly2] is another state transition matrix of
the cascade connection. From Remark 1, we know that the state transition matrix L. = W[Qm,yzn]ZCW[Qn)QWL]. Hence,
EC = (W[2n72m]V)Lf(W[2n72m]V)_l. Set P = W[2n72m]V. Then PLf.13171 = L1 ® Ly, and PLfPTTI =Ly ® Lyo.

The left is to prove P € Pym+n. Clearly,

P = W[gn,gm]V = [001]'1 (W[Qn’Qm]) COl]’Z(W[Qn’QﬂL] N CO]]'Zern (W[277,7277L])}.

According to the proof of Lemma 4, we know the explicit form of each column of Wan om). Note that 1 < j; < gm+n—1
and 2Tl 41 < Jom4n—14; < 2m+n for all i = 1,2,...,2"™+t"~1 Then we can easily see P € Pom+n. a

Appendix B.6 Proof of Theorem 6

Corollary 1 have shown that a cascade connection of two NFSRs is nonsingular if and only if its equivalent Fibonacci NFSRs
is nonsingular. Hence, to assure the nonsingularity of the cascade connection, the decomposed Fibonacci NFSR must be
nonsingular. Theorem 6 gives a criterion to the decomposition of nonsingular Fibonacci NFSRs.

Theorem 6. An (m -+ n)-stage nonsingular Fibonacci NFSR can be decomposed into a cascade connection of an m-stage
NFSR1 into an n-stage NFSR2, if and only if there exists a permutation matrix P € Pym+n such that PLfP_lQo =
L ® Ly2, where Ly € Lom+myom+n iS a state transition matrix of the Fibonacci NFSR, L € Rom is a state transition
matrix of NFSR1, L, € Rar is a state transition matrix of NFSR2 with input holding constantly at zero, and

Qo — Iym—1 @ Py 0
0 Iymin—1
is a permutation matrix with Py = §on[2" "1 +1 27142 ... 27 1 2 ... 2n—1]

Proof. We use the same notations as in Theorem 5. According to Proposition 3, L2 is the state transition matrix
of NFSR2 with input holding constantly at zero. From the proof of Theorem 5, we know that the Fibonacci NFSR
can be decomposed into the cascade connection of NFSR1 into NFSR2 if and only if there exists a permutation matrix
V =6ym+nlj1, J2 ... Jym+n] such that Le = VLV ™1, where 1 < j; < 2™~ and 2™~ 41 < jompn-1,,; < 27H7
foralli=1,2,...,2mtn-1,

According to Corollary 1 and Theorem 4, we conclude that the Fibonacci NFSR is nonsingular if and only if NFSR1
and NFSR2 with input holding constantly at zero are nonsingular, which is equivalent to L € Rom and Ly2 € Ran. From
Proposition 3, we know Ly1 = Ly2Py. Thus, L1 ® Ly1 = L1 ® LyaPy = (L1 ® Ly2)(Iym-1 ® Py). On the other hand,
Theorem 2 has shown L. = [L1 ® Ly1 L2 ® Ly2]. Hence, we can easily compute that Lo = (L ® Ly2)Qo. Clearly,
Py is a permutation matrix and satisfies P(;l = Py. Then, Qo is also a permutation matrix and satisfies le = Qo-
From the proof of Theorem 5, we know L. = (Wian om|V)L§(Wian omV) "1, and P = Wign om|V € Pym+n. Therefore,
(L ® Lyw2)Qo = PLfP*17 yielding PLfP*1Q0 =L ® Lyo. o

Theorems 5 and 6 show that the decomposition of (nonsingular) Fibonacci NFSRs can be converted into the Kronecker
product decomposition of (permutation) matrices whose columns are canonical vectors. It will be shown in later Remark 2
that using the latter lowers the time complexity of computations.

In addition, Theorems 5 and 6 show that the decomposition type of a Fibonacci NFSR (i.e., the type of a pair of NFSR1
and NFSR2 that are decomposed from the Fibonacci NFSR) is determined by the permutation matrix P, which is only
relative to two factors. One is the decomposition of the Fibonacci NFSR’s stage number such that it can be decomposed
as a sum of two positive integers that are the stage numbers of NFSR1 and NFSR2. The other is the state permutation of
the Fibonacci NFSR such that its set of output sequences is preserved.

Notably, even if the decomposition of stage number is fixed for a given Fibonacci NFSR, different state permutation may
result in different decomposition type, which can be easily seen from the property given in [3], namely, D(gc)*(fc®1) = ge* fe,
where D(gc) (U, Uz, ..., Un) = ge(U1®1,U2®1,...,Un®1) for any [U; Uz --- Un] € FJ*, with characteristic functions g.
and f.. Summarizing all facts, we can easily see that the decomposition is not unique if a Fibonacci NFSR is decomposable.
Of course, if some constraints are imposed on two NFSRs in the cascade connection, then the decomposition may be unique,
like that in [4], where the feedback functions of all NFSRs are restricted to taking zero at the origin.

Appendix B.7 Proof of Theorem 7

Lemma 7. For any m X r matrix A and any n X s matrix B, AQ B € Lynxrs if and only if A € L, % and B € Ly, xs-

Proof. As each column of a matrix in £,x4 has only one entry of 1 and the other entries of 0, the result can be easily
inferred from the definition of Kronecker product. 0.
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Theorem 7. Let A =dm[a1 az -+ ar] € Lixr, B=0n[01 02 -+ Bs] € Lnxs, and P = dmn[y1 ¥2 - Vrs] € Lmnxrs-
Then P = A ® B if and only if

Bi—1) mod s+1 = (Vi —1) mod n + 1,

Sl (B19)
a"%"‘zl—%-lv Z:1727"'7T5-

Proof. Clearly, AQ B=[6p! ® B 0,2 ® B -+ 657 @ B], and for all j = 1,2,...,7, we have
S @ B =[6nf @681 6pi @652 - 6nd @65%] = bmnllaj —V)n+B1 (aj —V)n+ B2 -+ (aj — )n+ Bs).

Note that each B satisfies 1 < Br < n. Together taking Lemma 7 into consideration, we can infer that P = A ® B is
equivalent to Eq. (B19). o
If P = A® B, then for the simplicity we say A and B are factor matrices of P. For a matrix P € Lypxn, if
P=A® B =C ® D, where A and C are of the same size, then from Theorem 7, we have A = C and B = D. However,
if A and C are not restricted to the same size, then the Kronecker product decomposition of P may be not unique, as
(M®N)® K=M ® (N ® K) for any matrices M, N and K.
Remark 2. Theorem 7 provides a way to determine whether a matrix whose columns are canonical vectors is Kronecker
product decomposable, and how to find its factor matrices if it is. To determine whether a matrix P = dmnl[y1 72 ... Yrs)
can be decomposed as the Kronecker product of A € L,,xr and B € Ly, x5, we can first partition v = [y1 72 ... vrs] as
v¥=[T1 T2 ... Ty], where each T'; = [y(;—1)s41 V(i—1)s+2 --- Vis], and then check whether [7(i7;)5+1] = [MizDs+2q -

n
~oo= [Zs] for all ¢ = 1,2,...,7, and whether (y; — 1) mod 7 = (ys45 — 1) mod n = --- = (y(r_1)s4; — 1) mod n
for all j = 1,2...,s. If all these equations hold, then the matrix P can be decomposed as the Kronecker product of
A and B, moreover, A = [ [1L] f%%] (’Y(T’%'\ ] and B = 6p[(y1 —1) modn+1 (y2—1)modn+1
- (s — 1) mod n + 1]. Otherwise, it cannot.
Our above way is simpler than the matrix rank way [10]. The latter way is to first partition P as

Py Py - Pry

Pml Pm2 - Py

where each Pj; is an m X s matrix, and then check whether the rank of the matrix Vp = [V.(P11) Ve(Pi2)
Ve(Pir) -+ Ve(Pm1) Ve(Pm2) -+ Ve(Pme)] is 1, where each V¢(P;;) is a column vector that orderly stacks all columns
of P;;. If the rank of Vp is 1, then P is Kronecker product decomposable. Otherwise, it is not. Clearly, our method takes
advantage of the sparseness of P, and only requires to consider the entries of 1 in the matrix P, while the matrix rank
method requires to consider all entries of P. Thus, our method is simpler.

The state transition matrix of a Fibonacci NFSR has a dimension exponential in its stage number, and therefore the
above method of Kronecker product decomposition is limited to those NFSRs with their stage numbers not too large.
Nevertheless, Using the Kronecker product decomposition to solve the decomposition of a Fibonacci NFSR requires lower
time complexity than using the *-product decomposition of its characteristic function. The reason is as follows. Without
loss of generality, we assume the Fibonacci NFSR decomposed into a cascade connection of an m-stage NFSR1 into an n-
stage NFSR2, the time complexity for the former method is mainly from (2™*7~11)2 possible forms of P € Pqym+n required
to be considered, while the time complexity for the latter method is mainly from 22" +2™ possible pairs of characteristic
functions of NFSR1 and NFSR2 that need to be considered for a general Fibonacci NFSR, and 92" t2m possible pairs
for a nonsingular Fibonacci NFSR.

Appendix C Example

Consider a 5-stage nonsingular Fibonacci NFSR given in [4]. Its feedback function is h = Y1 @ Yo ® Y3 @ YaY3 @ YaYs @
Y3Y5 @ Y4Ys.

We can easily compute its state transitions as: 21 — 11 - 23 - 14 - 28 224 - 16 -1 -2 -4 —- 9 — 19 —
6 - 13 —>26 —2l,and 10 - 20 > 8 - 17 -3 -7 —> 15 —- 30 - 29 —» 27 — 22 —» 12 — 25 — 18 —+ 5 — 10, and
31 — 31 and 0 — 0, where all positive integers are the decimal numbers corresponding to the states Y = [Y1 Y2 -+ Ys]s
of the Fibonacci NFSR. Clearly, they produce two sequences of period 15, i.e., 101011100001001 and 010100011110110,
and two sequences of period 1, i.e.,, 1 and 0. According to Eq. (B11), we can compute its state transition matrix as
L;=632[13581011141618202124262729 3124679 12131517 19 22 23 25 28 30 32].

Ref. [4] showed that it can be decomposed into a cascade connection of NFSR1 into NFSR2 in the following two types:

1) NFSR1 is a 1-stage LFSR with feedback function g = Ui, and NFSR2 is a 4-stage NFSR with feedback function
f=X10 X530 X4P XoX3® XoXy ® X3Xy;

2) NFSRI is a 4-stage NFSR with feedback function § = Uy & Uy & UsUs @ UsUy, and NFSR2 is a 1-stage LFSR with
feedback function f = X;.

For Type 1, the state transitions are: 21 —+ 11 - 23 - 15 229 25 - 17T—-1—-3—-5—-9—>19 -7 — 13 —
27 -+ 2l,and 10 - 20 -8 - 16 -2 -6 —- 14 - 30 - 28 = 26 —» 22 —» 12 — 24 — 18 — 4 — 10, and 31 — 31 and
0 — 0, where all positive integers are the decimal numbers corresponding to the states Z = [X1 --- X4 Uj]s of the cascade
connection. For Type 2, the state transitions are: 31 -+ 14 -28 -9 18 20 +24 -1 -3 -6 - 13 - 26 - 5 —
11 -23 »3l,and 15 -30 > 12 25 -2 -4 8 - 17— 19 —- 22 -29 - 10 - 21 — 27 - 7 — 15, and 16 — 16
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and 0 — 0, where all positive integers are the decimal numbers corresponding to the states Z = [f(l 01 04]5 of the
cascade connection. Clearly, both types produce the same set of output sequences as the Fibonacci NFSR.

‘We use the previous notations. To distinguish both types, we add tilde to notations for Type 2. According to Lemma 1,
we can easily obtain the permutation matrices

V =032[124365879101112 1314 16 15 18 17 19 20 21 22 23 24 26 25 28 27 30 29 31 32],
‘7:632[1615131410911124312657824232122181719202827252630293132}.

Since P = W4 9]V and P= W[2716]‘~/, we can easily obtain

P =432[117182193204521622723248259 1026 1127 1228 29 13 30 14 31 15 16 32|,
13:632[3129252719172123751311913151614101242682422182028263032}.

Clearly, P, P € P33 and they are distinct. Moreover, we can easily calculate

Qo =1032[9101112131415161234567 817 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32],
Q0:532[2143658710912111413161517181920212223242526272829303132].

Hence, we directly compute A = PLfP_lQO and A = 15Lf13_16}0 as

A=632[23571012141514689 111316 18 19 21 23 26 28 30 31 17 20 22 24 25 27 29 32],
A:632[3478111213141718212227282930125691015161920232425263132].

Using the method of Kronecker product decomposition provided in Remark 2, we can obtain A = L ® L2 and A=Le
Lyo, where L = Ly = 02[12], Ly2 = 616[2357101214151468911 13 16], and L = 016[246791114151358101213 16].
Applying Eq. (B10), we easily verify that L and L are indeed the state transition matrices of the NFSR1, respectively, for
Types 1 and 2, while L,3 and L. are indeed those of NFSR2 with input holding constantly at zero, respectively, for Types
1 and 2 as well. All these validate the result in Theorem 6.
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