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Appendix A Nonlinear Feedback Shift Registers

Figure A1 describes an r-stage Fibonacci nonlinear feedback shift regisger (NFSR). Here small squares represent binary

storage devices, also called bits, whose contents are labelled as Y1, Y2, . . . , Yr from left to right. They together form

the state of the NFSR, denoted by Y = [Y1 Y2 · · ·Yr]T . The nonlinear Boolean function h in the rectangle is called

the feedback function of the NFSR. If the feedback function h is degenerated to a linear Boolean function, then the

NFSR is reduced to a linear feedback shift register (LFSR). The content Y1 is the output of the NFSR. The NFSR is

nonsingular if and only if its feedback function h is nonsingular, i.e., h(Y1, Y2, . . . , Yr) = Y1 ⊕ h̃(Y2, . . . , Yr) [1]. The

function hc(Y1, Y2, . . . , Yr+1) = Yr+1 ⊕ h(Y1, Y2, . . . Yr) is called the characteristic function of the NFSR. The NFSR can

be described by the nonlinear system: 

Y1(t+ 1) = Y2(t),

...

Yr−1(t+ 1) = Yr(t),

Yr(t+ 1) = h(Y1(t), Y2(t), . . . , Yr(t)).

(A1)
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Figure A1 An r-stage Fibonacci NFSR.

A cascade connection of an m-stage NFSR1 into an n-stage NFSR2, is a particular Galois NRSR, in which NFSR1 is

a Fibonacci NFSR, and NFSR2 is an NFSR with a single input, and the input of NFSR2 is just the output of NFSR1. If

the input of NFSR2 holds constantly at zero, then NFSR2 is reduced to a Fibonacci NFSR. Let gc and fc be characteristic

functions of NFSR1 and NFSR2, respectively. The cascade connection of NFSR1 into NFSR2 is equivalent to an (m+ n)-

stage Fibonacci NFSR whose characteristic function is [2]:

hc(Y1, . . . , Ym+n+1) = gc ∗ fc(Y1, . . . , Ym+n+1) = gc(fc(Y1, . . . Yn+1), fc(Y2, . . . Yn+2), fc(Ym+1, . . . Yn+m+1)).

Clearly, one way to solve the decomposition of a Fibonacci NFSR is to factorize its characteristic function in the sense of

∗-product decomposition, like that used in [3, 4].

The state diagram of an n-stage NFSR is a directed graph consisting of 2n nodes and 2n edges, in which each node

represents a state of the NFSR, and each edge represents a transition between two states. An edge from state X to state

Y means that the state X is shifted to the state Y . X is called a predecessor of Y , and Y is called the successor of X.

The state with more than one predecessors is called a branch state, while the state without predecessors is called a starting

state. A sequence of p distinct states, X1,X2, . . . ,Xp, is called a cycle of length p if X1 is the successor of Xp, and Xi+1

is a successor of Xi for any i ∈ {1, 2, . . . , p − 1}. Similarly, a sequence of p distinct states, X1,X2, . . . ,Xp, is called a

transient of length p, if the following conditions are satisfied: 1) none of them lies on a cycle; 2) X1 is a starting point; 3)

Xi+1 is a successor of Xi for any i ∈ {1, 2, . . . , p− 1}; 4) the successor of Xp lies on a cycle.
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Appendix B Proofs of the Theorems

All proofs in this appendix are based on an algebraic framework of Boolean networks (BNs), developed by Cheng et al. via

the semi-tensor product [5]. Before we provide detailed proofs, we first review some related concepts and results.

A BN with n nodes and m inputs can be described by the following nonlinear system:

X(t+ 1) = gu(U(t),X(t)), t ∈ N, (B1)

where X = [X1 X2 · · · Xn]T ∈ Fn2 is the state, U = [U1 U2 · · · Um]T ∈ Fm2 is the input, and the vectorial function

gu = [gu1 gu2 . . . gun]T is the state transition function.

Definition 1 ( [5]). Let A and B be matrices of dimensions n×m and p× q, respectively, and let α be the least common

multiple of m and p. The (left) semi-tensor product of A and B is defined as an nα
m
× qα

p
matrix, given by

A nB = (A⊗ I α
m

)(B ⊗ Iα
p

). (B2)

where ⊗ represents the Kronecker Product.

Definition 2 ( [6]). Let A = (aij) and B be matrices of dimensions n × m and p × q, respectively. The Kronecker

product of A and B, is defined as an np×mq matrix, given by

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

...

an1B an2B · · · anmB

 . (B3)

Lemma 1 ( [5]). Let x = [X1 X1 ⊕ 1]T n [X2 X2 ⊕ 1]T n · · · n [Xn Xn ⊕ 1]T with each Xi ∈ F2. Then x ∈ ∆2n .

Moreover, the state X = [X1 X2 · · · Xn]T ∈ Fn2 and the state x = δj2n ∈ ∆2n with j = 2n−(2n−1X1+2n−2X2+· · ·+Xn)

are one-to-one correspondent.

Lemma 2 ( [5]). The nonlinear system (B1) describing a BN with inputs can be equivalently expressed as a linear system

x(t+ 1) = Lu n u(t) n x(t), t ∈ N, (B4)

where x ∈ ∆2n is the state, u ∈ ∆2m is the input, and Lu ∈ L2n×2n+m is the state transition matrix, satisfying

Colj(Lu) = Colj(Gu1)⊗ · · · ⊗ Colj(Gun) (B5)

for all j = 1, 2, . . . , 2n+m, with the structure matrix Gui of the i-th component gui of the vectorial function gu in (B1) for

any i ∈ {1, 2, . . . , n}.
In (B1), if U(t) ≡ 0 for any t ∈ N, which means the BN without input, then its linear system representation (B4) is

reduced to x(t+ 1) = Lx(t) with state transition matrix L ∈ L2n×2n [5].

Definition 3 ( [5]). An mn×mn swap matrix W[m,n] is defined in the following way: label its columns as (11, 12, . . . , 1n,

. . . ,m1,m2, . . . ,mn) and its rows as (11, 21, . . . ,m1, . . . , 1n, 2n, . . . ,mn), and assign the entry w[(U,V ),(u,v)] at the position

[(U, V ), (u, v)] as

w[(U,V ),(u,v)] =

{
1, U = u and V = v,

0, otherwise.

Lemma 3 ( [5]). The semi-tensor product has the following properties.

1) Let A and B be, respectively, m × n and p × q matrices, and let X and Y be vectors of dimensions n and q,

respectively. Then (AX) n (BY ) = (A⊗B)(X n Y ).

2) Let A be an m× np matrix, and B be a p× q matrix. Then A nB = A(B ⊗ In).

3) If x ∈ ∆2, then x n x = Mx with the power-reducing matrix M = δ4[1 4].

4) Let X and Y be two column vectors of dimensions n and m, respectively. Then XnY = W[m,n]nY nX = X⊗Y .

5) W[m,n] = W−1
[n,m]

= [δ1n n δ1m · · · δnn n δ1m · · · δ1n n δmm · · · δnn n δmm ].

Appendix B.1 Proof of Theorem 1

For a cascade connection of an m-stage NFSR1 into an n-stage NFSR2, Theorem 1 gives a linear system representation of

NFSR2.

Theorem 1. NFSR2 can be equivalently expressed as a linear system

x(t+ 1) = Lu n u1(t) n x(t), t ∈ N, (B6)

with state x ∈ ∆2n , input u1 ∈ ∆2, and state transition matrix Lu ∈ L2n×2n+1 satisfying

Colj(Lu) = δ
2[(j−1) mod 2n−1+1]−sj
2n (B7)

for all j = 1, 2, . . . , 2n+1, where [s1, s2, . . . , s2n+1 ] is the truth table of the function fn(U1, X1, . . . , Xn) = U1⊕f(X1, X2, . . . , Xn),

arranged in the reverse alphabet order, with NFSR2’s input U1 and feedback function f .
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Proof. NFSR2 can be represented by a nonlinear system

X1(t+ 1) = X2(t),

..

.

Xn−1(t+ 1) = Xn(t),

Xn(t+ 1) = U1(t)⊕ f(X1(t), X2(t), . . . , Xn(t)).

Let fi(U1,X) = Xi+1 and let Fi be the structure matrix of fi for any i ∈ {1, 2, . . . , n−1}. Then, according to the definition

of structure matrix, we can easily obtain that

F1 = [ F̃1 · · · F̃1︸ ︷︷ ︸
22

],where F̃1 = δ2[ 1 · · · 1︸ ︷︷ ︸
2n−2

2 · · · 2︸ ︷︷ ︸
2n−2

],

F2 = [ F̃2 · · · F̃2︸ ︷︷ ︸
23

],where F̃2 = δ2[ 1 · · · 1︸ ︷︷ ︸
2n−3

2 · · · 2︸ ︷︷ ︸
2n−3

],

...

Fn−1 = [ F̃n−1 · · · F̃n−1︸ ︷︷ ︸
2n

],where F̃n−1 = δ2[1 2].

Suppose the structure matrix of fn to be Fn. From Lemma 2, for all j = 1, 2, . . . , 2n+1, we have

Colj(Lu) = Colj(F1)⊗ · · · ⊗ Colj(Fn−1)⊗ Colj(Fn).

Let Colj(B) = Colj(F1)⊗ · · · ⊗Colj(Fn−1). According to the structure feature of Fis for all i = 1, 2, . . . , n− 1, we can

easily see that

B = [B̃ B̃ B̃ B̃], (B8)

where the 2n−1 × 2n−1 matrix B̃ is to be determined. From Lemma 3, X ⊗ Y = X n Y for any two column vectors X

and Y . Thus, according to Lemma 1, we can easily compute that Colj(B̃) = δj
2n−1 for all j = 1, 2, . . . , 2n−1. Since each

Colj(Fn) = [sj sj ⊕ 1]T = δ
2−sj
2 , we have Colj(Lu) = Colj(B̃) ⊗ Colj(Fn) = δ

2j−sj
2n for all j = 1, 2, . . . , 2n−1. Together

taking Eq. (B8) into consideration, we can conclude that the result holds. 2

Appendix B.2 Proof of Theorem 2

For a cascade connection of an m-stage NFSR1 into an n-stage NFSR2, Theorem 2 reveals the relation of its state transition

matrix with those of both NFSRs. Before giving the detail proof of Theorem 2, we first review/give some related results.

NFSR1 can be represented by a linear system [7]:

u(t+ 1) = Lu(t), t ∈ N, (B9)

where L ∈ L2m×2m is the state transition matrix, satisfyingCol2m−1+j(L) = δ
2j−q

2m−1+j

2m ,

Colj(L) = δ
2j−qj
2m , j = 1, 2, . . . , 2m−1,

(B10)

with the truth table [q1, q2, . . . , q2m ] of the feedback function of NFSR1, arranged in the reverse alphabet order. L is

nonsingular if and only if the feedback function of NFSR1 is nonsingular [7]. It is notable to point out that Eq. (B10) can

be unified as:

Colj(L) = δ
2[(j−1) mod 2m−1+1]−qj
2m , j = 1, 2, . . . , 2m. (B11)

Similarly, NFSR2 with input holding constantly at zero can be represented by

x(t+ 1) = L0x(t), t ∈ N, (B12)

with L0 ∈ L2n×2n satisfying

Colj(L0) = δ
2[(j−1) mod 2n−1+1]−pj
2n , j = 1, 2, . . . , 2n, (B13)

and the truth table [p1, p2, . . . , p2n ] of the feedback function of NFSR2, arranged in the reverse alphabet order. L0 is

nonsingular if and only if the feedback function of NFSR2 is nonsingular.

Proposition 1. A cascade connection of an m-stage NFSR1 into an n-stage NFSR2 can be represented by a linear system

z̄(t+ 1) = L̄cz̄(t), (B14)

where z̄ ∈ ∆2m+n is the state, and L̄c ∈ L2m+n×2m+n is the state transition matrix, satisfying

L̄c = (L⊗Lu)(A⊗ I2n ) (B15)

with state transition matrices L in (B9) of NFSR1 and Lu in (B6) of NFSR2, and a 2m+1 × 2m matrix

A = W[2,2m](M ⊗ I2m−1 ), (B16)

and a swap matrix W[2,2m], and the power-reducing matrix M = δ4[1 4].
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Proof. Note that NFSR1 and NFSR2 can be represented by the linear systems (B9) and (B6), respectively. Multiplying

both equations in the sense of semi-tensor product, we have

u(t+ 1) n x(t+ 1) = [Lu(t)] n {Lu[u1(t) n x(t)]} = (L⊗Lu)[u(t) n u1(t) n x(t)]

= (L⊗Lu)[W[2,2m] n u1(t) n u(t) n x(t)] = (L⊗Lu)[W[2,2m] nM n u(t) n x(t)]

= (L⊗Lu)
{

[W[2,2m](M ⊗ I2m−1 )] n [u(t) n x(t)]
}

= (L⊗Lu)(A⊗ I2n )[u(t) n x(t)].

In the above inference, the first equation uses the associative law of the semi-tensor product, the second applies Property 1

of Lemma 3, the third utilizes its Property 4, and the fourth uses its Property 3, while the fifth and sixth apply its Property

2. Set z̄ = u n x. Then the result follows. 2

Remark 1. In Proposition 1, the state z̄ = un x ∈ ∆2m+n uniquely corresponds to the state Z̄ = [UT XT ]T ∈ Fm+n
2 .

If we set z = x n u that uniquely corresponds to Z = [XT UT ]T , then from Property 4 of Lemma 3, the system (B14)

becomes z(t + 1) = Lcz(t) with Lc = W[2m,2n]L̄cW[2n,2m]. As W[2n,2m] = W−1
[2m,2n]

, Lc is similar to L̄c. Note that,

either Z = [XT UT ]T or Z̄ = [UT XT ]T can be viewed as the state of the cascade connection of NFSR1 into NFSR2.

Hence, Lc is also a state transition matrix of the cascade connection.

In the following, we aim to further reveal the relation of the columns of the state transition matrix of a cascade connection

of two NFSRs with those of the state transition matrices of both NFSRs. To achieve this goal, we first give a lemma.

Lemma 4. The matrix A in (B16) satisfies{
Colj(A) = δ2j−1

2m+1

Col2m−1+j(A) = δ2
m+2j

2m+1 , j = 1, 2, . . . , 2m−1.
(B17)

Proof. The matrix A is related to a swap matrix. First, we prove the swap matrix W[m,n] satisfies

Colj(W[m,n]) = δ
[(j−1) mod n]m+d j

n
e

mn , j = 1, 2, . . . ,mn.

Partition W[m,n] as W[m,n] = [W1 W2 · · · Wm] with each Wi ∈ Lmn×n. According to Property 5 of Lemma 3, we

have Wi = [δ1n n δim · · · δnn n δim] for all i = 1, 2, . . . ,m. Clearly, the j-th column of W[m,n] is the [(j − 1) mod n + 1]-th

column of Wd j
n
e for any j ∈ {1, 2, . . . ,mn}. Therefore, Colj(W[m,n]) = δ

(j−1) mod n+1
n n δd

j
n
e

m = δ
[(j−1) mod n]m+d j

n
e

mn for

all j = 1, 2, . . . ,mn.

Next, we prove Eq. (B17). Clearly,

A = W[2,2m](δ4[1 4]⊗ I2m−1 ) = W[2,2m]δ2m+1 [1 2 · · · 2m−1 3 · 2m−1 + 1 3 · 2m−1 + 2 · · · 2m+1].

Hence, for all j = 1, 2, . . . 2m−1, we have Colj(A) = Colj(W[2,2m]) = δ2j−1

2m+1 , and Col2m−1+j(A) = Col3·2m−1+j(W[2,2m]) =

δ2
m+2j

2m+1 . 2

Proposition 2. Let the state transition matrices of NFSR1 and NFSR2 be L = δ2m [η1 η2 . . . η2m ] and Lu =

δ2n [ζ1 ζ2 . . . ζ2n+1 ], respectively. Then the state transition matrix of the cascade connection of NFSR1 into NFSR2, L̄c
in (B14), can be expressed as

L̄c = [L̄c1 L̄c2 . . . L̄c2m ] with{
L̄c(2m−1+i) = δ2m+n [(η2m−1+i − 1)2n + ζ2n+1 (η2m−1+i − 1)2n + ζ2n+2 . . . (η2m−1+i − 1)2n + ζ2n+1 ],

L̄ci = δ2m+n [(ηi − 1)2n + ζ1 (ηi − 1)2n + ζ2 . . . (ηi − 1)2n + ζ2n ], i = 1, 2, . . . , 2m−1.

Proof. Note that L̄c = (L⊗Lu)(A⊗ I2n ) with A in (B16). Then, from Lemma 4, for all i = 1, 2, . . . , 2m−1, we have

Coli(A)⊗ I2n = δ2m+n+1 [(i− 1)2n+1 + 1 (i− 1)2n+1 + 2 · · · (i− 1)2n+1 + 2n], and

Col2m−1+i(A)⊗ I2n = δ2m+n+1 [(2m + 2i− 1)2n + 1 (2m + 2i− 1)2n + 2 · · · (2m + 2i)2n].

Let L⊗ Lu = [L1 L2 · · · L2m+1 ] with Li ∈ L2m+n×2n for all i = 1, 2, . . . , 2m+1. Clearly, L⊗ Lu = [δη12m ⊗ Lu δη22m ⊗
Lu · · · δη2m2m ⊗Lu], and for all i = 1, 2, . . . , 2m, we have

δ
ηi
2m ⊗Lu = δ2m+n [(ηi − 1)2n + ζ1 (ηi − 1)2n + ζ2 · · · (ηi − 1)2n + ζ2n+1 ] = [L2i−1 L2i].

Therefore, we can deduce that

L̄c = (L⊗Lu)(A⊗ I2n ) = [L1 L2 · · · L2m+1 ][Col1(A)⊗ I2n Col2(A)⊗ I2n · · · Col2m (A)⊗2n ]

= [L1 L3 · · · L2m−1 L2m+2 L2m+4 · · · L2m+1 ].

Hence, L̄ci = L2i−1 and L̄c(2m−1+i) = L2m+2i for all i = 1, 2, . . . , 2m−1. Thus, the result follows. 2

Theorem 2. Let L = [L1 L2] with L1,L2 ∈ L2m×2m−1 be a state transition matrix of NFSR1, and let Lu = [Lu1 Lu2]

with Lu1,Lu2 ∈ L2n×2n be a state transition matrix of NFSR2. Then

L̄c = [L1 ⊗Lu1 L2 ⊗Lu2]. (B18)

is a state transition matrix of the cascade connection of NFSR1 into NFSR2.

Proof. The result directly follows from Proposition 2 and the definition of Kronecker product. 2
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Appendix B.3 Proof of Theorem 3

Theorem 3. If an n-stage Fibonacci NFSR and an n-stage Galois NFSR are equivalent, then their state diagrams are

isomorphic.

Proof. Let Ωf and Ωg be the sets of output sequences, respectively, of the Fibonacci NFSR and of the Galois NFSR.

Since they are equivalent, we have Ωf = Ωg .

For any given output sequence a = (ai)i>0 of the Fibonacci NFSR, let Ka be the preperiod of a, and Pa be the least

period of a, that is, Ka is the least nonnegative integer such that ai+Pa = ai for all i > Ka. Since any sequence generated by

an NFSR is ultimately periodic, Pa must be a positive integer. Moreover, the sequence a is formed by the first components

of Ka + Pa consecutive states of the Fibonacci NFSR, denoted by X1,X2, . . . ,XKa+Pa . Let b = (bj)j>Ka . Then b is a

sequence of period Pa.

Since a ∈ Ωf , we have a ∈ Ωg . Hence, there exist Na = Ka +BaPa +CaPa consecutive states of the Galois NFSR such

that their first components form the sequence a, where BaPa consecutive states are on a transient with nonnegative integer

Ba > 0, and CaPa consecutive states are on a cycle with positive integer Ca > 1, and the first components of BaPa +CaPa
consecutive states form the sequence b.

If Ba +Ca > 1, then there exist two different initial states of the Galois NFSR such that the output sequences resulting

from both initial states are the sequence b. It implies that the cardinality of Ωg satisfies |Ωg | < 2n. Thus |Ωf | < 2n

as well, which is in contradiction with the fact that an n-stage Fibonacci NFSR totally has 2n output sequences. Hence,

Ba+Ca = 1. Note that Ba is a nonnegative integer and Ca is a positive integer. Then, Ba = 0 and Ca = 1. It indicates that

there are Ka +Pa consecutive states of the Galois NFSR, denoted by Y1,Y2, . . . ,YKa+Pa , such that their first components

form the sequence a. Therefore, the exists a bijection mapping ϕ : Xi 7→ Yi, i = 1, 2, . . . ,Ka + Pa, such that for any given

edge from Xi1 to Xi2 in the state diagram of the Fibonacci NFSR, there is an edge from ϕ(Xi1 ) to ϕ(Xi2 ) in the state

diagram of the cascade connection. Due to the arbitrariness of the sequence a, the result follows. 2

Based on Theorem 3, the following corollary is immediately gotten.

Corollary 1. A cascade connection of NFSR1 into NFSR2 is nonsingular if and only if its equivalent Fibonacci NFSR is

nonsingular.

Appendix B.4 Proof of Theorem 4

Proposition 3. The state transition matrix Lu in (B6) of NFSR2 and the state transition matrix L0 in (B12) of NFSR2

with input holding constantly at zero, satisfy

1) Col2n+j(Lu) = Colj(L0), j = 1, 2, . . . , 2n.

2) Moreover, if the feedback function of NFSR2 is nonsingular, then Colj(Lu) = Col2n−1+j(L0) and Col2n−1+j(Lu) =

Colj(L0) for all j = 1, 2, . . . , 2n−1.

Proof. Let U1 and f be the input and feedback function of NFSR2, respectively, and let [p1, p2, . . . , p2n ] be the truth

table of f , arranged in the reverse alphabet order. We also let [s1, s2, . . . , s2n+1 ] be the truth table of the function

fn(U1, X1, . . . , Xn) = U1⊕f(X1, X2, . . . , Xn), arranged in the reverse alphabet order as well. For any j ∈ {1, 2, . . . , 2n+1},
let [U

(j)
1 X

(j)
1 · · · X(j)

n ]T denote the vector [U1 X1 · · · Xn]T that corresponds to the decimal number 2n+1 − j, that is,

2nU
(j)
1 + 2n−1X

(j)
1 + · · · + X

(j)
n = 2n+1 − j. Similarly, for any k ∈ {1, 2, . . . , 2n}, let [X

(k)
1 X

(k)
2 · · · X(k)

n ]T denote the

vector [X1 X2 · · · Xn]T that corresponds to the decimal number 2n − k.

Clearly, U
(2n+j)
1 = 0 for all j = 1, 2, . . . , 2n. Thus, we have

s2n+j = fn(U
(2n+j)
1 , X

(2n+j)
1 , . . . , X

(2n+j)
n ) = f(X

(2n+j)
1 , . . . , X

(2n+j)
n ), j = 1, 2, . . . , 2n.

Note that [X
(2n+j)
1 · · · X(2n+j)

n ]T = [X
(k)
1 · · · X(k)

n ]T as k = j, and pk = f(X
(k)
1 , . . . , X

(k)
n ) for all k = 1, 2, . . . , 2n.

Therefore, s2n+j = pj for all j = 1, 2, . . . , 2n. According to Eqs. (B13) and (B7), Item 1 follows. Item 2 can be proved in

a similar way. 2

Lemma 5. An n-stage NFSR represented by System s(t + 1) = As(t) with state s ∈ ∆2n is nonsingular if and only if

the state transition matrix A is nonsingular.

Proof. Since s(t + 1) = As(t) with s ∈ ∆2n , we have A ∈ L2n×2n . An NFSR is nonsingular if and only if its state

diagram only contains cycles, which is equivalent to that each state of the NFSR has only one predecessor and only one

successor. For any two distinct states δ
ji
2n , i = 1, 2, we have Aδ

ji
2n = Colji (A), which implies that δ

ji
2n is a predecessor of

Colji (A), and that Colji (A) is the successor of δ
ji
2n .

Sufficiency: IfA is nonsingular, then all of its columns are distinct. Thus, Colj1 (A) 6= Colj2 (A). Due to the arbitrariness

of the states δ
ji
2n , i = 1, 2, we can conclude that each state of the NFSR has only one predecessor and only one successor.

Necessity: If an NFSRs is nonsingular, then each state of the NFSR has only one predecessor and only one successor.

Therefore, Colj1 (A) 6= Colj2 (A). Due to the arbitrariness of Colj1 (A) and Colj2 (A), we deduce that all columns of A are

distinct. Thus, A is nonsingular. 2

Corollary 2. A cascade connection of NFSR1 into NFSR2 represented by System (B14) is nonsingular if and only if its

state transition matrix L̄c in (B14) is nonsingular.

As stated in Remark 1, a cascade connection of NFSR1 into NFSR2 can also be represented by z(t+ 1) = Lcz(t). Thus,

the cascade connection is nonsingular if and only if Lc is nonsingular, which is just the result given in [8]. However, both
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state transition matrices Lc and L̄c are of large size in general. Hence, using state transition matrices is not an efficient

way to the nonsingularity of a cascade connection of two NFSRs. Alternatively, the following gives an efficient way.

Theorem 4. A cascade connection of NFSR1 into NFSR2 is nonsingular if and only if the feedback functions of both

NFSRs are nonsingular.

Proof. As before, we let L = δ2m [η1 η2 . . . η2m ] and Lu = δ2n [ζ1 ζ2 . . . ζ2n+1 ], respectively, be the state transition

matrices of NFSR1 and NFSR2. We also let L̄c in (B14) be the state transition matrix of the cascade connection.

From Proposition 2, we can deduce that all columns of L̄c are distinct if and only if the following three properties

are satisfied: 1) η1, η2, . . . , η2m are distinct; 2) ζ1, ζ2, . . . , ζ2n are distinct; 3) ζ2n+1, ζ2n+2, . . . , ζ2n+1 are distinct. First,

η1, η2, . . . , η2m are distinct if and only if the feedback function of NFSR1 is nonsingular. On the other hand, according to

Eq. (B7), we have ζi, ζ2n+i ∈ {2ai − 1, 2ai} with ai = (i− 1) mod 2n−1 + 1 for all i = 1, 2, . . . , 2n. Hence, ζ1, ζ2, . . . , ζ2n

(resp. ζ2n+1, ζ2n+2, . . . , ζ2n+1 ) are distinct if and only if they take all possible values of 1, 2, . . . , 2n. Therefore, 2) and 3)

are equivalent. From Property 1 of Proposition 3, we can infer that that ζ2n+1, ζ2n+2, . . . , ζ2n+1 are distinct if and only if

the feedback function of NFSR2 is nonsingular. Thus, all columns of L̄c are distinct if and only if the feedback functions

of NFSR1 and NFSR2 are nonsingular. Note that L̄c ∈ L2m+n×2m+n . Then all columns of L̄c are distinct if and only if

L̄c is nonsingular. Thus, the result follows from Corollary 2. 2

Theorem 4 can be proved in another way. For a cascade connection of NFSR1 into NFSR2 and its equivalent Fibonacci

NFSR, their characteristic functions satisfy hc = gc ∗ fc [2], where gc, fc and hc are the characteristic functions of NFSR1,

NFSR2 and the Fibonacci NFSR, respectively. Moreover, hc is nonsingular if and only if gc and fc are nonsingular [9].

Note that the characteristic function of a Fibonacci NFSR is nonsingular if and only if its feedback function is nonsingular.

Hence, for a cascade connection of NFSR1 into NFSR2 and its equivalent Fibonacci NFSR, the feedback functions of NFSR1

and NFSR2 are nonsingular if and only if the feedback function of the Fibonacci NFSR is nonsingular, which is equivalent

to that the Fibonacci NFSR is nonsingular. Corollary 1 has shown that a cascade connection of NFSR1 into NFSR2 is

nonsingular if and only if its equivalent Fibonacci NFSR is nonsingular. Thus, Theorem 4 follows.

Example 1. Consider a cascade connection of a 3-stage NFSR1 into a 3-stage NFSR2, in which the feedback function of

NFSR1 is g(U1, U2, U3) = U1 ⊕ U3 ⊕ U2U3 ⊕ 1, and the feedback function of NFSR2 is f(X1, X2, X3) = X1 ⊕X2X3.

By direct computations we obtain the state diagram of the cascade connection only contains two cycles: 1) a cycle of

length 56, i.e., 63 → 55 → 39 → 7 → 14 → 21 → 43 → 30 → 61 → 50 → 37 → 2 → 12 → 17 → 42 → 29 → 59 → 54 →
36→ 0→ 8→ 16→ 40→ 25→ 58→ 53→ 34→ 5→ 11→ 23→ 46→ 28→ 57→ 51→ 38→ 4→ 9→ 18→ 44→ 24→
56 → 49 → 35 → 8 → 13 → 19 → 47 → 31 → 62 → 52 → 32 → 1 → 10 → 20 → 41 → 27 → 63; 2) and a cycle of length

8, i.e., 60 → 48 → 33 → 3 → 15 → 22 → 45 → 26 → 60, where all integers are the decimal numbers corresponding to the

states over F6
2. On the other hand, both g and f are, clearly, nonsingular. From Theorem 4, we deduce that the cascade

connection is nonsingular, consistent with the fact that its state diagram only contains cycles.

However, if we modify the feedback function of NFSR2 as f̃(X1, X2, X3) = X1⊕X1X2⊕X2X3. By direct computations

again, we found that both states that correspond to the decimal numbers 63 and 59 are two predecessors of the state that

corresponds to the decimal number 54, which implies that the state diagram of the modified cascade connection contains

some branch state. On the other hand, since f̃ is clearly not nonsingular, we can deduce from Theorem 4 that the modified

cascade connection is singular, which is consistent with the fact that its state diagram contains some branch state.

Appendix B.5 Proof of Theorem 5

Lemma 6. A Fibonacci NFSR represented by System Y (t+ 1) = H(Y (t)) with state Y ∈ Fn2 is equivalent to a cascade

connection of two NFSRs represented by System Z(t+1) = F (Z(t)) with state Z ∈ Fn2 , if and only if there exists a bijective

mapping ϕ : Y 7→ Z such that ϕ(H(Y )) = F (ϕ(Y )) and [1 0 · · · 0]ϕ(Y ) = [1 0 · · · 0]Y for all Y ∈ Fn2 .

Proof. Necessity: Clearly, for each Y ∈ Fn2 , there exists an edge from state Y to state H(Y ) in the state diagram of

the Fibonacci NFSR, Similarly, for each Z ∈ Fn2 , there exists an edge from state Z to state F (Z) in the state diagram

of the cascade connection. If a Fibonacci NFSR is equivalent to a cascade connection of two NFSRs, then according to

Theorem 3, their state diagrams are isomorphic, which is equivalent to that there exists a bijective mapping ϕ : Y 7→ Z

such that ϕ(H(Y )) = F (Z) = F (ϕ(Y )) for each Y ∈ Fn2 . Moreover, Since the output of an NFSR is the content of the

first bit, each state Y and its correspondingly transformed state Z have the same first component, which is equivalent to

[1 0 · · · 0]ϕ(Y ) = [1 0 · · · 0]Y for each Y ∈ Fn2 .

Sufficiency: If there exists a bijective mapping ϕ : Y 7→ Z such that ϕ(H(Y )) = F (ϕ(Y )) and [1 0 · · · 0]ϕ(Y ) =

[1 0 · · · 0]Y for all Y ∈ Fn2 , then according to the necessity proof, the state diagrams of the Fibonacci NFSR and the cascade

connection are isomorphic, and each state and its correspondingly transformed state have the same first component. Hence,

the Fibonacci NFSR and the cascade connection have the same set of output sequences. Thus, they are equivalent. 2

Proposition 4. A Fibonacci NFSR represented by System y(t + 1) = Lfy(t) with state y ∈ ∆2n is equivalent to a

cascade connection of two NFSRs represented by System z(t+ 1) = Lcz(t) with state z ∈ ∆2n , if and only if there exists a

permutation matrix V = δ2n [j1 j2 . . . j2n ] satisfying 1 6 ji 6 2n−1 and 2n−1 +1 6 j2n−1+i 6 2n for all i = 1, 2, . . . , 2n−1,

such that Lc = V LfV
−1.

Proof. Note that the states over Fn2 and the states over ∆2n are one-to-one correspondent. Then we can set z =

V y, where V is a permutation matrix determined by the bijection mapping ϕ in Lemma 6. Since all states in the set

S1 = {δj2n |j = 1, 2, . . . , 2n−1} correspond to the states over Fn2 whose first components are 1, and all states in the set

S2 = {δj2n |j = 2n−1 + 1, 2n−1 + 2, . . . , 2n} correspond to the states over Fn2 whose first components are 0, we can easily

infer the result from Lemma 6. 2
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Theorem 5. An (m + n)-stage Fibonacci NFSR can be decomposed into a cascade connection of an m-stage NFSR1

into an n-stage NFSR2, if and only if there exists a permutation matrix P = [Pl Pr] ∈ P2m+n with Pl,Pr ∈ L2m+n−1 ,

such that PLfP
−1
l = L1 ⊗ Lu1 and PLfP

−1
r = L2 ⊗ Lu2, where Lf ∈ L2m+n×2m+n is a state transition matrix of

the Fibonacci NFSR, [L1 L2] is a state transition matrix of NFSR1 with L1,L2 ∈ L2m×2m−1 , and [Lu1 Lu2] is a state

transition matrix of NFSR2 with Lu1,Lu2 ∈ L2n×2n .

Proof. A Fibonacci NFSR can be decomposed into a cascade connection of NFSR1 into NFSR2 if and only if they are

equivalent. According to Proposition 4 , we know that the Fibonacci NFSR and the cascade connection are equivalent if

and only if there exists a permutation matrix V = δ2m+n [j1, j2 . . . j2m+n ] such that the state transition matrix Lc
of the cascade connection satisfies Lc = V LfV

−1, where 1 6 ji 6 2m+n−1 and 2m+n−1 + 1 6 j2m+n−1+i 6 2m+n

for all i = 1, 2, . . . , 2m+n−1. According to Theorem 2, L̄c = [L1 ⊗ Lu1 L2 ⊗ Lu2] is another state transition matrix of

the cascade connection. From Remark 1, we know that the state transition matrix Lc = W[2m,2n]L̄cW[2n,2m]. Hence,

L̄c = (W[2n,2m]V )Lf (W[2n,2m]V )−1. Set P = W[2n,2m]V . Then PLfP
−1
l = L1 ⊗Lu1, and PLfP

−1
r = L2 ⊗Lu2.

The left is to prove P ∈ P2m+n . Clearly,

P = W[2n,2m]V = [Colj1 (W[2n,2m]) Colj2 (W[2n,2m] . . . Colj
2m+n (W[2n,2m])].

According to the proof of Lemma 4, we know the explicit form of each column of W[2n,2m]. Note that 1 6 ji 6 2m+n−1

and 2m+n−1 + 1 6 j2m+n−1+i 6 2m+n for all i = 1, 2, . . . , 2m+n−1. Then we can easily see P ∈ P2m+n . 2

Appendix B.6 Proof of Theorem 6

Corollary 1 have shown that a cascade connection of two NFSRs is nonsingular if and only if its equivalent Fibonacci NFSRs

is nonsingular. Hence, to assure the nonsingularity of the cascade connection, the decomposed Fibonacci NFSR must be

nonsingular. Theorem 6 gives a criterion to the decomposition of nonsingular Fibonacci NFSRs.

Theorem 6. An (m+n)-stage nonsingular Fibonacci NFSR can be decomposed into a cascade connection of an m-stage

NFSR1 into an n-stage NFSR2, if and only if there exists a permutation matrix P ∈ P2m+n such that PLfP
−1Q0 =

L ⊗ Lu2, where Lf ∈ L2m+m×2m+n is a state transition matrix of the Fibonacci NFSR, L ∈ R2m is a state transition

matrix of NFSR1, Lu2 ∈ R2n is a state transition matrix of NFSR2 with input holding constantly at zero, and

Q0 =

[
I2m−1 ⊗ P0 0

0 I2m+n−1

]

is a permutation matrix with P0 = δ2n [2n−1 + 1 2n−1 + 2 · · · 2n 1 2 · · · 2n−1].

Proof. We use the same notations as in Theorem 5. According to Proposition 3, Lu2 is the state transition matrix

of NFSR2 with input holding constantly at zero. From the proof of Theorem 5, we know that the Fibonacci NFSR

can be decomposed into the cascade connection of NFSR1 into NFSR2 if and only if there exists a permutation matrix

V = δ2m+n [j1, j2 . . . j2m+n ] such that Lc = V LfV
−1, where 1 6 ji 6 2m+n−1 and 2m+n−1 + 1 6 j2m+n−1+i 6 2m+n

for all i = 1, 2, . . . , 2m+n−1.

According to Corollary 1 and Theorem 4, we conclude that the Fibonacci NFSR is nonsingular if and only if NFSR1

and NFSR2 with input holding constantly at zero are nonsingular, which is equivalent to L ∈ R2m and Lu2 ∈ R2n . From

Proposition 3, we know Lu1 = Lu2P0. Thus, L1 ⊗ Lu1 = L1 ⊗ Lu2P0 = (L1 ⊗ Lu2)(I2m−1 ⊗ P0). On the other hand,

Theorem 2 has shown L̄c = [L1 ⊗ Lu1 L2 ⊗ Lu2]. Hence, we can easily compute that L̄c = (L ⊗ Lu2)Q0. Clearly,

P0 is a permutation matrix and satisfies P−1
0 = P0. Then, Q0 is also a permutation matrix and satisfies Q−1

0 = Q0.

From the proof of Theorem 5, we know L̄c = (W[2n,2m]V )Lf (W[2n,2m]V )−1, and P = W[2n,2m]V ∈ P2m+n . Therefore,

(L⊗Lu2)Q0 = PLfP
−1, yielding PLfP

−1Q0 = L⊗Lu2. 2

Theorems 5 and 6 show that the decomposition of (nonsingular) Fibonacci NFSRs can be converted into the Kronecker

product decomposition of (permutation) matrices whose columns are canonical vectors. It will be shown in later Remark 2

that using the latter lowers the time complexity of computations.

In addition, Theorems 5 and 6 show that the decomposition type of a Fibonacci NFSR (i.e., the type of a pair of NFSR1

and NFSR2 that are decomposed from the Fibonacci NFSR) is determined by the permutation matrix P , which is only

relative to two factors. One is the decomposition of the Fibonacci NFSR’s stage number such that it can be decomposed

as a sum of two positive integers that are the stage numbers of NFSR1 and NFSR2. The other is the state permutation of

the Fibonacci NFSR such that its set of output sequences is preserved.

Notably, even if the decomposition of stage number is fixed for a given Fibonacci NFSR, different state permutation may

result in different decomposition type, which can be easily seen from the property given in [3], namely, D(gc)∗(fc⊕1) = gc∗fc,
where D(gc)(U1, U2, . . . , Um) = gc(U1⊕1, U2⊕1, . . . , Um⊕1) for any [U1 U2 · · · Um] ∈ Fm2 , with characteristic functions gc
and fc. Summarizing all facts, we can easily see that the decomposition is not unique if a Fibonacci NFSR is decomposable.

Of course, if some constraints are imposed on two NFSRs in the cascade connection, then the decomposition may be unique,

like that in [4], where the feedback functions of all NFSRs are restricted to taking zero at the origin.

Appendix B.7 Proof of Theorem 7

Lemma 7. For any m× r matrix A and any n× s matrix B, A⊗B ∈ Lmn×rs if and only if A ∈ Lm×r and B ∈ Ln×s.
Proof. As each column of a matrix in Lp×q has only one entry of 1 and the other entries of 0, the result can be easily

inferred from the definition of Kronecker product. 2.
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Theorem 7. Let A = δm[α1 α2 · · · αr] ∈ Lm×r, B = δn[β1 β2 · · · βs] ∈ Ln×s, and P = δmn[γ1 γ2 · · · γrs] ∈ Lmn×rs.
Then P = A⊗B if and only if β(i−1) mod s+1 = (γi − 1) mod n+ 1,

αd i
s
e = d γi

n
e, i = 1, 2, . . . , rs.

(B19)

Proof. Clearly, A⊗B = [δα1
m ⊗B δα2

m ⊗B · · · δαrm ⊗B], and for all j = 1, 2, . . . , r, we have

δ
αj
m ⊗B = [δ

αj
m ⊗ δβ1n δ

αj
m ⊗ δβ2n · · · δαjm ⊗ δβsn ] = δmn[(αj − 1)n+ β1 (αj − 1)n+ β2 · · · (αj − 1)n+ βs].

Note that each βk satisfies 1 6 βk 6 n. Together taking Lemma 7 into consideration, we can infer that P = A ⊗ B is

equivalent to Eq. (B19). 2

If P = A ⊗ B, then for the simplicity we say A and B are factor matrices of P . For a matrix P ∈ Lm×n, if

P = A⊗B = C ⊗D, where A and C are of the same size, then from Theorem 7, we have A = C and B = D. However,

if A and C are not restricted to the same size, then the Kronecker product decomposition of P may be not unique, as

(M ⊗N)⊗K = M ⊗ (N ⊗K) for any matrices M ,N and K.

Remark 2. Theorem 7 provides a way to determine whether a matrix whose columns are canonical vectors is Kronecker

product decomposable, and how to find its factor matrices if it is. To determine whether a matrix P = δmn[γ1 γ2 . . . γrs]

can be decomposed as the Kronecker product of A ∈ Lm×r and B ∈ Ln×s, we can first partition γ = [γ1 γ2 . . . γrs] as

γ = [Γ1 Γ2 . . . Γr], where each Γi = [γ(i−1)s+1 γ(i−1)s+2 . . . γis], and then check whether d
γ(i−1)s+1

n
e = d

γ(i−1)s+2

n
e =

· · · = d γis
n
e for all i = 1, 2, . . . , r, and whether (γj − 1) mod n = (γs+j − 1) mod n = · · · = (γ(r−1)s+j − 1) mod n

for all j = 1, 2 . . . , s. If all these equations hold, then the matrix P can be decomposed as the Kronecker product of

A and B, moreover, A = δm
[
d γ1
n
e d γs+1

n
e · · · d

γ(r−1)s+1

n
e
]

and B = δn [(γ1 − 1) mod n+ 1 (γ2 − 1) mod n+ 1

· · · (γs − 1) mod n+ 1]. Otherwise, it cannot.

Our above way is simpler than the matrix rank way [10]. The latter way is to first partition P as

P =


P11 P12 · · · P1r

...
...

...

Pm1 Pm2 · · · Pmr

 ,
where each Pij is an n × s matrix, and then check whether the rank of the matrix VP = [Vc(P11) Vc(P12) · · ·
Vc(P1r) · · · Vc(Pm1) Vc(Pm2) · · · Vc(Pmr)] is 1, where each Vc(Pij) is a column vector that orderly stacks all columns

of Pij . If the rank of VP is 1, then P is Kronecker product decomposable. Otherwise, it is not. Clearly, our method takes

advantage of the sparseness of P , and only requires to consider the entries of 1 in the matrix P , while the matrix rank

method requires to consider all entries of P . Thus, our method is simpler.

The state transition matrix of a Fibonacci NFSR has a dimension exponential in its stage number, and therefore the

above method of Kronecker product decomposition is limited to those NFSRs with their stage numbers not too large.

Nevertheless, Using the Kronecker product decomposition to solve the decomposition of a Fibonacci NFSR requires lower

time complexity than using the ∗-product decomposition of its characteristic function. The reason is as follows. Without

loss of generality, we assume the Fibonacci NFSR decomposed into a cascade connection of an m-stage NFSR1 into an n-

stage NFSR2, the time complexity for the former method is mainly from (2m+n−1!)2 possible forms of P ∈ P2m+n required

to be considered, while the time complexity for the latter method is mainly from 22
n+2m possible pairs of characteristic

functions of NFSR1 and NFSR2 that need to be considered for a general Fibonacci NFSR, and 22
n−1+2m−1

possible pairs

for a nonsingular Fibonacci NFSR.

Appendix C Example

Consider a 5-stage nonsingular Fibonacci NFSR given in [4]. Its feedback function is h = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y2Y3 ⊕ Y2Y4 ⊕
Y3Y5 ⊕ Y4Y5.

We can easily compute its state transitions as: 21 → 11 → 23 → 14 → 28 → 24 → 16 → 1 → 2 → 4 → 9 → 19 →
6 → 13 → 26 → 21, and 10 → 20 → 8 → 17 → 3 → 7 → 15 → 30 → 29 → 27 → 22 → 12 → 25 → 18 → 5 → 10, and

31→ 31 and 0→ 0, where all positive integers are the decimal numbers corresponding to the states Y = [Y1 Y2 · · · Y5]s

of the Fibonacci NFSR. Clearly, they produce two sequences of period 15, i.e., 101011100001001 and 010100011110110,

and two sequences of period 1, i.e., 1 and 0. According to Eq. (B11), we can compute its state transition matrix as

Lf = δ32[1 3 5 8 10 11 14 16 18 20 21 24 26 27 29 31 2 4 6 7 9 12 13 15 17 19 22 23 25 28 30 32].

Ref. [4] showed that it can be decomposed into a cascade connection of NFSR1 into NFSR2 in the following two types:

1) NFSR1 is a 1-stage LFSR with feedback function g = U1, and NFSR2 is a 4-stage NFSR with feedback function

f = X1 ⊕X3 ⊕X4 ⊕X2X3 ⊕X2X4 ⊕X3X4;

2) NFSR1 is a 4-stage NFSR with feedback function g̃ = Ũ1 ⊕ Ũ4 ⊕ Ũ2Ũ3 ⊕ Ũ3Ũ4, and NFSR2 is a 1-stage LFSR with

feedback function f̃ = X̃1.

For Type 1, the state transitions are: 21 → 11 → 23 → 15 → 29 → 25 → 17 → 1 → 3 → 5 → 9 → 19 → 7 → 13 →
27 → 21, and 10 → 20 → 8 → 16 → 2 → 6 → 14 → 30 → 28 → 26 → 22 → 12 → 24 → 18 → 4 → 10, and 31 → 31 and

0→ 0, where all positive integers are the decimal numbers corresponding to the states Z = [X1 · · · X4 U1]s of the cascade

connection. For Type 2, the state transitions are: 31 → 14 → 28 → 9 → 18 → 20 → 24 → 1 → 3 → 6 → 13 → 26 → 5 →
11 → 23 → 31, and 15 → 30 → 12 → 25 → 2 → 4 → 8 → 17 → 19 → 22 → 29 → 10 → 21 → 27 → 7 → 15, and 16 → 16
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and 0 → 0, where all positive integers are the decimal numbers corresponding to the states Z̃ = [X̃1 Ũ1 · · · Ũ4]s of the

cascade connection. Clearly, both types produce the same set of output sequences as the Fibonacci NFSR.

We use the previous notations. To distinguish both types, we add tilde to notations for Type 2. According to Lemma 1,

we can easily obtain the permutation matrices

V = δ32[1 2 4 3 6 5 8 7 9 10 11 12 13 14 16 15 18 17 19 20 21 22 23 24 26 25 28 27 30 29 31 32],

Ṽ = δ32[16 15 13 14 10 9 11 12 4 3 1 2 6 5 7 8 24 23 21 22 18 17 19 20 28 27 25 26 30 29 31 32].

Since P = W[16,2]V and P̃ = W[2,16]Ṽ , we can easily obtain

P = δ32[1 17 18 2 19 3 20 4 5 21 6 22 7 23 24 8 25 9 10 26 11 27 12 28 29 13 30 14 31 15 16 32],

P̃ = δ32[31 29 25 27 19 17 21 23 7 5 1 3 11 9 13 15 16 14 10 12 4 2 6 8 24 22 18 20 28 26 30 32].

Clearly, P , P̃ ∈ P32 and they are distinct. Moreover, we can easily calculate

Q0 = δ32[9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32],

Q̃0 = δ32[2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32].

Hence, we directly compute A = PLfP
−1Q0 and Ã = P̃Lf P̃

−1Q̃0 as

A = δ32[2 3 5 7 10 12 14 15 1 4 6 8 9 11 13 16 18 19 21 23 26 28 30 31 17 20 22 24 25 27 29 32],

Ã = δ32[3 4 7 8 11 12 13 14 17 18 21 22 27 28 29 30 1 2 5 6 9 10 15 16 19 20 23 24 25 26 31 32].

Using the method of Kronecker product decomposition provided in Remark 2, we can obtain A = L⊗Lu2 and Ã = L̃⊗
L̃u2, whereL = L̃u2 = δ2[1 2], Lu2 = δ16[2 3 5 7 10 12 14 15 1 4 6 8 9 11 13 16], and L̃ = δ16[2 4 6 7 9 11 14 15 1 3 5 8 10 12 13 16].

Applying Eq. (B10), we easily verify that L and L̃ are indeed the state transition matrices of the NFSR1, respectively, for

Types 1 and 2, while Lu2 and L̃u2 are indeed those of NFSR2 with input holding constantly at zero, respectively, for Types

1 and 2 as well. All these validate the result in Theorem 6.
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