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Dear editor,
Chaotic maps have good characteristics, which in-
clude randomness, sensitivity to the initial value,
and unpredictability. Hence, there have been
many attempts to discuss the dynamic behavior of
chaotic maps in the field of chaotic cryptography.
However, the limited computation, finite memory,
and restricted communication capabilities in ap-
plication causes the state space of the chaotic map
to possibly be discrete [1]. How to choose a chaos
system that conforms to the cryptographic condi-
tions is a very important issue of study.

There are many discrete chaos maps that con-
tain a Logistic map. Two typical Logistic maps
used in the real field are defined as L1R(x) =
µx(1 − x), L2R(x) = 1 − µx2. However, tradi-
tional chaos maps in the real domain have a par-
ticular drawback, i.e., the computational complex-
ity is two-fold when we implement a floating point
number of a map in a computer. In addition, this
leads to a significantly critical problem in actual
engineering application. To overcome this prob-
lem, many researchers have considered chaotic sys-
tems over the finite field [2, 3]. Determining the
length is considerably important in various appli-
cations such as sequence design and cryptography.
A number of researches have also proved that a
Logistic map over a finite field can generate a long
sequences [4, 5]. For the security of a cryptosys-
tem, long passwords can make an attack difficult to
conduct. Although the computing of a traditional

Logistic map on a computer with limited precision
is bound to degenerate the result to limited preci-
sion, restricted complexity, and finite randomness,
among others, these drawbacks are detrimental to
the security of a password system.

In [6], to overcome these problems, the authors
discussed some characteristics of sequences gener-
ated from a Logistic map L1R(x) = µx(1−x) over
the finite field Z2n , but provided an incomprehen-
sive theoretical proof. We continue to analyze this
Logistic map over Z2n using a theoretical analy-
sis. The above two Logistic maps over the real
domain have similar properties, whereas the spe-
cific characteristics of the Logistic maps over the
finite field are not involved. In [7], the authors
considered Logistic map-1, L1R(x) = µx(1 − x),
over Z3n , and analyzed the period features of the
sequences generated over Z3n . In this study, we
generalize Logistic map-2, L2R(x) = 1−µx2, over
Z3n . In addition, we find their efficiently compu-
tational form and describe the period features of
the sequences generated from Logistic map-2 over
Z3n through an theoretical analysis.

We define N = qn as a modulo, where q is a
small prime number and n is a natural number.
Logistic map-1 over ZN can then be defined as [6]

L1ZN
(Xi) = µNXi(Xi + 1) (mod N), (1)

where µN ∈ [1, N − 1], Xi ∈ [0, N − 1].
Logistic map-2 over a real field can be written as

L2R(xi) = 1 − µx2
i , where µ ∈ [0, 2], xi ∈ [−1, 1].
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It is well known that when µ = 2 the Logistic
mapping enters into chaos. We provide Logis-

tic mapping over the integer field as L2
(n)
R (x′

i) =
2n−µ(x′

i)
2/2n, where n is the element precision of

the map, x′
i = 2nxi, and L2

(n)
R (x′

i) = 2nL2R(xi).
We then derive a function for the Logistic map-

ping over the integer field as L2
(n)
Int (Xi) = ⌊2n −

µX2
i /2

n⌋, where Xi ∈ [0, 2n] is the integral part
of x′

i, and ⌊·⌋ is the bracket function. The Logis-
tic mapping over a prime field can be defined as
L2Zp

(Xi) = (p−1)−(µpX
2
i )/(p−1)(mod p), where

p is a prime number, Zp is a field for modulo p,
Xi ∈ [0, p− 1], and µp ∈ [0, p− 1].

Definition 1. According to (1), we define the
Logistic map-2 over ZN as

L2ZN
(Xi) = (N − 1)−

µNX2
i

N − 1
(mod N), (2)

where µN ∈ [0, N − 1], Xi ∈ [0, N − 1].

Lemma 1.

L2ZN
(Xi) = µNX2

i − 1 (mod N). (3)

According to Lemma 1, the computation of Xi

of (3) is more available than that of (2).
The characteristics of the generation sequences

from Logistic map-1 over Z2n are as follows.

Theorem 1. When µN mod 4 = 0 or 2, the max-
imum period of L1ZN

(Xi) is 1, and the final value
of L1ZN

(Xi) is 0 [6].

Lemma 2 ([6]). L1ZN
(N−Xi−1) = L1ZN

(Xi).

Theorem 2. Suppose that a field K does not
have a characteristic value 2, and a quadratic poly-
nomial φ(z) = Az2 + Bz + C can be transformed
into z2 + c with a simple variable transformation
in K.

Theorem 3. A Mandelbrot set is included in the
disk of radius 2, and thus M ⊂ c ∈ C : |c| 6 2.

Definition 2. When a point 0 is sternly prepe-
riodic with φc(z) = z2+ c, then the point c can be
defined as a Misiurewicz point. We have point c,
which can be a Misiurewicz point, as a fixed pe-
riodic point, and the period can be described as
the type (m,n) when m > 1 is the minimum in-
teger number, and in this way φm

c (0) is periodic,
but only if n is a primitive period of φm

c (0).
Let A = µN , B = µN , C = 0. We have f(z) =

(2z − µN )/(2µN ), and f−1(z) = (2µNz + µN )/2.

Then L1fZN
(Xi) = (f−1 ◦L1ZN

◦ f)(Xi) = X2
i + c,

where c = 1
4 (2µN −µ2

N). Therefore, periodic prop-
erty of L1ZN

(Xi) is the same as that of L1f(Xi).

Theorem 4. When µN mod 4 = 3, the maxi-
mum period of L1ZN

(Xi) is
N
16 = 2n−4.

Theorem 5. When µN mod 4 = 1, the maxi-
mum period of L1ZN

(Xi) is
N
4 = 2n−2.

Lemma 3. According to Theorem 2, Eq. (3) can
be changed into L2f(Xi) = X2

i − µN .
Therefore, the periodic property of L2ZN

(Xi) is
the same as that of L2f(Xi). The characteristics
of the generation sequences from Logistic map-2
over Z3n are as follows.

Theorem 6. When µN mod 9 = 0 or 3 or 6, the
maximum period of L2ZN

(Xi) is 1.

Theorem 7. When µN mod 9 = 1 or 4 or 7, the
maximum period of L2ZN

(Xi) is 2.

Lemma 4. L2ZN
(N −Xi) = L2ZN

(Xi).

Theorem 8. When µN mod 9 = 2, the maxi-
mum period of L2ZN

(Xi) is
N
9 = 3n−2.

Theorem 9. When µN mod 9 = 8, the maxi-
mum period of L2ZN

(Xi) is
N
9 = 3n−2.

Theorem 10. When µN mod 9 = 5, the maxi-
mum period of L2ZN

(Xi) is
N
3 = 3n−1.

We designed an experiment to prove the char-
acteristics of the period range of sequences gener-
ated from Logistic map-2 over Z3n . We selected
1000 random initial values, and calculated Logis-
tic map-2 until it entered into the period range.
Figure 1(a) describes the maximum period length
of Logistic map-2 over Z3n where 10 6 n 6 20,
and 1 6 µN 6 N − 1. In Figure 1(a), the lines
of µN = 5 and µN = 212 are overlapped, as are
the lines of µN = 74, µN = 80, µN = 254, and
µN = 305. This is because the length of the maxi-
mum period of L2Z3n

(Xi) at µN = 5 is the same as
that when µN = 212 according to Theorem 10, and
the length of the maximum period of L2Z3n

(Xi)
at µN = 74 is the same as that when µN = 80,
µN = 254, and µN = 305 according to Theorems 8
and 9.

Another experiment was designed using two Lo-
gistic mappings over different fields, the results of
which are shown in Figure 1(b). In Figure 1(b),
the period of L2Z3n

(Xi) is 3 times longer than
that of L1Z3n

(Xi) in [7], reaching the order of
104–109. The period of L2Z3n

(Xi) is increased
on the order of 102–104 compared with that of
L1Z2n

(Xi) in [6]. The period of L2Z3n
(Xi) is in-

creased on the order of 104–106 compared with
that of L2ZInt

(Xi), which is not expanded to the
finite field. Therefore, our proposed method is able
to generate a pseudorandom sequence that obtains
a much longer length, and is much more suitable
for practical engineering application.

The generation time is a very significant in-
dex to judge the performance of a pseudorandom
generation method. We designed an experiment
to measure the generation time of the genera-
tion sequences from Logistic mappings over ZN .
We iterate the Logistic mapping by repeating it
1000 times, where the length of the sequence is
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Figure 1 (a) Length of maximum period for L2Z3n
(Xi); (b) maximum period of each mapping.

10000000 when n = 32. In addition, we obtain
the maximum, minimum, and average time for
L2Z3n

(Xi) as µN = 5 and N = 332, and as µN = 1
and N = 332 for L1Z3n

(Xi) in [7]. The generation
time (maximum time, 0.2869 s; minimum time,
0.2304 s; and average time, 0.2342 s) of L2Z3n

(Xi)
in this study is faster than that (maximum time,
0.2887 s; minimum time, 0.2788 s; and average
time, 0.2826 s) of L1Z3n

(Xi) in [7].
The proofs for all lemmas and theorems are in-

cluded in Appendixes A–L. Some other character-
istics of L1ZN

(Xi) and L2ZN
(Xi) regarding pseu-

dorandom sequence, power spectrum, correlation
property, phase diagram, and Lyapunov exponent
are presented in Appendix M.

Conclusion. We generalized two Logistic maps
to a finite field and found their efficiently com-
putational forms using different parameters of the
mapping over this field ZN . We analyzed the pe-
riod features regarding the sequences generated
from Logistic map-1 over Z2n and Logistic map-2
over Z3n , and studied the statistical characteris-
tics of the period features for the maps. We an-
alyzed the behavior of a Logistic map, which can
be changed based on the parameters, and found
that the maximum period of sequences generated
over ZN can be changed according to the differ-
ent control parameters. The length of sequences
generated from Logistic map-2 over Z3n is much
longer than that from Logistic map-2 over an inte-
ger field, and much longer than that from Logistic
map-1 over Z3n . The generation time of Logis-
tic map-2 is faster than that of Logistic map-1.
In addition, the length of these sequences is much
longer, and is available for the pseudorandom num-
ber generation, chaotic encryption. Simulations
of other characteristics have shown that a Logis-
tic map over a finite field has non-periodic, ran-
dom, noise-like properties, a continuous spectrum,

good correlation, good uniform distribution, con-
trollable length of the generated sequence, and
positive Lyapunov exponent. Therefore, the Lo-
gistic map over a finite field has a higher prospect
of practical application and may be suitable for
cryptographic application.
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