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Appendix A Lemma 1 proof

By (2), and −1 ≡ N − 1(mod N),

L2ZN
(Xi) = (N − 1) −

µN X2

i

N−1
(mod N),

≡ −1 −
µN X2

i

−1
(mod N),

≡ µN X2
i − 1 (mod N).

Example 1. When µN = 122, X0 = 1, n = 7, the sequences of L1ZN
(Xi) are (1, 116, 104, 16, 32, 64, 0, 0, 0, · · ·).

Appendix B Theorem 2 proof

Let

f(z) =
2z − B

2A
, (B1)

and

f−1(z) =
2Az + B

2
, (B2)

then

φf (z) = (f−1 ◦ φ ◦ f)(z) = z2 + (AC −
1

4
B2 +

1

2
B). (B3)

We define c = AC − 1
4
B2 + 1

2
B, and φ(z) = Az2 + Bz + C can be changed into the form φf (z) = z2 + c with a simple

entirely transformation in the field K. And we have that f(zi) is a n periodic point of φf (z) when zi just is a n periodic

point of φ.

Appendix C Theorem 3 proof

Suppose that |c| > 2, zn = φn
c (0) where φn is the iterates of φ.

|zn+1| > |z2
n| − |c| = (|zn| − |c|) + |zn| · (|zn| − 1). (C1)

We get |z1| = |c| > 2 with supposing, then (C1) and mathematical induction tells us first that the sequence |zn| may be

increasing, and indeed that

|zn+1| > |z1|(|z1| − 1)2 = |c|(|c| − 1)n.

So |zn| → ∞, and c is not in M.
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Appendix D Theorem 4 proof

According to Theorem 3, for simplicity, firstly we discuss µN = 3, then c = 1
4
(2µN − µ2

N
) = − 3

4
. Letting φc(z) = φf (z) =

z2 + c, if c = − 3
4
, φc(z) = z2 − 3

4
, so the resultant Res(Φ∗

m(z),Φ∗
n(z)) = Res(Φ∗

1, Φ∗
2) = 0 where Φ∗ is a nth dynatomic

polynomial, and it indicates that φc(z) = z2 − 3
4

has the period form as the type (m, n) which is (1, 2) as we know in

Definition 2. If φn
c (zi) = zi, thus zi is a fixed point of φn

c . Then the solution of equation z2 − 3
4

= z is the fixed point of

φc(z), so we get two fixed points z′ = − 1
2

and z′′ = 3
2
.

Thus when c = − 3
4

and z′ = − 1
2
, we have

−
1

2

φ
−

3

4−−−→ −
1

2

φ
−

3

4−−−→ −
1

2

φ
−

3

4−−−→ · · ·, (D1)

and when c = − 3
4

and z′′ = 3
2
, we have

3

2

φ
−

3

4−−−→
3

2

φ
−

3

4−−−→
3

2

φ
−

3

4−−−→ · · ·. (D2)

But when z0 = − 1
2
, X0 = f−1(z0) = µN z0 + 1

2
µN = 0. In order to avoid the initial value of LZN

(Xi) is 0, we calculate

φ−1
c (− 1

2
) = 1

2
or − 1

2
, and we take φ−1

c (− 1
2
) = 1

2
, then X0 = f−1(z0) = f−1( 1

2
) = 1

2
µN + 1

2
µN = µN = 3.

And when z0 = 3
2
, X0 = f−1(z0) = µN z0 + 1

2
µN = 2µN , where the value of X0 is 2 times µN , so we take X0 = µN = 3.

When µN = 3, X0 = 3, n = 1, with (1), X0 + 1 = 4 = 2N , so the final value of L1ZN
(Xi) is 0. When µN = 3, X0 = 3,

n = 2, by using (1), X0 + 1 = 4 = N , so the final value of L1ZN
(Xi) is 0. When µN = 3, X0 = 3, n = 3, the sequences of

L1ZN
(Xi) are (3, 4, 4, 4, 4, 4, · · ·). When µN = 3, X0 = 3, n = 4, the sequences of L1ZN

(Xi) are (3, 4, 12, 4, 12, 4, · · ·).

When µN = 3, X0 = 3, n = 5, the sequences of L1ZN
(Xi) are (3, 4, 28, 4, 28, 4, · · ·).

When µN = 3, X0 = 3, n > 5, let L1T
ZN

(Xi) be the period transformation of L1ZN
(Xi), by Lemma 2,

L1T
ZN

(3) = LZN
(N − 1 − 3),

L1T
ZN

(3) = 3 · (N − 1 − 3)(N − 1 − 3 + 1) (mod N),

L1T
ZN

(3) = 3 · (N − 4)(N − 3) (mod N),

L1T
ZN

(3) = 3 · (N2 − 7 · N + 12) (mod N),

L1T
ZN

(3) = 36 (mod N),

T = N
16

= 2n−4.

Because c = 1
4
(2µN − µ2

N ) = 1
4
− 1

4
(µN − 1)2, and µN ≡ 3 mod 4, µN − 3 ≡ 0 mod 4, (µN − 1)2 = (µN − 3 + 2)2 =

(µN − 3)2 + 4(µN − 3) + 4 ≡ 0 mod 4, the period of L1ZN
(Xi) when µN mod 4 = 3 is the same as that of L1ZN

(Xi) when

µN = 3, and the maximum period of L1ZN
(Xi) is N

16
= 2n−4.

Example 2. When µN = 19, X0 = 3, n = 7, the sequences of L1ZN
(Xi) are (3, 100, 28, 68, 60, 36, 92, 4, 124, 100, 28,

68, · · ·), and the period of L1ZN
(Xi) is 8.

Appendix E Theorem 5 proof

Firstly, we discuss µN = 1, and c = 1
4
(2µN − µ2

N ) = 1
4
. Let φc(z) = φf (z) = z2 + c, if c = 1

4
, φc(z) = z2 + 1

4
, then the

solution of equation z2 + 1
4

= z is the fixed point of φc(z), so we get one fixed point z′ = 1
2
.

Thus when c = 1
4

and z′ = 1
2
, we have

1

2

φ 1

4−−→
1

2

φ 1

4−−→
1

2

φ 1

4−−→ · · ·. (E1)

And when z0 = 1
2
, X0 = f−1(z0) = µN z0 + 1

2
µN = µN , so we take X0 = µN = 1.

When µN = 1, X0 = 1, n = 1, with (1), X0 + 1 = 2 = N , so the final value of LZN
(Xi) is 0. When µN = 1, X0 = 1,

n = 2, the sequences of L1ZN
(Xi) are (1, 2, 2, 2, 2, 2, · · ·). When µN = 1, X0 = 1, n > 2, by Lemma 2,

L1T
ZN

(1) = L1ZN
(N − 1 − 1),

L1T
ZN

(1) = 1 · (N − 1 − 1)(N − 1 − 1 + 1) (mod N),

L1T
ZN

(1) = 1 · (N − 2)(N − 1) (mod N),

L1T
ZN

(1) = 1 · (N2 − 3 · N + 2) (mod N),

L1T
ZN

(1) = 2 (mod N),

T = N
4

= 2n−2.

Because µN ≡ 1 mod 4, the period of L1ZN
(Xi) when µN mod 4 = 1 is the same as that of L1ZN

(Xi) when µN = 1,

and the maximum period of L1ZN
(Xi) is N

4
= 2n−2.

Example 3. When µN = 5, X0 = 1, n = 5, the sequences of L1ZN
(Xi) are (1, 10, 6, 18, 14, 26, 22, 2, 30, 10, 6, 18, · · ·),

and the period of L1ZN
(Xi) is 8.
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Appendix F Lemma 3 proof

With Lemma 1, Theorem 2 and (B3), let A = µN , B = 0, C = −1, then

f(z) =
1

µN

z, (F1)

and

f−1(z) = µN z, (F2)

then
L2f (Xi) = L2f

ZN
(Xi) = (f−1 ◦ LZN

◦ f)(Xi),

= X2
i − µN .

(F3)

Let c = −µN ,

L2f (Xi) = X2
i + c.

Appendix G Theorem 6 proof

Firstly, we discuss µN = 0, and c = −µN = 0. Let φc(z) = φf (z) = z2 + c, if c = 0, φc(z) = z2. Thus for c = 0, we get

0
φ0−−→ 0

φ0−−→ 0
φ0−−→ · · ·, (G1)

and

1
φ0−−→ 1

φ0−−→ 1
φ0−−→ · · ·, (G2)

so φc(z) has period as the type (1, 1) as we know in Definition 2. So the periodic properties of L2ZN
(Xi) when µN = 0

are the same of φc(z) = z2, and because µN ≡ 0 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 0 is the same as

that of L2ZN
(Xi) when µN = 0. The period of L2ZN

(Xi) is 1, and the final value of L2ZN
(Xi) is a constant C when

µN mod 9 = 0.

When µN = 6, then c = −µN = −6, φc(z) = z2 − 6. Thus for c = −6, we have

− 2
φ
−6

−−−→ −2
φ
−6

−−−→ −2
φ
−6

−−−→ · · ·, (G3)

and

3
φ
−6

−−−→ 3
φ
−6

−−−→ 3
φ
−6

−−−→ · · ·, (G4)

so φc(z) has period as the type (1, 1) as we know in Definition 2. So the periodic properties of L2ZN
(Xi) when µN = 6

are the same of φc(z) = z2 − 6, and because µN ≡ 6 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 6 is the same

as that of L2ZN
(Xi) when µN = 6. The period of L2ZN

(Xi) is 1, and the final value of L2ZN
(Xi) is a constant C when

µN mod 9 = 6.

When µN mod 9 = 3, then c = −µN = −3, φc(z) = z2 − 3. Because −µN mod 9 = −3 and −3 ≡ 6 mod 9,

−µN mod 9 ≡ 6. We have the period of L2ZN
(Xi) when µN mod 9 = 3 is the same as the period of L2ZN

(Xi) when

µN mod 9 = 6. Finally, the period of LZN
(Xi) is 1 if µN mod 9 = 0 or 3 or 6.

Example 4. When µN = 39, X0 = 1, n = 7, the sequences of L2ZN
(Xi) are (1, 38, 1640, 1505, 857, 371, 1100, 1100, · · ·),

and the period of L2ZN
(Xi) is 1.

Appendix H Theorem 7 proof

Firstly, we discuss µN = 1, then c = −µN = −1. Letting φc(z) = φf (z) = z2 + c, if c = −1, φc(z) = z2 − 1. Thus for

c = −1, we have

0
φ
−1

−−−→ −1
φ
−1

−−−→ 0
φ
−1

−−−→ −1
φ
−1

−−−→ · · ·, (H1)

so φc(z) has period as the type (1, 2) as we know in Definition 2. So the periodic properties of L2ZN
(Xi) when µN = 1 are

the same of φc(z) = z2 − 1, and because µN ≡ 1 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 1 is the same as that

of L2ZN
(Xi) when µN = 1. The period of L2ZN

(Xi) is 2 when µN mod 9 = 1.

When µN = 4, µN = 13 mod 9 and µN mod 9 ≡ 13 then c = −µN = −13, φc(z) = z2 − 13. Thus for c = −13, we have

3
φ
−13

−−−−→ −4
φ
−13

−−−−→ 3
φ
−13

−−−−→ −4
φ
−13

−−−−→ · · ·, (H2)

so φc(z) has period as the type (1, 2) as we know in Definition 2. So the periodic properties of L2ZN
(Xi) when µN = 13

are the same of φc(z) = z2 − 13, and because µN ≡ 4 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 4 is the same as

that of L2ZN
(Xi) when µN = 4. The period of L2ZN

(Xi) is 2 when µN mod 9 = 4.

When µN = 7, then c = −µN = −7, φc(z) = z2 − 7. Thus for c = −7, we have

2
φ
−7

−−−→ −3
φ
−7

−−−→ 2
φ
−7

−−−→ −3
φ
−7

−−−→ · · ·, (H3)

so φc(z) has period as the type (1, 2) as we know in Definition 2. So the periodic properties of L2ZN
(Xi) when µN = 7 are

the same of φc(z) = z2 − 7, and because µN ≡ 7 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 7 is the same as that

of L2ZN
(Xi) when µN = 7. The period of L2ZN

(Xi) is 2 when µN mod 9 = 7. Finally, the period of L2ZN
(Xi) is 2 when

µN mod 9 = 1 or 4 or 7.

Example 5. When µN = 40, X0 = 1, n = 7, the sequences of L2ZN
(Xi) are (1, 39, 1790, 1425, 2006, 426, 386, 264, 1601,

1479, 143, 21, 143, 21, · · ·), and the period of L2ZN
(Xi) is 2.
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Appendix I Lemma 4 proof

According Lemma 1, we have

L2ZN
(N − Xi) ≡ (µN (N − Xi)2 − 1) (mod N),

≡ (µN (N − Xi)(N − Xi) − 1) (mod N),

≡ (µN (N2 − 2N · Xi + X2
i ) − 1) (mod N),

≡ (µN X2
i − 1) (mod N),

= L2ZN
(Xi).

Appendix J Theorem 8 proof

Firstly, we discuss µN = 2, and when µN = 2, X0 = |c| = 2, n > 3, with Lemma 4,

L2T
ZN

(2) = LZN
(N − 2),

L2T
ZN

(2) = (2N2 − 8N + 7) (mod N),

L2T
ZN

(2) = 7 (mod N),

T = N
9

= 3n−2.

According to µN ≡ 2 mod 9, so the period of L2ZN
(Xi) when µN mod 9 = 2 is the same as that of L2ZN

(Xi) when

µN = 2, and the maximum period of L2ZN
(Xi) is N

9
= 3n−2.

Example 6. When µN = 74, X0 = 5, n = 5, the sequences of L2ZN
(Xi) are (5, 148, 85, 49, 40, 58, 103, 175, 31, 157, 67,

4, 211, 202, 220, 22, 94, 193, 76, 229, 166, 130, 121, 139, 184, 13, 112, 238, 148, 85, · · ·), and the period of L2ZN
(Xi) is 27.

Appendix K Theorem 9 proof

Firstly, we discuss µN = 8, and when µN = 8, X0 = |c| = 8, n > 3, with Lemma 4,

L2T
ZN

(8) = LZN
(N − 8),

L2T
ZN

(8) = (8N2 − 128N + 511) (mod N),

L2T
ZN

(8) = 511 (mod N),

T = N
9

= 3n−2.

According to µN ≡ 8 mod 9, so the period of L2ZN
(Xi) when µN mod 9 = 8 is the same as that of L2ZN

(Xi) when

µN = 8, and the maximum period of L2ZN
(Xi) is N

9
= 3n−2.

Example 7. When µN = 80, X0 = 213, n = 5, the sequences of L2ZN
(Xi) are (213, 71, 142, 85, 145, 196, 58, 118, 7,

31, 91, 61, 4, 64, 115, 220, 37, 169, 193, 10, 223, 166, 226, 34, 139, 199, 88, 112, 172, 142, 85, 145, · · ·), and the period of

L2ZN
(Xi) is 27.

Appendix L Theorem 10 proof

Firstly, we discuss µN = 5, then when µN = 5, X0 = |c| = 5, n > 3, with Lemma 4,

L2T
ZN

(5) = LZN
(N − 5),

L2T
ZN

(5) = (5N2 − 50N + 124) (mod N),

L2T
ZN

(5) = 124 (mod N),

T = N
3

= 3n−1.

Because µN ≡ 5 mod 9, the period of L2ZN
(Xi) when µN mod 9 = 5 is the same as that of L2ZN

(Xi) when µN = 5,

and the maximum period of L2ZN
(Xi) is N

3
= 3n−1.

Example 8. When µN = 77, X0 = 123, n = 5, the sequences of L2ZN
(Xi) are (123, 233, 166, 178, 190, 22, 88, 208, 40,

241, 64, 220, 151, 1, 76, 61, 19, 94, 214, 118, 31, 124, 55, 130, 34, 73, 148, 187, 172, 85, 97, 109, 184, 7, 127, 202, 160, 226,

139, 70, 163, 238, 223, 181, 13, 133, 37, 193, 43, 217, 49, 196, 235, 67, 106, 91, 4, 16, 28, 103, 169, 46, 121, 79, 145, 58,

232, 82, 157, 142, 100, 175, 52, 199, 112, 205, 136, 211, 115, 154, 229, 25, 10, 166, 178, 190, 22, 88, · · ·), and the period of

L2ZN
(Xi) is 81.

Appendix M Some other characteristics

Appendix M.1 Pseudorandom sequence

Through two Logistic maps, we can generate the sequences over the finite field. Some long periodic sequences exist that

are quite useful for practical application. Thus, we generate pseudorandom sequences with different initial and control
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Table M1 NIST test results

Test index P value of L1Z3n (Xi) P value of L2Z3n (Xi) Results

approximate entropy 0.9599 0.8235 success

block frequency 0.4987 0.4942 success

cumulative sums 0.1302 0.1282 success

fast Fourier transform 0.4465 0.6202 success

frequency 0.4427 0.7111 success

random excursions 0.9970 0.9626 success

random excursions variant 0.6831 0.4795 success

longest runs of ones 0.2209 0.7492 success

rank 0.2919 0.2919 success

runs 0.4704 0.8791 success

serial 0.2389 0.4142 success

universal statistical 0.7467 0.6070 success
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Figure M1 Power spectrum of L1ZN
(Xi). Figure M2 Power spectrum of L2ZN

(Xi).

parameters where L1ZN
(Xi) with q = 3, N = 3n, n = 13, X0 = 1, µN = 13, and L2ZN

(Xi) with q = 3, N = 3n, n = 13,

X0 = 1, µN = 5.

The NIST test is the most important norm for randomness testing, and contains a number of nearly independent

statistical tests. These methods focus on many kinds of different molds of non-randomness that may exist in a particular

sequence. In NIST, the important level of each method can be set at 0.01 which tells us that 99% of the test specimens pass

the tests only if the random number is really random. If the P value is > 0.01, it tells us that the sequence will be random

and its probability is 0.99. In this appendix, we use several versions of the NIST test. Table M1 shows that the sequences

generated from the Logistic mapping over a finite field have good random properties that have proven to be available for a

secure application.

Appendix M.2 Power spectrum

Usually, the description of a signal in the time and frequency domains is one by one. An analysis for the power spectrum

(PS) can provide some information of the signal frequency domain.

Figure M1 shows a power spectrum diagram of Logistic map L1ZN
(Xi) where q = 3, N = 3n, n = 13, X0 = 1, µN = 16.

Figure M2 shows the power spectrum diagram of Logistic map L2ZN
(Xi) where q = 3, N = 3n, n = 13, X0 = 1, µN = 8.

From Figure M1 and M2, we can see that the power spectrum of the Logistic mapping over the finite field has a noise

background and wide peak, and is continuous, which satisfies the chaotic characteristics.

Appendix M.3 Correlation property

The correlation property is a very significant factor in evaluating the performance of a sequence generated by a chaotic

map. The typical auto-correlation function (ACF) and cross-correlation function (CCF) are under ideal conditions in which

the sequence length approaches ∞, but the length of the sequence is usually finite in practical application.

We define {Xi}, {Xi1} and {Xi2} as chaotic sequences where the finite length is H. The auto-correlation function can

be abbreviated as ACF for {Xi}. The cross-correlation function can be abbreviated as CCF for {Xi1} and {Xi2}. And the

auto-correlation function of {Xi} can be written by
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Figure M3 ACF of L1ZN
(Xi). Figure M4 ACF of L2ZN

(Xi).
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Figure M5 CCF of L1ZN
(Xi). Figure M6 CCF of L2ZN

(Xi).

ACF (m) =

8>><>>: 1
H−|m|

PH−1−|m|
i=0 (Xi − X)(Xi+m − X),

1 − H 6 m 6 H − 1,

0, H 6 |m|.

(M1)

The cross-correlation function of {Xi1} and {Xi2} can be written by

CCF (m) =

8>><>>: 1
H−|m|

PH−1−|m|
i=0 (Xi1 − X)(X(i+m)2 − X),

1 − H 6 m 6 H − 1,

0, H 6 |m|.

(M2)

Any two different sequences {Xi1} and {Xi2} are relatively independent in virtue of the sensitive property of the initial

parameter. If H is particularly large, and the clearance m is extremely small, the side parts of an auto-correlation, and the

values of a cross-correlation of {Xi1} and {Xi2}, approach a normal distribution when normalized.

The simulation results of the auto-correlation function regarding L1ZN
(Xi) are shown in Figure M3, where q = 3,

N = 3n, n = 13, X0 = 1, µN = 13 and the sequence length is 4096. The simulation results of the auto-correlation function

regarding L2ZN
(Xi) are shown in Figure M4, where q = 3, N = 3n, n = 13, X0 = 1, µN = 5 and the sequence length is

4096. According to the above two figures, we can see that the auto-correlation function regarding the Logistic map over a

finite field is weak except for near time 0, and has relatively good auto-correlation and uniform distribution properties.

The simulation results of the cross-correlation function for L1ZN
(Xi) are shown in Figure M5, where {Xi1} with q = 3,

N = 3n, n = 13, X0 = 1, µN = 13, and {Xi2} with q = 3, N = 3n, n = 13, X0 = 1, µN = 16, and the sequence length

is 4096. The simulation results of the cross-correlation function for L2ZN
(Xi) are shown in Figure M6, where {Xi1} with

q = 3, N = 3n, n = 13, X0 = 1, µN = 5, and {Xi2} with q = 3, N = 3n, n = 13, X0 = 1, µN = 8, and the sequence length

is 4096. According to the above two figures, we can see that the cross-correlation function for a Logistic map over a finite

field is very close to 0 and has relatively good cross-correlation and well uniform distribution properties.
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Figure M7 Phase diagram of L1ZN
(Xi). Figure M8 Phase diagram of L1ZN

(Xi) after adjust-

ment.
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Figure M9 Phase diagram of L2ZN
(Xi). Figure M10 Phase diagram of L2ZN

(Xi) after adjust-

ment.

Appendix M.4 Phase diagram

The phase diagram can generally reveal the double-period process of dynamic systems, and the double-period process is

one way, namely, from a nonlinear dynamic system to a state of chaos. Using the control parameter µN as the horizontal

coordinate and the value of the mapping as the vertical coordinate, we can obtain the phase diagram of a Logistic map in

a finite field.

The phase diagram of L1ZN
(Xi) is shown in Figure M7, where q = 3, N = 3n, n = 13, X0 = 1, µN ∈ [ 0, 100 ]. The

phase diagram of L1ZN
(Xi) after an adjustment is shown in Figure M8, where q = 3, N = 3n, n = 13, X0 = 1, µN is

[µN mod 9 = 0 or 3 or 6, µN mod 9 = 2 or 5 or 8, µN mod 9 = 4 or 7 or 1 ] which is [ 0, 9, 18, 27, 36, 45, 54, 63, 72, 81,

90, 99, 3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 2, 11, 20, 29, 38, 47, 56, 65, 74, 83,

92, 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 7,

16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100 ].

The phase diagram of L2ZN
(Xi) is shown in Figure M9, where q = 3, N = 3n, n = 13, X0 = 1, µN ∈ [ 0, 100 ]. The

phase diagram of L2ZN
(Xi) after an adjustment is shown in Figure M10, where q = 3, N = 3n, n = 13, X0 = 1, µN is

[µN mod 9 = 0 or 3 or 6, µN mod 9 = 1 or 4 or 7, µN mod 9 = 2 or 8 or 5 ] which is [ 0, 9, 18, 27, 36, 45, 54, 63, 72, 81,

90, 99, 3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82,

91, 100, 4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 7, 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 2, 11, 20, 29, 38, 47, 56, 65, 74, 83,

92, 8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95 ].

A Logistic map in a finite field has a controllable length of the generated sequence.
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Figure M11 Lyapunov exponent of L1ZN
(Xi). Figure M12 Lyapunov exponent of L2ZN

(Xi).

Appendix M.5 Lyapunov exponent

The Lyapunov exponent plays a very significant role in studying the characteristics of bifurcation and the chaos motion of

the dynamics. We designed programs for calculating the Lyapunov exponents of a Logistic map over a finite field.

The maximum Lyapunov exponent of L1ZN
(Xi) is shown in Figure M11, where q = 3, N = 3n, n = 13, X0 = 1,

µN ∈ [ 0, 400 ], and the Jacobian matrix is [ (2µN Xi + µN ) mod N ].

The maximum Lyapunov exponent of L2ZN
(Xi) is shown in Figure M12, where q = 3, N = 3n, n = 13, X0 = 1,

µN ∈ [ 0, 400 ], and the Jacobian matrix is [ (2µN Xi) mod N ].

The positive Lyapunov exponents imply that these sequences are chaotic.


