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Dear editor,
Discrete Gaussian sampling, that is, sampling
from a discrete Gaussian distribution DΛ,σ,c with
parameter σ > 0 and center c ∈ R

n over an n-
dimensional lattice Λ, has been considered by the
cryptography research community as one of the
fundamental building blocks of lattice-based cryp-
tography [1, 2]. The simplest lattice is the one-
dimensional integer lattice Z. Sampling from a
discrete Gaussian distribution DZ,σ,c over the in-
tegers Z, denoted by SampleZ, is an important
sub-problem of discrete Gaussian sampling, where
parameter σ > 0 and center c ∈ R. The first
SampleZ algorithm, which uses rejection sampling
and supports a varying center c, was given by Gen-
try et al. in [1]. This algorithm is not very effi-
cient, because it requires at least about 10 trials
on average before providing an integer as the out-
put. Since many lattice-based cryptosystems only
involve sampling from centered discrete Gaussian
distributions (center c = 0), most of the improved
SampleZ algorithms were designed only for cen-
tered discrete Gaussian distributions, such as [3,4].
However, they cannot be used in a sampling al-
gorithm for Gaussian distributions over a general
lattice, because sampling from DZ,σ,c with a vary-
ing center c is usually required as one of the kernel
subroutines in a sampling algorithm, for Gaussian
distributions over a general n-dimensional lattice

Λ. Thus, it is interesting to design more efficient
SampleZ algorithms for off-centered discrete Gaus-
sian distributions over the integers, which support
arbitrary and varying centers.

In this study, we propose an alternative rejec-
tion sampling algorithm for DZ,σ,c, that is much
more efficient than the widely used SampleZ algo-
rithm proposed by Gentry et al. in [1]. With the
support of double-precision floating-point arith-
metic, this algorithm allows σ and c to be double-
precision floating-point numbers, and it does not
require any precomputation storage.

Discrete Gaussian distribution. We denote the
set of real numbers by R, the set of integers by Z,
and the set of non-negative integers by Z

+, respec-
tively. The Gaussian function on R with the pa-
rameter σ > 0, center c ∈ R, and evaluated at x ∈
R, is defined by ρσ,c(x) = exp

(

−(x− c)2/2σ2
)

.
For σ > 0 and c ∈ R, the discrete Gaussian distri-
bution over the integers Z is defined by DZ,σ,c =
ρσ,c(x)/ρσ,c(Z), for x ∈ Z.

Our algorithm. Sampling from DZ,σ,c is equiva-
lent to sampling from DZ,σ,{c} + [c], where [c] and
{c} are the integer and fractional parts of c, re-
spectively, such that 0 6 {c} < 1. Furthermore,
for any real c ∈ [1/2, 1), sampling from DZ,σ,c

is equivalent to sampling from 1 − DZ,σ,c′, where
c′ ∈ (0, 1/2] such that c = 1−c′. It suffices for us to
observe sampling DZ,σ,c with c ∈ (0, 1/2]. Hence,
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our sampling algorithm is designed for c ∈ (0, 1/2].

Algorithm 1 Off-centered Gaussian sampler over the in-
tegers

Sampling from DZ,σ,c with σ > σ2 =
√

1/(2 · ln 2), and
c ∈ (0, 1/2]

Input: Double-precision numbers σ and c
Output: An integer z according to DZ,σ,c

1: Set q ← σ/σ2 with σ2 =
√

1/(2 · ln 2);
2: Sample x ∈ Z according to D

Z+,σ2
and y ∈ Z uniformly

in {0, 1, 2, . . . , ⌈q⌉ − 1};
3: Set s← ±1 with equal probabilities;
4: Set δ ←⌈xq+ sc⌉−xq−sc and goto Step 2 if y+ δ > q;
5: Set z ← ⌈xq + sc⌉ + y and accept it with probability

exp(− 2xq(y+δ)+(y+δ)2

2q2σ2
2

), otherwise goto Step 2;

6: return s · z

Our algorithm can be viewed as an ‘off-
centralized’ version of the sampling algorithm pro-
posed by Ducas et al. [3]. It is also combined with
the techniques that were used in Karney’s sam-
pling algorithm [5].

It can be proved that any possible output z ∈ Z

can be uniquely written as z = s(⌈xq + sc⌉ + y)
with x > 0 and y ∈ [0, ⌈q⌉), such that ⌈xq + sc⌉ −
xq − sc+ y < q. Meanwhile, we have

ρσ2
(x) · exp

(

−
2xq(y + δ) + (y + δ)2

2q2σ2
2

)

= ρqσ2,c
(s(⌈xq + sc⌉+ y)) = ρσ,c(sz).

This implies that the returned value of s ·z has the
desired (relative) density ρσ,c(sz).

The expected number of rejections that our al-
gorithm needs, which is a vital complexity factor
for a rejection sampling algorithm, can be esti-
mated as follows. The expected number of re-
jections caused by Step 5 in Algorithm 1 has an
upper-bound given by

2⌈q⌉ρσ2
(Z+)

ρqσ2,c
(Z)

6
⌈q⌉ρσ2

(Z+)

qσ2

√

π/2− 1
.

With the fact that the probability of ⌈xq + sc⌉ −
xq − sc + y > q is at most 1/⌈q⌉, we have
that the expected number of rejections Algorithm
1 needs in total has an upper-bound given by
(1/τ) ·

(

⌈q⌉ρσ2
(Z+)

)

/
(

qσ2

√

π/2 − 1
)

, with τ =
(1 − 1/⌈q⌉). Obviously, the bound is about
ρσ2

(Z+)/σ2

√

π/2 ≈ 1.47, for a large q. As a con-
clusion, we have the following theorem (see Ap-
pendix A for its complete proof).

Theorem 1. Algorithm 1 outputs an integer z
according to a Gaussian distribution DZ,σ,c, with
σ > σ2 and c ∈ (0, 1/2]. The expected number of
rejections that the algorithm needs has an upper-
bound given by (1/τ) ·

(

⌈q⌉ρσ2
(Z+)

)

/
(

qσ2

√

π/2−

1
)

, with τ = (1− 1/⌈q⌉).

Discussion. We remark that the algorithm also
works for c = 0. There are two cases where z = 0
in the algorithm, when c = 0, i.e., (x, y, s) =
(0, 0, 1), and (x, y, s) = (0, 0,−1). Therefore, we
need to add one more step to the algorithm that
is designed to avoid double counting 0 before it
returns the result. This step can be described as
‘goto Step 2 if c = 0, z = 0 and s = 1’.

We take σ2 =
√

1/(2 · ln 2), because sam-
pling DZ+,σ2

in this case can be very fast
and it requires neither floating-point arith-
metic nor precomputation storage (see Algo-
rithm 10 in [3]). Our algorithm requires floating-
point arithmetic mainly because of computing
exp

(

−(2xq(y + δ) + (y + δ)2)/2q2σ2
2

)

. It allows σ
and c to be double-precision floating-point num-
bers and does not require any precomputation
storage.

Recent results on discrete Gaussian sampling
precision suggested that the significand precision
of 53 bits provided by double-precision floating
arithmetic is sufficient for most of the security
applications [2, 6]. Thus, our algorithm is only
designed and implemented for double-precision
floating-point parameters. One could also design
an adapted algorithm for higher precision using
the lazy floating-point arithmetic [7].

Experimental results. We compare our algo-
rithm with other SampleZ algorithms that sup-
port varying centers. The experimental results
show that using our algorithm, one can get about
10.5×106 samples per second from a discrete Gaus-
sian distribution DZ,σ,c, with σ ranging roughly
from 4 to 220, and c picked uniformly from [0, 1).
Our algorithm has a significant performance ad-
vantage over the sampling algorithm proposed by
Gentry et al. in [1]. Karney’s algorithm [5] is also
useful for varying centers, but it only accepts ra-
tional numbers in the form of p/q, with positive
integers p and q. Our algorithm allows varying
double-precision number c. Moreover, using Kar-
ney’s algorithm one can get only about 4.6 × 106

samples per second. In addition, there will be a
degradation in the performance, when σ > 218 for
Karney’s algorithm, while a large σ has no im-
pact on the sampling efficiency of our algorithm.
The sampling algorithms proposed by Micciancio
et al. [2] and by Aguilar-Melchor et al. [8] can
be used to sample from distributions with arbi-
trary and varying centers, but they rely on a large
amount of precomputation storage or offline com-
putation. In particular, Micciancio et al. [2] also
suggested splitting their algorithm into online and
offline phases, and they assumed that the offline
phase is free (by using idle times, parallel devices,
FPGAs or GPUs). In this case, its performance
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approaches 10.0 × 106, according to their experi-
mental data. In fact, Algorithm 1 can also be split
into online and offline phases, and we can also get
a performance boost if the offline phase is free.

Strategies to realize time independence. Finally,
we show that Algorithm 1 can be adapted for
meeting the requirement of time independence,
with only modest performance penalties. The
side-channel leakage of discrete Gaussian sampling
algorithms has been recognized as an important
problem. For example, Bruinderink et al. [9] pre-
sented timing attacks on the sampling algorithms
used in BLISS signature scheme. Karney’s algo-
rithm may also suffer from the same problem [2].
The implementations of discrete Gaussian sam-
pling algorithms are also required by NIST (Na-
tional Institute of Standards and Technology) to
have resistance against side-channel attacks.

We assume that the double precision floating-
point arithmetic does not leak the values of
the operands. In Algorithm 1, the exponential
function exp

(

−(2xq(y + δ) + (y + δ)2)/2q2σ2
2

)

, is
computed by directly using (double precision)
floating-point arithmetic, and thus it will not cause
information leakage. However, it seems to be dif-
ficult for us to give a time independent implemen-
tation of discrete Gaussian distribution DZ+,σ2

.
Therefore, we need to mitigate the information
leakage due to the implementation of DZ+,σ2

.
Note that the samples from DZ+,σ2

(the values
of x) can be generated in the offline phase within
Algorithm 1, as the sampler forDZ+,σ2

is fixed and
does not depend on the input of Algorithm 1. In
this case, for a fixed sampler, Micciancio et al. [2]
suggested generating the samples in large batches
in the offline phase. In Algorithm 1, we could
use this strategy simply by adding a minor per-
formance penalty. Thereafter, one can look at the
time required to generate a batch of samples from
DZ+,σ2

. Their aggregate generation time is sharply
concentrated around the expectation, and can be
made constant except with negligible probability.

The limitation of the mitigation strategy sug-
gested by Micciancio et al. [2] is that it requires a
cache of a large size to store a large batch of sam-
ples. We can show that randomly shuffling small
batches of samples from DZ+,σ2

also works for mit-
igating the information leakage. In practice, we
choose d = 56 and use Fisher-Yates algorithm to
randomly shuffle every 56 samples from DZ+,σ2

,
so that the information leakage is invalid (see Ap-
pendix B for the detailed analysis). Applying this
mitigation strategy, we evaluated that the perfor-
mance decreases to about 9.2 × 106 samples per
second in this case.

More information. The complete proof of The-

orem 1 and the detailed analysis of the strategies
to realize time independence can be found in Ap-
pendixes A and B, respectively. Appendix C pro-
vides a figure that shows the performance of Al-
gorithm 1 compared with Gentry’s and Karney’s
sampling algorithms.
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