
Appendixes

1 Appendix A

Before proving the correctness and estimating the number of rejections that the algorithm needs,
we recall the notion of the smoothing parameter of lattices, which was introduced by Micciancio
and Regev in [7]. The simplest lattice is the one-dimensional integer lattice Z. In fact, we only
need the notion of the smoothing parameter of lattice Z.

Definition 1 (Smoothing Parameter [7]). Let ε > 0 be a positive real. The smoothing parameter
of lattice Z, denoted by ηε(Z), is defined to be the smallest real s such that ρ1/s(Z \ {0}) ≤ ε.

Lemma 1 (Gaussian Measure on Translates of the Lattice [7]). For any (small) real ε > 0 and
c ∈ R, if σ ≥ ηε(Z), then ρσ,c(Z) = [(1− ε)/(1 + ε), 1] · ρσ(Z).

Lemma 2. If q ≥ 1 and 0 < c < 1, for any integer z, then there exists a unique tuple (x, y, s) with
x ∈ Z+, y ∈ [0, dqe) and s ∈ {−1, 1}, such that z = s(dxq+sce+y) and dxq+sce−xq−sc+y < q.

Proof. For any integer z, there exist x ≥ 0 and y ∈ [0, dqe) such that z = s(dxq + sce+ y), where
s = 1 if z > 0 and s = −1 if z ≤ 0. It is clear that dxq+sce−xq−sc+y < q if y < dqe−1. Otherwise,
if y = dqe− 1 and dxq+ sce−xq− sc+ y ≥ q, then dxq+ sce+ dqe− 1 ≥ q+xq+ sc. Therefore, by
taking x′ = x+1 and y′ = 0 we have dx′q+sce+y′ = dxq+q+sce = dxq+sce+dqe−1 = dxq+sce+y
and dx′q+ sce− x′q− sc+ y′ = dx′q+ sce− x′q− sc < q. This guarantees that there always exists
a tuple (x, y, s) we desire. Assume that dx1q + sce+ y1 = dx2q + sce+ y2, where 0 ≤ x1 < x2 and
y1, y2 ∈ [0, dqe). Then dx2q + sce − dx1q + sce = y1 − y2. Since q ≥ 1 and 0 < c < 1, it follows
that that y1 − y2 = dx2q + sce − dx1q + sce ≥ dx1q + q + sce − dx1q + sce ≥ dqe − 1. This implies
that x2 = x1 + 1, y1 = dqe − 1 and y2 = 0 if there exist 0 ≤ x1 < x2 and y1, y2 ∈ [0, dqe) such that
dx1q + sce + y1 = dx2q + sce + y2. In this case, we have dx1q + sce + dqe − 1 = dx1q + q + sce.
Hence, dx1q+ sce− x1q− sc+ y1 = dx1q+ sce+ dqe− 1− x1q− sc = dx1q+ q+ sce− x1q− sc ≥ q
and dx2q + sce − x2q − sc+ y2 = dx2q + sce − x2q − sc < q. This proves the uniqueness.

From the proof of Lemma 2, for a given tuple (x, y, s), we see that dxq + sce − xq − sc+ y ≥ q
only if y = dqe − 1. Then we have the following corollary.

Corollary 1. Let z be a non-zero integer. Let (x, y, s) be a tuple with x ∈ Z+, y ∈ [0, dqe)
and s ∈ {−1, 1} such that z = s(dxq + sce + y). If q ≥ 1 and 0 ≤ c < 1, the probability that
dxq + sce − xq − sc+ y ≥ q is at most 1/dqe.

Theorem 1. The algorithm outputs an integer z according to discrete Gaussian distribution DZ,σ,c
with σ > σ2 and c ∈ (0, 1/2]. The expected number of rejections that the algorithm needs has an
upper-bound given by (1/τ)·

(
dqeρσ2(Z+)

)
/
(
qσ2
√
π/2−1

)
with τ = (1−1/dqe). In particular, if σ ≥

ηε(Z) then the expected number of of rejections has an upper-bound given by 1.47 ·
(
dqe2/q(dqe−1)

)
.

1



Proof. Since q = σ/σ2 > 1 and 0 < c ≤ 1/2, by Lemma 2, any possible output z ∈ Z can be
uniquely written as z = s(dxq+sce+y) with x ≥ 0 and y ∈ [0, dqe), such that dxq+sce−xq−sc+y <
q. For z ∈ Z, the proposal and the target distribution density function are

g(z) =
ρσ2

(x)

2dqeρσ2(Z+)
and f(z) = f(s(dxq + sce+ y)) =

ρqσ2,c(s(dxq + sce+ y))

ρqσ2,c(Z)

respectively. Note that

ρσ2
(x) exp

(
−2xq(y + δ) + (y + δ)2

2q2σ2
2

)
= exp

(
−x

2q2 + 2xq(y + δ) + (y + δ)2

2q2σ2
2

)
= exp

(
− (xq + y + δ)2

2q2σ2
2

)
= exp

(
− (y + dxq + sce − sc)2

2q2σ2
2

)
= ρqσ2,c(s(dxq + sce+ y)).

Furthermore, exp
(
− (2xq(y + δ) + (y + δ)2)/2q2σ2

2

)
is not more than one as x and y + δ are both

non-negative. For any z = s(dxq + sce + y)), therefore, the expected number of rejections that
the algorithm needs is equal to max{f(z)/g(z)} ·max{1/τ(x)}, where τ(x) is the probability that
y + δ < q. Then, we have

max
f(z)

g(z)
≤ ρqσ2,c(s(dxq + sce+ y))

ρσ2(x)
·2dqeρσ2

(Z+)

ρqσ2,c(Z)
≤ 2dqeρσ2

(Z+)

ρqσ2,c(Z)
<
dqeρσ2

(Z+)

ρqσ2(Z+\{0})
≤ dqeρσ2

(Z+)

qσ2
√
π/2− 1

.

The third inequality follows from the fact that

ρqσ2,c(Z) = ρqσ2,c(Z+\{0}) + ρqσ2,c(−Z+) ≥ 2ρqσ2,c(Z+\{0}) > 2ρqσ2(Z+\{0})

for c ∈ (0, 12 ], where the equality holds when c = 1
2 . The last inequality follows from ρqσ2

(Z+\{0}) =
ρqσ2(Z+)− 1 and the sum-integral comparison

ρqσ2(Z+) ≥
∫ +∞

0

ρqσ2(x)dx = qσ2
√
π/2.

In addition, by Lemma 1, if qσ2 ≥ ηε(Z), then ρqσ2,c(Z) ≈ ρqσ2(Z). Then we have

2qρσ2
(Z+)

ρqσ2,c(Z)
≈ 2qρσ2

(Z+)

ρqσ2
(Z)

≤ 2qρσ2
(Z+)

2qσ2
√
π/2

≤ ρσ2
(Z+)

σ2
√
π/2

≈ 1.47,

where the first inequality follows from the sum-integral comparison

ρqσ2
(Z) ≥

∫ +∞

−∞
ρqσ2

(x)dx = 2kσ2
√
π/2.

Finally, for x ≥ 0, by Corollary 1, we have τ(x) ≥ 1 − 1/dqe. Let τ = min τ(x) = 1 − 1/dqe.
The expected number of rejections has an upper-bound given by (1/τ) ·

(
dqeρσ2(Z+)

)
/
(
qσ2
√
π/2−

1
)
. In particular, by Lemma 1, if σ = qσ2 ≥ ηε(Z) then ρqσ2,c(Z) ≈ ρqσ2

(Z). Thus, we have

2dqeρσ2
(Z+)/ρqσ2,c(Z) ≤ dqeρσ2

(Z+)/qσ2
√
π/2 and the expected number of rejections has an

upper-bound given by
(
dqe2/q(dqe − 1)

)
·
(
ρσ2

(Z+)/σ2
√
π/2

)
≈ 1.47 ·

(
dqe2/q(dqe − 1)

)
.

2



2 Appendix B

Time independent is not constant-time. The former means more than the latter. As mentioned
in section 1, ensuring constant execution time is one of ways in which we achieve the time in-
dependence. Since rejection sampling is inherently costly to turn into constant-time algorithms
due to the fact that they are probabilistically rejecting samples, our proposed algorithms cannot
be constant-time. In this section, we show that our algorithm can be adapted for meeting the
requirement of time independence, and thus it has resistance against timing attacks.

The SampleZ algorithm proposed by Ducas et al. in [2], which is called Bernoulli sampling by
convention, is susceptible to timing attacks because of the implementation of the binary discrete
Gaussian distribution DZ+,σ2

and the process of computing the exponential function exp{−(y2 +
2kxy)/2k2σ2

2} trough a pre-computed look-up table [1].
We assume that double precision floating-point arithmetic does not leak the values of the

operands. Although a subnormal (denormal) floating point value and a value with a zero exponent
exhibit different timing behaviors compared with normal floating point values according to recent
observations [6], it is not hard for us to avoid using these special values in our algorithms and
there is no more evidence that the values of operands of double precision floating-point arithmetic
can be recovered from those timing behaviors. Our algorithm is an ‘off-centralized’ version of

the Bernoulli sampling, but it computes the exponential function exp
(
− 2xq(y+δ)+(y+δ)2

2q2σ2
2

)
by di-

rectly using (double precision) floating-point arithmetic, and thus it prevents information leakage
caused by using the pre-computed look-up table. However, it seems to be difficult for us to give a
time independent implementation of discrete Gaussian distribution DZ+,σ2

. Therefore, we need to
mitigate the information leakage due to implementation of DZ+,σ2

.
Note that the samples from DZ+,σ2

(the values of x) can be generated in the offline phase in
Algorithm 3, as the sampler for DZ+,σ2

is fixed and does not depend on the input of Algorithm
3. In this case, for a fixed sampler, Micciancio et al. suggested generating the samples in large
batches in the offline phase [8]. In our algorithm, we can use this strategy simply by adding a
minor performance penalty. Then one can look at the time required to generate a batch of samples
from DZ+,σ2

. Their aggregate generation time is sharply concentrated around the expectation, and
can be made constant except with negligible probability.

The limitation of mitigation strategy suggested by Micciancio et al. is that it requires a cache
of a large size to store a large batch of samples. We show that randomly shuffling small batches
of samples from DZ+,σ2

also works for mitigating the information leakage. We assume that the
adversary is able to exactly recover samples fromDZ+,σ2

by timing (even other side-channel) attacks
on the sampler for DZ+,σ2

. Let d be the size of a batch, i.e., every d samples from DZ+,σ2
are

randomly shuffled. On one hand, if the adversary has recovered l (1 ≤ l ≤ d) consecutive samples
from DZ+,σ2

, after the random shuffling she/he can rearrange these values in the right order with

probability 1/
∏l
i=1(d − i + 1), and then obtains l exact values of x with this probability. On

the other hand, one can directly guess the values of x according to discrete Gaussian distribution
DZ,σ,c. More specifically, the probability that x = i (i = 0, 1, 2, . . .), denoted by Pr[x = i], i.e., the
output integer z ∈ [−(i+ 1)dqe − 1,−idqe] ∪ [idqe, (i+ 1)dqe − 1], is equal to

−idqe∑
z=−(i+1)dqe−1

ρσ,c(z)/ρσ,c(Z) +

(i+1)dqe−1∑
z=idqe

ρσ,c(z)/ρσ,c(Z)

For a large dqe (≥ 215) and a random c ∈ [0, 1), one can verify that Pr[x = 0] ≈ 0.76, Pr[x =
1] ≈ 0.22, Pr[x = 2] ≈ 0.018 and Pr[x ≥ 3] < 0.002. Then the guessing strategy of the highest
success rate is to guess x = 0 all the time. Thus, when l ≥ 2 we say that the adversary’s attacks

3



are invalid if

(Pr[x = 0])l > 1/

l∏
i=1

(d− i+ 1),

which means that the effect of launching attacks is worse than that of guessing x = 0 directly.
When l = 1, we assume that the adversary only considers determining a single value of x even if
she/he has recovered a number of consecutive samples from DZ+,σ2

. In this case, we say her/his
attacks are invalid if Pr[x = i] > 1/d for i ≥ 0. Furthermore, due to the probability density function
of DZ+,σ2

the adversary needs 1/
∑
i≥3 ρσ2

(i)/ρσ2
(Z+) attacks on average until getting a sample

not less 3 from DZ+,σ2
, and needs about d/

∑
i≥3 ρσ2

(i)/ρσ2
(Z+) attacks in all until recovering a

value of x not less 3. Hence, if

Pr[x ≥ 3] > (1/d) ·
∑
i≥3

ρσ2(i)/ρσ2(Z+),

which implies that the number of launching attacks is more than that of guessing x ≥ 3 directly,
we can also say that the adversary’s attacks are invalid.

In practice, we choose d = 56 and use Fisher-Yates algorithm to randomly shuffle every 56
samples from DZ+,σ2

. It can be verified that d = 56 satisfies the two probability inequalities so
that the information leakage is invalid. Applying this mitigation strategy, we obtain an adapted
version of our algorithm that is time independent. We tested that the performance decreases to
about 9.2×106 samples per second in this case. The adversary will not be able to recover the secret
information even if the adversary determines the exact number of restarts, because the output of
of the algorithm does not depend on this number.

3 Appendix C

Karney’s sampling algorithm for discrete Gaussian distributions over the integers Z can be realized
by using C++ library ‘RandomLib’, in which the source code of his algorithm is encapsulated as a
.hpp file named ‘DiscreteNormal.hpp’1. ‘RandomLib’ also supports the generation and some basic
operations of infinite precision random numbers. Moreover, the double-precision random numbers
used in our experiments are sampled by using <random> library in C++11. On a laptop computer
(Intel i7-6820hq, 8GB RAM, Ubuntu 16.04), using the g++ compiler and enabling -Os optimization
option, we implemented Gentry’s SampleZ algorithm [4] and our proposed algorithm. The source
code is based on the adaptions of ‘DiscreteNormal.hpp’ as well as the runtime environment provided
by ‘RandomLib’.

Figure 1 shows the performance of our sampling algorithm compared with Gentry’s and Kar-
ney’s algorithm. For a discrete Gaussian distribution DZ,σ,c, with σ ranging roughly from 4 to 220,
and c picked uniformly from [0, 1), one can get about 10.5× 106 samples per second by using our
algorithm. We see that a large σ has no impact on the sampling efficiency of our algorithm. For
Karney’s algorithm, however, there will be a degradation in performance when σ ≥ 218.

Recent results on discrete Gaussian sampling precision suggested that the significand precision
of 53 bits provided by double-precision floating arithmetic, is sufficient for most of the security
applications [8, 9]. Hence, our algorithm is only designed and implemented for double-precision
floating parameters. One could also design an adapted algorithm for higher precision using the
lazy floating-point arithmetic [3].

We also implemented the sampling algorithm proposed by Micciancio et al. [8] in our computer.
For example, we took s = 82137.0, c = 0.423, k = 12, s0 = 34 and b = 16, its sampling speed was

1‘RandomLib’ is available at http://randomlib.sourceforge.net/.

4



101 102 103 104 105 106

5

10

σ

sa
m

p
le

s
p

er
se

c.
in

10
6

Our Algorithm

Karney’s alorithm [5]

Gentry’s algorithm [4]

Figure 1: Performance of our sampling algorithm compared to Gentry’s and Karney’s algorithm

only about 1.15 × 106 samples per second at the cost of pre-computed tables of size about 215.4

bytes. This means that our algorithm has a significant performance advantage. Although this is
only a naive implementation, its results roughly agree with the experimental data presented in
[8]. Micciancio et al. also suggested splitting their algorithm into online and offline phases, and
they assumed the offline phase is free (by using idle times, parallel devices, FPGAs or GPUs). In
this case, its performance approaches 10.0× 106 according to their experimental data. In fact, our
algorithms can also be split into online and offline phases, and we can also get a performance boost
if the offline phase is free.

References

[1] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, gauss, and
reload - A cache attack on the BLISS lattice-based signature scheme. In Benedikt Gierlichs and
Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of LNCS, pages 323–
345. Springer, 2016.

[2] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures
and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
- CRYPTO 2013, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of LNCS, pages 40–56. Springer, 2013.

[3] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy floating-point
arithmetic. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of LNCS, pages 415–432.
Springer, 2012.

[4] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Cynthia Dwork, editor, STOC 2008, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[5] Charles F. F. Karney. Sampling exactly from the normal distribution. ACM Trans. Math.
Softw., 42(1):3:1–3:14, 2016.

5



[6] David Kohlbrenner and Hovav Shacham. On the effectiveness of mitigations against floating-
point timing channels. In Engin Kirda and Thomas Ristenpart, editors, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017., pages 69–81. USENIX Association, 2017.

[7] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007.

[8] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic,
constant-time. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -
CRYPTO 2017, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume
10402 of LNCS, pages 455–485. Springer, 2017.

[9] Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi divergence. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of LNCS, pages
347–374. Springer, 2017.

6


