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Abstract Following the well-known random oracle Methodology, a cryptographic hash function is required

to satisfy the property of pseudo-random oracle (PRO), that is indifferentiable from a random oracle. This

paper revisits the PRO property of popular hash function modes purely from a theoretical point of view.

Original Merkle-Damg̊ard mode (sometimes referred to as Strengthened Merkle-Damg̊ard) does not satisfy the

PRO security due to the length-extension attack. To remedy it, a series of variants have been proposed with

tweaks of either adopting a prefix-free padding or modifying the final primitive call. From these tweaks, we

derive a common structural property named prefix-free computing. Indeed, all PRO-secure Merkle-Damg̊ard

variants published so far are prefix-free computing. Hence, an interesting question with respect to the nature

of PRO security arises: is prefix-free computing a necessary condition for PRO-secure Merkle-Damg̊ard

hash function? This paper gives a negative answer. We investigate the difference between length-extension

resistance and prefix-free computing, and find that length-extension resistance does not necessarily imply

prefix-free computing. Consequently, we construct a dedicated Merkle-Damg̊ard variant as a counterexample

that is PRO-secure but not prefix-free computing.
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1 Introduction

Cryptographic hash functions (HFs) have become increasingly important and widely deployed in modern

cryptography. The Merkle-Damg̊ard (MD) [1,2] HF is one among the paradigms that have influenced the

design of cryptographic HFs. It consists of an iteration of a fixed-input-length (FIL) compression function

to handle strings of arbitrary length. These HFs are integrated in cryptosystems to provide services

such as digital signatures, password protection, message integrity check, or message authentication code

(MAC).

Security proofs of the most used cryptosytems (full domain hash (FDH) [3], optimal asymmetric

encryption padding (OAEP) [4], etc.) are not rigorously provided in the standard model (through a

reduction from a well-known security hypothesis) but are generally provided only in random oracle model

(ROM) [5]. ROM [3] is an idealized model where the real HF is replaced by an idealized function called

Rand Oracle RO, which can be viewed as a magic box that returns a value y for a given input x [6].

This model was introduced in [3] “as a paradigm for designing efficient protocols”, where all parties (even

adversaries) have the right to access RO. Theoretically speaking, a proof in ROM may indicate the

non-existence of flaws in the structural design of the cryptosystem but provides no result when RO is
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instantiated with a real cryptographic HF. In practice, cryptographers hope that the real cryptographic

HF is “sufficiently good” at emulating RO [6]. Several studies [7–9] have questioned the relevance of such

a proof by proposing secure (artificial) cryptosystems in ROM but they are no longer instantiated with

a real HF. The following question arises: what is the main property of RO that makes a cryptosystem

secure? Two approaches can be considered—either determining a concrete and sufficient property of RO

or erasing its unneeded properties.

The indifferentiability notion, proposed by Maurer et al. [10], has been applied by Coron et al. [11]

to HFs to show that the latter can be considered a good mimic of RO (although it is known that, in

practice, the HF can never be RO). Loosely speaking, the indifferentiability from RO, also named the

pseudo-random-oracle (PRO) property, indicates the analysis of the structural property of the Merkle-

Damg̊ard hash function (MDHF) using FIL-RO instead of a FIL compression function CF . The resulting

MDHFFIL-RO is compared with a true RO [12]. The construction is considered to be without structural

flaws, i.e., secure, if no attacker A can distinguish the HF with a FIL-RO from a real RO.

This notion is an appropriate framework to express the aforementioned process rigorously. Under this

property, any cryptographic protocol proved secure in ROM will remain so, once the RO is replaced by

an indifferentiable MDHF from a RO (PRO-MDHF) [13]. Thus, this notion fills the existing gap in the

proofs of ROM and has become a de facto requirement for the security of HFs [14]. Coron et al. [11]

showed that the plain MD scheme is not indifferentiable from RO even if the underlying compression

function is FIL-RO. They advocated adjustments in order to obtain indifferentiable RO schemes. These

adjustments, which are sufficient conditions, are summarized as follows: (a) chopping some bits from the

hash value (Chop MD); (b) making an extra call to a compression function (hash-based MAC (HMAC)

and nested MAC (NMAC)); (c) adopting a prefix-free padding (prefix-free encoding).

Subsequent researches [15–19] improved the analysis by Coron et al. and provided a series of variants

that have been proven to be PRO when the compression function (CF) is an FIL-RO. Bellare and

Ristenpart [20] presented an enveloped MD (EMD) construction involving the use of extra calls to CF to

envelope the MD iteration. Hirose et al. [21] provided an MD construction with a permutation (MDP),

which is inserted before the last iteration of MDHF. In [22], Hirose presented an MDHF construction

with minimum padding, which is PRO and secure against a length extension attack (LEA). Bagheri

et al. [15] proposed a generic iterated HF called suffix-free-prefix-free (SFPF) construction. To ensure

both prefix-free and suffix-free properties, it uses three distinct CFs. They provide a formal definition

for prefix-free HF and claim its necessity for a PRO-MDHF [15].

Our goals. In this paper, we would like to answer the following question: what makes these MDHF

variants PRO? In other words, we intend to determine the common property shared by these constructions

and provide its formal definition. The definition that we seek should be general and applicable to all

variants of MDHF. It is an interesting and non-trivial task, especially if we intend it to be natural

and easy to use. Moreover, we intend to show the importance of this shared property for a PRO-

MDHF construction—i.e., someone can automatically deduce (or not) the PRO property of a new MDHF

construction variant if it has the shared property (or not). Along with this conclusion, it will be possible

either to emphasize the necessity of this shared property for a PRO-MDHF construction or introduce a

new method, not yet explored, to construct a PRO-MDHF.

It can be recalled further that the indifferentiability notion as defined by Coron et al. [11] allows the

capture of security of the (iterated) function against generic attacks in general and LEAs in particular.

Although LEA is the most important known weakness of MDHF H, so far, no formal definition has

been provided. Roughly speaking, LEA uses the hash value z = HCF(M) of an unknown message M

to compute z′ = HCF (M ||m), where m is known. Owing to the iterative structure of the MDHF, it is

easy to compute H(M ||m) when it is impossible to compute RO(M ||m). From this attack, it is easy

to differentiate between RO and any iterative MDHF. The following question thus arises: is there any

relation between the LEA and the shared property that we defined, i.e., can we consider that an MDHF

construction is secure against LEA if it enjoys the shared property?

Our results. First, from the tweaks applied to ensure the PRO-MDHF, we derive a common struc-

tural property named prefix-free computing (PFC) and provide a satisfactory definition. Second, we
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claim the non-necessity of prefix-free computing (PFC) for PRO MDHF by providing a counterexam-

ple. We construct an indifferentiable MDHF assuming the compression function to be ideal. Mainly, we

tweak the padding algorithm. Our padding algorithm is defined as Pad(M) := Pad1(M)‖Pad2(M), where

‖ is concatenation, and Pad1(·) and Pad2(·) are two suffix-free padding algorithms (refer to Section 4 for

details). The hash process is the same as strengthened MD (SMD). Note that each message block is

hashed twice. Further, Liskov et al. [23] proposed an iterated MDHF that processes each block twice.

Our counterexample is not prefix-free computing, i.e., for two messages M and M ′ = Pad(M), Pad(M) is

a prefix of Pad(M ′). We provide a definition of the simulator that permits the maintenance of consistency

with RO in order to prove the indifferentiability of our construction.

Finally, we observed that there is no relationship between LEA and the PFC property. Indeed, from

our non-PFC counterexample given above, which is PRO, we deduce that an LEA-resistant MDHF need

not be a prefix-free computing algorithm. Furthermore, we provide a simple PFC MDHF construction

that uses a permutation at its end. We show that this construction is not secure against LEA. We

conclude that the PFC property for MDHF is not necessarily secure against LEA.

Paper outline. Section 2 introduces the notations and definitions used in this paper. The related

work about the variants of PRO-MDHF and the common structural property derived are provided in

Section 3. Section 4 explores the PFC non-necessity for a PRO-MDHF. Finally, in Section 5, we show

there is no relationship between the resistance against LEA and the PFC property for an MDHF.

2 Preliminaries

In this section, we introduce notations and properties which will be used throughout this paper.

Notations. Let A be the distinguisher (adversary) and 〈M〉 represents the length of a message M

in bits. MDHF denotes the Merkle-Damg̊ard hash function, RO represents the random oracle and S

the simulator. Let CF be the compression function, Pad the padding algorithm, PFC-MD the prefix

free computing Merkle-Damg̊ard and PFE-MD the prefix free encoding Merkle-Damg̊ard. Assigning a

random value from {0, 1}n to z is denoted by z
$
←− {0, 1}n.

Random oracle (RO). The fixed-input-length random oracle (FIL-RO) is defined by a func-

tion f such that f : {0, 1}m 7→ {0, 1}n chooses the value f(x) randomly from {0, 1}n for each x ∈

{0, 1}m. More precisely, assume that a subset of the input-output relations of f is known: f(x1) =

y1, f(x2) = y2, . . . , f(xt) = yt. For simplicity, we denote f(X) = Y where X = {x1, x2, . . . , xt} and

Y = {y1, y2, . . . , yt}. For any x ∈ {0, 1}m\X , Pr[f(x) = y|f(X) = Y ] = 1
2n for any y ∈ {0, 1}n. In

this paper, a random oracle RO is referred to as the one with arbitrary-length inputs, whose domain

is usually denoted as {0, 1}∗. Let F be the set of all functions f with the same domain and range.

The compression function CF can be equally regarded as a function f uniformly and randomly selected

from F .

Merkle-Damg̊ard hash functions (MDHF). MD hash function uses four basic parts which are

defined as follows:

(1) An initial value IV ∈ {0, 1}n.

(2) An underlying compression function CF : {0, 1}n+b 7→ {0, 1}n such that CF(hi−1,mi) = hi.

(3) A classical iterated function CF+
IV : ({0, 1}n+b)+ 7→ {0, 1}n defined as CF+

IV(m1, . . . ,mℓ) =

CF(· · · CF(CF(IV,m1),m2), · · · ,mℓ)

(4) An injective function called padding function Pad : {0, 1}∗ 7→ ({0, 1}b)+ such that for a message

M ∈ {0, 1}∗, Pad(M) = (m1, . . . ,mℓ) where ℓ is the number of blocks in the message M . One of the roles

of ℓ is to make the length of the message compatible with the domain of CF+
IV.

So, the classical iterated MDHF is defined for all M ∈ {0, 1}∗ as MDCF
IV,Pad(M) = CF+

IV(Pad(M)).

Indifferentiability. According to [10, 11], the indifferentiability is defined as follows.

Definition 1. An algorithm H with access to an ideal primitive CF is said to be (tA, tS , q, ǫ) indiffer-

entiable from an ideal primitive RO if there is a simulator S such that for any distinguisher A it holds

that
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Adv(A) = |Pr[AH,CF = 1]− Pr[ARO,S = 1]| 6 ǫ,

where A runs at most tA time. S has oracle access to RO and runs at most tS time, and makes at most

q queries. In this paper, CF is defined as FIL-RO, H is the hash function. RO has the same domain

and range with H. The role of the simulator S is to simulate CF . A interacts with (O1,O2), where O1

can be H or RO and O2 can be CF or S. The goal of the distinguisher is to distinguish after queries to

(O1,O2) which scenario it is.

View. Denote the pair of oracles that A interacts with as (O1,O2), which is either (H, CF) or (RO,S).

Denote the i-th query of A as qi, and qi is either an arbitrarily long message M queried to O1 or a fixed-

length pair (x, y) queried to O2, where x denotes the hash chaining value and y denotes the message

block. Denote the response of the oracles on qi as zi. Denote the i-th query-response relation as ri, which

is either (Yi = Pad(Mi), zi) or (xi, yi, zi). For the simplicity of the description, we use (IV, Yi, zi) to

denote (Yi, zi) and thus unify ri as triple relations (a, b, c). From the first i query-response relations r1,

r2, . . . , ri, A derives more relations using the following rules:

• From (a, b, c) and (a′, b′, c′) with c = a′, (a, b‖b′, c′) is derived;

• From (a, b1‖b2, c) and (a′, b′, c′) with (a, b1) = (a′, b′), (c′, b2, c) is derived.

Denote all the relations that A knows, namely the knowledge of A, after the first i query-responses as Ri.

Note that Ri consists of both previous query-responses r1, r2, . . . , ri and the derived relations. Denote IV

and all the hash chaining values in Ri as Hi := {a : (a, b, c) ∈ Ri} ∪ {c : (a, b, c) ∈ Ri} ∪ {IV}. Following

the folklore, we also separate the queries into trivial queries and non-trivial queries. For a query qi made

to O1, where qi is an arbitrary long message, it is called trivial if there is a relation (a, b, c) in Ri−1 such

that (a, b) is equal to (IV, Pad(qi)), and non-trivial otherwise. For a query qi made to O2, where qi is a

fixed-length pair (x, y), it is called trivial if there is a relation (a, b, c) in Ri−1 such that (a, b) is equal

to (x, y), and non-trivial otherwise. A trivial query is either repeating a previous query or verifying a

relation derived from previous query-responses. Since all the oracles RO,S,H and CF always produce

the same response on the same query, repeating a previous query cannot improve the advantage of A at

all. Thus we assume that A does not repeat previous queries without the loss of generality. So in the rest

of the paper, we assume that trivial queries are used to verify derived relations. If (O1,O2) is (H, CF),

the query-response from a trivial query qi is always consistent with the previous derived relations in Ri−1.

On the other case, (O1,O2) = (RO,S), the query-response from a trivial query may contradict with the

previous derived relations in Ri−1 if S fails to mimic.

3 Revisiting previous results

3.1 PRO-MDHF

Coron et al. [11] proved that the original MDHF is not PRO. They showed that it is vulnerable against

the LEA. Nevertheless, they provide several patches to ensure the indifferentiability of MDHF. In addition,

several PRO-Merkle-Damg̊ard variants have been proposed in [11, 15, 21, 22].

Prefix-free encoding Merkle-Damg̊ard hash function (PFE-MDHF). Coron et al. [11] pro-

posed to apply the prefix free encoding (PFE) property on MDHF in order to prove its indifferentiability

from RO when the compression function is FIL-RO.

The prefix-free encoding (PFE) property is applied specifically to the padding function Pad which is

said PFE if for any M1 6= M2, Pad(M1) is not prefix of Pad(M2). They showed that PFE property for

an iterated MDHF is sufficient to claim the indifferentiability of this hash function mode when assuming

that the compression function is FIL-RO.

Chop Merkle-Damg̊ard hash function. It chops several bits of the output and uses the other bits

as the hash digest. It is widely used in practice. For example, SHA-348 is obtained by dropping some

bits from SHA-512. It has been shown that such dropping prevents the LEA.

HMAC. It is widely used for performing message authentication. It consists to hash the message with

MDCF to get an output h′ and then using this later to make an extra call to the compression function
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(CF used in MDCF ) with the initial value (IV) as its input.

Remark 1. Coron et al. [11] justify the use of the first message (0k) by the concern to ensure a

non-interdependence between the use of the same IV on h′ and the first message block.

NMAC. It is the basis of HMAC. Instead of using only one CF like HMAC, it applies another function

G to the output of the original MD to produce a hash digest.

SFPF. It is based on three different FIL-RO f1, f2 and f3 in order to hash a message M [15]. The first

and last message blocks are processed by f1 and f3 respectively and all the intermediate message blocks

are processed by f2. f3 ensures that MDHF is prefix free whereas f1 provides the suffix freeness. The

authors showed that prefix free property for an iterated MDHF is necessary to claim the indifferentiability

of this hash function mode when assuming that the compression function is FIL-RO.

Merkle-Damg̊ard with a permutation (MDP). It is a variant of MDHF which inserts a permu-

tation before the last compression function [21].

Sequential hashing with minimum padding. It extends the MDP by using two distinct permu-

tations π1 and π2 for domain separation [22]. A typical candidate for these is bitwise XOR with different

nonzero constants.

3.2 Prefix free computing (PFC) property

We notice that all the aforementionedPROMerkle-Damg̊ard have a common point. They modify only the

operation on the last block in order to counter the vulnerability to the LEA. This means that these variants

of MD share a common property that does not allow to compute H(M ′) from H(M) even if M ′ = M ||m

and m is known. We call this common property prefix free computing (PFC). Roughly speaking,

an MDHF HCF is considered as PFC if, for any messages chosen M and M ′ by any computationally

unbounded A with oracle access toHCF and CF , the probability to computeHCF (M ||M ′), givenHCF(M)

and any M ′, is negligible. We adopt an encoding Input/output tuples for CF and MDHF H in order to

provide a definition of PFC-MDHF.

Tuple description. We propose a novel representation for CF and MDHF H. Indeed, this repre-

sentation adopts an input/output encoding tuple for CF which can be extended to H by a sequential

representation. This (sequential) tuple representation will be the basis of the definitions and proofs that

will describe below.

Assume that the tuple (CF , x||y, z) represents CF(x, y) = z where the input (x, y) of CF are the

chaining variable and the message block respectively and the output z is the updated chaining variable.

Let (CF , IV||m1, h1), (CF , h1||m2, h2), . . . , (CF , hn−1||mn, h) be the sequential tuples representation of

HCF(M) for message M = m1m2 · · ·mn with HCF (M) = (CF · · · (CF(CF(IV,m1),m2), . . . ,mn).

Prefix of tuples. A sequential tuples representation for proceeding multiple blocks (CF , h′
0||m

′
0, h

′
1),

· · · , (CF , h′
i||m

′
i, h

′
i+1) is said a prefix of another sequential tuples representation (CF , h0||m0, h1), . . . ,

(CF , hi||mi, hi+1), . . . , (CF , hn||mn, hn+1), if for each tuple (CF , h′
k||m

′
k, h

′
k+1) and (CF , hk||mk, hk+1) in

each representation with (0 6 k 6 i): (h′
k = hk), (m

′
k = mk) and (h′

k+1 = hk+1).

Definition 2. MDHF HCF with oracle access to a compression function CF is said PFC if there are

no two distinct messages M and M ′ such that the sequential tuples representation of H(M) is a prefix

of H(M ′).

Remark 2. Obviously PFE-MDHF is surely a specific case of PFC-MDHF because the block sequence

of a message after padding is not a prefix of the block sequences of any other message after padding.

Moreover, we notice that PFC definition also covers other PRO-MDHF, including Chop-MD, NMAC

and HMAC [11]. Here we use HMAC as an example and refer to Appendix B for more examples such

as NMAC, Chop-MD, MDP, SFPF. For a message padded and divided into blocks m0, . . . ,mn, the se-

quential tuples representation ofHCF(IV,M) = (CF , h0||m0, h1), (CF , h1||m1, h2), . . . , (CF , hi||mi, hi+1),

. . . , (CF , hn||mn, hn+1), (CF , h0||hn+1, h) can be prefix of another sequential tuples representation of

HCF(IV,M ||m) = (CF , h0||m0, h1), (CF , h1||m1, h2), . . . , (CF , hi||mi, hi+1), . . . , (CF , hn||mn, hn+1), (CF ,

hn+1||m,hn+2), (CF , h0||hn+2, h
′) if and only if hn = h0 and mn = hn+1 and hn+1 = h which is possible

with a negligible probability.
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In what follows, we will analyze the necessity of PFC property for a PRO-MDHF.

4 Unnecessary PFC property for a PRO MDHF

This section studies the necessity of PFC property for an MDHF to be PRO. More precisely, we present

a concrete example of an MDHF HCF that is not PFC but is indifferentiable from RO. The intuition

behind this study is came up by trying to set up a no-PFC MDHFHCF function using redundant padding.

This construction is inspired by the design proposed by Liskov [23] in which each block is processed twice.

However, by doing so, we got a function that is not PRO. That is why we argue that we should limit

the intervention on the padding function as much as possible.

4.1 Counter-example

4.1.1 Specification of the counterexample H

Our example mainly modifies the padding algorithm, comparing with the original MDHF. The specifi-

cation of the counterexample is as follows. Assume that the maximum length of the input message is

2p bits.

Padding algorithm Pad(·). The padding algorithm is composed of two padding algorithms: Pad(M) =

Pad1(M)‖Pad2(M), where ‖ denotes the concatenation operator. To illustrate it, let M be a message,

〈M〉 the bit length of M , and len(M)b is the m-bit binary encoding of 〈M〉, where m is the message block

length. v is the smallest integer such that 〈M〉+ 1 + v is a multiple of m.

• Pad1(·) pads M with a bit ‘1’, then pads v ‘0’s, and pads len(M)b to the last m bits, that is

Pad1(M) = M‖1‖0v‖len(M)b.

• Pad2(·) pads M with a bit ‘0’, then pads v ‘1’s, and pads len(M)b, that is

Pad2(M) = M‖0‖1v‖len(M)b.

Overall, the padding of the message M is as follows:

Pad(M) = M‖1‖0v‖len(M)b‖M‖0‖1
v‖len(M)b.

Hash process. After padding, the padded message is split into 2ℓ blocks m1||m2|| · · · ||mℓ||mℓ+1||

mℓ+2|| · · · ||m2ℓ. Note that mi = mi+ℓ holds for 1 6 i 6 ℓ − 2. If mℓ−1 and m2ℓ−1 contain padding

bits, mℓ−1 6= m2ℓ−1. For the last block, without loss of generality we always assume that the length

of a message block is longer than the representation of 〈M〉 in bits, and thus mℓ 6= m2ℓ holds for any

message M . The message blocks are hashed in a sequential order as described in the iterative MDHF

hi = CF(hi−1,mi), 1 6 i 6 2ℓ, where h0 is the initial vector (IV). Finally h2ℓ is the output as the hash

digest.

4.1.2 The counter-example is not PFC

To prove that our counter-example is not PFC, it is enough to find two messages M and M ′ such that the

sequential tuples representation of H(IV,M) = (CF , IV||m1, h1), (CF , h1||m2, h2), . . . , (CF , hn−1||mn, h)

is prefix of the sequential tuples representation of H(IV,M ′) = (CF , IV||m′
1, h

′
1), (CF , h

′
1||m

′
2, h2), . . . ,

(CF , h′
n′−1||m

′
n′ , h′).

First, let choose a message M with a single block m1 such that Pad(M) = m1m2m1m
′
2 where m2 =

10 · · · 0〈M〉 and m′
2 = 01 · · ·1〈M〉. The sequential tuples representation of H(IV,M) is (CF , IV||m1, h1),

(CF , h1||m2, h2), (CF , h2||m1, h3), (CF , h3||m
′
2, h4).

Then, let choose another message M ′ = Pad(M) and Pad(M ′) = m1m2m1m
′
2mm1m2m1m

′
2m

′. The

sequential tuples representation of H(IV,M ′) is (CF , IV||m1, h1), (CF , h1||m2, h2), (CF , h2||m1, h3),
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(CF , h3||m
′
2, h4), (CF , h4||m,h5), (CF , h5||m1, h6), (CF , h6||m2, h7), (CF , h7||m1, h8), (CF , h8||m

′
2, h9),

(CF , h9||m
′, h10).

It is clear that the sequential tuples representation of H(IV,M) is a prefix of H(IV,M ′) and which

means that our example is not PFC.

4.2 Indifferentiability analysis

Theorem 1. The above Merkle-Damg̊ard hash function construction HCF : {0, 1}∗ → {0, 1}n based

on a FIL-RO CF : {0, 1}m × {0, 1}n → {0, 1}n is (tA, ts, q, ǫ) indifferentiable from a RO with the same

domain and range for any tA and tS 6
q(q+1)

2 with ǫ = O( (ℓq)
2

2n ), where q denotes the total number of

queries made by A and ℓ is the maximum length of a query made by A .

Proof. The proof of indifferentiability involves two steps. First, describe a simulator that should simulate

the CF in the random oracle model (ROM). Then, show that the probability that A can distinguish

between (HCF , CF) and (RO, S) is negligible.

In what follows we discuss only the simulator S which allows us to demonstrate the indifferentiability

of our example. The full proof of indifferentiability is provided in Appendix A. It is based on a hybrid

argument which is widely used in [11, 20, 21]. It is strongly inspired from the indifferentiabilty proof

of prefix-free-encoding Merkle-Damg̊ard construction given by Coron et al. [11]. The proof contains an

informal description of six games Gi, 1 6 i 6 6, which allows A to pass from game G1 that emulates

(RO,S) to game G6 that emulates (HCF , CF) by small transformations.

The simulator S. Let S be a simulator which simulates CF . S should be programmed such that its

relation with RO is consistent as the relation between (HCF , CF). S can call RO if needed but it does

not see the A’s queries to RO or H.

On a query (x, y) such that x ∈ {0, 1}n and y ∈ {0, 1}m, S responds with a value z ∈ {0, 1}n, and

stores the query-response relation (x, y, z) in a table T , which is initialized to empty and has three

columns (Tx, Ty, Tz). The query (x, y) is stored in Tx and Ty respectively and the correspondent response

z is stored in Tz. Moreover, S updates table T with more relations using the following rule: for a new

tuple (x, y, z) if there is a relation (a, b, c) in T with (c = x), S adds a new relation (a, b||y, z) to T .

In the following, we propose S’s algorithm which uses two subroutines (defined below find prefix and

is padding) in order to produce response z for a query (x, y). Firstly, we introduce these two algorithms

and then we describe S.

is padding subroutine verifies if an input X is a correct padding of a message M or not (according

to the definition of padding given above). Recall that Pad(M) = Pad1(M)||Pad2(M). The algorithm

analyzes the length of the X to check whether it is a correct padding or not. An incorrect length

means that the padding is false. Otherwise, X is split into two equal parts which are compared without

considering the last two blocks since these blocks may contain the message length and the padding bits.

A formal algorithm is presented as Algorithm 1.

find prefix. Following the definition of padding function Pad, there is two possibilities to reconstruct

a message M from a sequence of message blocks X = y1y2 · · · y2ℓ. The first one is from the message

blocks X if it is a valid padding. The second one is from the message blocks X if it exists a message M ′

such that Pad(M) = Pad(M ′)||X . The purpose of find prefix algorithm is to return a message M ′ (if it

exists) for a given message X such that Pad(M) = Pad(M ′)||X where M and M ′ are not given. Indeed,

this is possible under constraints that X is a suffix of Pad(M), the last block of X contains the block

length of message M and the block length of message X is bigger than the block length of message M ′.

Now, we show how this algorithm works. Denote Pad(M ′) as m′
1||m

′
2|| · · · ||m

′
2ℓ. Pad(M) = m′

1|| · · ·

||m′
2ℓ||m1|| · · · ||m2t. As Pad(M) = Pad(M ′)||X and the length of Pad(M) and Pad(M ′) are even then

the length of X should be even. Without loss of generality, assume that the padding bits are all located

between m′
ℓ and m′

2ℓ for Pad(M ′) and between m′
l+t and m2t for Pad(M).

• t = ℓ case. Note that m′
2ℓ is used as the last block of Pad(M ′) and the last block of Pad1(M). Since

the bit length of M ′ and M are different, a contradiction occurs. Hence find prefix can not find M ′ in

this case and return ⊥.
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Algorithm 1 is padding(X)

1: Split the message X to blocks m1||m2|| · · · ||mℓ||mℓ+1|| · · · ||mk;

2: if (k is odd) then

3: Return false;

4: else

5: ℓ = k/2;

6: end if

7: for 1 6 i 6 (ℓ− 2) do

8: if (mℓ+i 6= mi) then

9: Return false;

10: else

11: if (mℓ−1 = m2ℓ−1) then

12: Return true;

13: else

14: if (mℓ−1 6= m2ℓ−1) and (mℓ−1, m2ℓ−1) contains a padding bits then

15: Return true;

16: else

17: Return false;

18: end if

19: end if

20: end if

21: end for

• t<ℓ case. Pad1(M) should be the first ℓ+t blocks of Pad(M ′): Pad1(M) = m′
1|| · · · ||m

′
ℓ||m

′
1|| · · · ||m

′
t.

By comparing Pad2(M) with Pad(M ′) from blocks ℓ+ t+ 1 to 2ℓ, we get m′
t×i+1||m

′
t×i+2|| · · · ||m

′
t×(i+1)

= m′
1|| · · · ||m

′
t, 0 6 i 6 ℓ/t. Let s be the value of ℓ/t and p be ℓ mod t. Denote m′

1|| · · · ||m
′
t as M1.

Denote m′
1|| · · · ||m

′
p as M2. Then Pad(M ′) is (M1)

s||M2, where (M1)
s is repeating M1 s times. And

we have Pad1(M) is (M1)
s||M2||M1. Now we focus on the first (ℓ − t) blocks of Pad2(M) : M

(s−1)
1 ||M2.

It should be equal to the last ℓ − t blocks of Pad(M ′): (M1)
s1||M ′

2, where M ′
2 ia obtained by padding

the last block of M ′ using Pad2 instead of Pad1 and thus M ′
2 6= M2. So a contradiction occurs. Hence

find prefix cannot find M ′ in this case and return ⊥.

• t > ℓ case. We can define M ′′ = mt−ℓ · · ·mt. Check if (m1 · · ·mt−ℓ−1) is suffix of M ′′ and M ′′ is a

valid Pad2 of any message M . If it is the case, then it can derive a message M from Pad2(M) and find

M ′ from Pad(M) = Pad(M ′)||X . Hence find prefix return M ′.

A formal algorithm of find prefix of an input X is presented as Algorithm 2.

Algorithm 2 find-prefix(X)

1: // Take a message X as input and return ⊥ or M ′ such that Pad(M) = Pad(M ′)||X;

2: Split the message X to blocks such that X = m1m2 · · ·mimi+1 · · ·mt; // mt contains 〈M〉 = ℓ;

3: if (t is odd) then

4: Return ⊥;

5: end if

6: if (t > ℓ+ 1) then

7: Define M ′′ = mt−ℓ · · ·mt;

8: if (m1 · · ·mt−ℓ−1) is suffix of M ′′ then

9: if (M ′′) is a valid Pad2(M) then

10: Derive M from Pad2(M);

11: Compute Pad(M);

12: Derive M ′ from Pad(M) = Pad(M ′)||X.

13: Return M ′;

14: else

15: Return ⊥;

16: end if

17: else

18: Return ⊥;

19: end if

20: else

21: Return ⊥;

22: end if
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Describe S. For a query (xi, yi), S searches in the table T for a tuple (xi, yi, zi). If the table T contains

the tuple tuple (xi, yi, zi) then S return zi. In the other case, S has to build a new answer to this query.

For that, it searches in the table T in order to construct a sequence of tuples (x1, y1, x2) · · · (xi−1, yi−1, xi)

such that:

• X = y1y2 · · · yi−1yi is a valid padding of message M .

• x1= initial value (IV).

If S constructs such a sequence of tuples C, it can give a response that is consistent with RO on

Pad−1(y1y2 · · · yi−1yi) = M by calling RO to get zi = RO(M). If it does not find such a sequence and

before chooses a random zi (and return it), it checks if X = (y1y2 · · · yi−1y) is suffix of a valid padding

Pad(M) whereM is to define. Firstly it calls the subroutine find prefix to find an eventualM ′ such that

Pad(M) = Pad(M ′)||X . If it finds such M ′, it computes x′ = RO(M ′). As our MDHF H construction is

not PFC, S checks if x′ = x1 where (x1, y1, z1) is the first tuple of C. If it is then S reconstructs a valid

Pad(M) from which it can derive M . S queries M to RO and return zi = RO(M). In all of these cases,

S stores (xi, yi, zi) into the table T . For more details see Algorithm 3.

The running time TS of S’s algorithm (Algorithm 3) is TS 6
q(q+1)

2 where q = 2ℓqRO + qS such that

qRO is the number of queries to RO and qS is the number of queries to CF . This bound of the running

time can be explained on the one hand by the fact that the number of entries in table T of S is 6 q and

on the other hand by the fact that S responds to each query (x, y) by checking whether there are any

relations with previous queries in order to be consistent with RO.

Corollary 1. An Merkle-Damg̊ard hash function that is indifferentiable from a RO is not necessarily

PFC.

Proof. This corollary flows directly from the definition of our counter-example which is not PFC whereas

it is proven PRO (see Appendix A).

5 PFC property and LEA

This section studies the relationship between PFC and being secure against LEA of MDHF. We noticed

that all constructions [11,20,21] proposed in the literature have been proved secure against LEA and are

PFC. So, one may wonder whether PFC is necessary for an MDHF to be secure against LEA. However,

in the following, we show that the PFC property is not required to ensure that an MDHF is secured

against LEA by giving, on the one hand, a non PFC MDHF that resist to LEA.

On the other hand, we provide an example of a PFC MDHF that is not secure against LEA. Hence,

these two examples allow concluding that there is no implication relationship between PFC and being

secure against LEA.

5.1 A non-PFC MDHF that is resistant to LEA

From the MDHF construction proposed in Section 4 that is not PFC although proved PRO, and knowing

that indifferentiability has been specially crafted to capture attacks in general and LEA in particular,

we can claim that our non-PFC MDHF construction is secure against LEA. Therefore, we can conclude

that a LEA resistant MDHF is not necessary to be PFC.

5.2 A PFC MDHF not resistant to LEA

5.2.1 Specification of the example H′

Our example mainly introduces a permutation π after the last iteration of the MDHF while keeping the

specificity of a plain MDHF unchanged.

Hash process. The message blocks are hashed in a sequential order as described in the iterative

Merkle-Damg̊ard hash function hi = CF(hi−1,mi), 1 6 i 6 ℓ, where IV is the initial vector and outputs

h as hash digest.



Ammour K, et al. Sci China Inf Sci March 2019 Vol. 62 032112:10

Algorithm 3 Simulator

1: Initialize T = ∅;

2: On a new query (x, y) to S, the response is z;

3: if ((x, y) ∈ T ) then

4: return z;

5: else if (x /∈ Tx ∨ Tz) then

6: z $
←−
{0,1}n; %random string

7: if (z ∈ Tx ∨ Tz) then

8: bad ← true;

9: z $
←−
{0,1}n / T ;

10: T ← T ∪ (x, y, z);

11: return z;

12: end if

13: else if (x ∈ Tz) then

14: Construct a chain Ct such that x is the end hash value. typically, Ct : x1
y1−−→ x2

y2−−→ x3 · · ·
yi−→ x;

15: if (x1= IV) ∧ (is Padding(y1y2 · · · yi ||y) then

16: if more than one chain Ct exist then

17: S aborts;

18: else if exactly one chain C exists then

19: Derive message M such that Pad(M) = y1y2 · · · yi||y;

20: z ←RO(M);

21: T = T ∪ (x, y, z);

22: return z;

23: end if

24: else

25: %y1y2 . . . yi ||y is an incomplete padding and y contains the block length of Pad(M) = ℓ;

26: if (M ′ ← Find Prefix(y1y2 · · · yi ||y)) then

27: x′ ← RO(M ′);

28: if x′ = x1 then

29: if more one chaine Ct exist then

30: S aborts;

31: else if exactly one Chaine exists then

32: Pad(M) = [Pad(M ′) || y1y2 · · · yi || y)];

33: Derive (M);

34: z ←RO(M);

35: T = T ∪ (x, y, z);

36: return z;

37: end if

38: end if

39: else

40: z $
←−
{0, 1}n;

41: if z ∈ Tx ∨ Tz then

42: bad ← true;

43: z $
←−
{0,1}n / T ;

44: T = T ∪ (x, y, z);

45: return z;

46: end if

47: end if

48: end if

49: end if

5.2.2 The example is PFC

Because of the last operation of permutation π, it is clear that the example is PFC since it is impossible

to find two messages M and M ′ such that the sequential tuples representation of H(IV,M) is the prefix

of the sequential tuples representation of H(IV,M ′).

5.2.3 The example is not secure against LEA

As π is a permutation, it is possible to compute π−1 for any hash digest h of unknown message M and get

hℓ+1. This latter can be used to compute the digest h′ = (CF , hℓ+1||m
′) of a message (M ||m′). Hence,

this example is not secure against LEA.
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6 Conclusion

In this paper, we showed that the different variants of Merkle-Damg̊ard that have been proved to be

pseudo random oracle PRO share, in reality, the same property namely prefix-free computing. We took

full advantage of the indifferentiability notion introduced by Coron et al. [11] on the hash functions

which overcomes the limitations of the existing security evidence that provided only in the random oracle

model. We proved that this common property (prefix-free computing) is not a necessary condition for

a PRO-secure MDHF. In addition, we explored the relationship between the prefix free computing and

the length extension attack resistance and found that there is no correlation between them.

As a part of future work, we think that it would be interesting to identify the sufficient and necessary

condition for a Merkle-Damg̊ard variant to be a pseudo random oracle (PRO).
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Appendix A Proof of indifferentiabiliy of our counter example

In this part, we give a formal indifferntaiblity proof of the above described MDHF H based on a hybrid argument.

Game 1. We start from the random oracle model. A has an oracle acces to RO and S. Define G1 as the event: A

outputs 1 after interacting with RO and S which can be represented by

Pr[G1] = Pr[ARO,S(1λ) = 1].

Game 2. Define P as an intermediate program between A and RO (without any effect) such that when receiving

a random Oracle query from A, it forwards the request to RO and transmits the RO output to A as a response with-

out any alteration. Define G2 as the event: A outputs 1 after interacting with P and S. It can be represented by

Pr[G2]=Pr[AP,S(1λ) = 1]. It is easy to see that the distribution of this game is identical to the previous one and hence

Pr[G2]= Pr[G1].

Game 3. We make a small change on S by introducing conditions that can push the new S′ to collapse. Indeed, these

constraints are events representation that A can exploit to perform S response in conflict with that of RO. These events

are as follows.

Event 1. For a query (x, y), S responds with z such that z = z′ where (x′, y′, z′) is a previous query-response and (x, y)

6= (x′, y′).

Event 2. For a query (x, y), S responds with z such that z = x′ where (x′, y′, z′) is a previous query-responds and (x, y)

6= (x′, y′).

In the following, we describe how A can exploit these events to show an inconsistency in the responses of S and RO.

If A find an event 1, he can choose two different messages M and M ′ such that Pad(M) and Pad(M ′) share a common

suffix. So, for a query sequences Pad(M) and Pad(M ′) to S, A gets the same value z for the end block (x2ℓ, y2ℓ, z) when

for a query RO(M) and RO(M ′) he will get different value z and z′. S can be consistent with only one of these inputs.

For event 2, A can force S to not be consistent with RO for the same message M . He achieves this goal by querying

S not in the correct sequence (x1, y1), (x2, y2), . . . , (x2ℓ, y2ℓ). Thus, A can deduce the value RO(M) from the responses

sequences S which is different from the response of RO(M) (it can be same with a probability of 2−n).

Note that because of the suffix freeness of our construction H, A cannot exploit S(x, y) = z′ such that (x′
2ℓ, y

′
2ℓ, z

′) is

the last tuple of a sequence of queries of a valid Pad(Y ′) = y′1, . . . , y
′
ℓ
. Also, as the length of the message is integrated in

the padding function, A cannot exploit S(x, y) = IV (where IV is the initial value).

Let us compute the probability that A finds these events. Denote qp the number of queries made by A to P (which is

equal to qRO the number made to RO) and qS′ is the number of queries made by A to S′ (which is equal to qS the number

made to S).

The event 1 can hold if one of this case is realized.

(1) (xi, yi) and (x′
j , y

′
j) are the last queries in a sequence of RO query to S. The probability of this event is equal to the

probability collision of RO. Pr =
q2
RO

2n
.

(2) (xi, yi) and (x′
j , y

′
j) are an intermediate queries in a sequence of RO query to S. The probability of this event is

equal to the probability collision of the uniformly random function on qS . Pr =
q2
S

2n
.

(3) (xi, yi) is the last query in a sequence of RO query to S but (x′
j , y

′
j) is an intermediate one. This case does not help

A to improve its advantage to made an inconsistency between RO and S since our construction H is suffixe free. Therefore,

the occurrence probability of event 1, Pr[event1], can be bounded by the birthday bound over (qS + qRO) 6
(qS+qRO)2

2n
.

For event 2, it can be exploited by A only if the answer z for a query (x, y) is chosen by S regardless of RO. In the

case of the response of S is chosen to be consistent with RO but it collides with a previous input to S, it has no effect on

advantage of A. Hence, the occurrence probability of event 2, Pr[event2], can be bounded by Pr[event2] 6
q2
S

2n
.

Define G3 as the event: A outputs 1 after interacting with P and S′. It can be represented by Pr[G3]=Pr[AP,S′

(1λ) = 1].

Let us analyze the distribution of S′, P function in this game compared to S, P in the previous one.

https://doi.org/10.1007/s10623-008-9208-4
https://doi.org/10.1007/s00145-010-9095-5
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Before starting, first define some properties of S′.

Claim 1. If S′ does not collapse, then there are no two sequential tuples representation (S′, x1||y1, z1), (S′, x2||y2, z2), . . . ,

(S′, xi||yi, zi), . . . , (S′, x2ℓ||y2ℓ, z) and (S′, x′
1||y

′
1, z

′
1), (S

′, x′
2||y

′
2, z

′
2), . . . , (S

′, x′
i||y

′
i, z

′
i), . . . , (S

′, x′
2ℓ||y

′
2ℓ, z

′) such that:

• y1|| · · · ||y2ℓ and y′1|| · · · ||y
′
2ℓ are a valid padding.

• x1 = x′
1 = IV.

• For 1 6 j 6 2ℓ, zj = xj+1 and z′j = x′
j+1.

• (x2ℓ, y2ℓ, z) = (x′
2ℓ, y

′
2ℓ, z

′).

Proof. Using an induction on qS′ , we will show that such sequences of tuples representation cannot exist unless S′ collaps.

For qS′ = 0, the claim is true.

Assume that the claim is true when qS′ = n have been made to S′. Suppose after n+ 1 queries to S′ there exists two

sequential tuples representation that satisfy claim properties. As ((x2ℓ, y2ℓ, z) = (x′
2ℓ, y

′
2ℓ, z

′)), we can deduce that it exists

y2ℓ−r · · · y2ℓ and y′2ℓ−r
· · · y′2ℓ such that ∀s ∈ {0, r} : (x2ℓ−s, y2ℓ−s, z2ℓ−s) = (x′

2ℓ−s
, y′2ℓ−s

, z′2ℓ−s
).

• (2ℓ− r > 1) case. If (x2ℓ−r = x′
2ℓ−r

) then (z2ℓ−r−1 = z′2ℓ−r−1). Because of event 1, this push S′ to collapse.

• (2ℓ − r = 1) case. If (x1, y1, z1) = (x′
1, y

′
1, z

′
1) then y1 · · · y2ℓ is same with y′1 · · · y

′
2ℓ which contradicts the supposition

that M and M ′ are different.

Therefore, there is no two different messages y1 · · · y2ℓ and y′1 · · · y
′
2ℓ such that (x2ℓ, y2ℓ, z) = (x′

2ℓ, y
′
2ℓ, z

′) if S′ does not

collapse.

In the following we show that the only way by which A can get from S a random oracle output for an input Pad(M) =

y1 · · · y2ℓ (or y′1 · · · y
′
2t such that Pad(M) = Pad(M ′)||y′1 . . . y

′
2t) is by doing an ordered sequence of queries (xi, yi) for

1 6 i 6 2ℓ (or 1 6 i 6 2t ).

Claim 2. If S′ does not collapse, at a given moment where it has in table T , (x1, y1, z1), (x2, y2, z2), . . . , (x2ℓ, y2ℓ, z2ℓ) such

that

• y1|| · · · ||y2ℓ is a valid padding.

• x1 = IV.

• For 1 6 j 6 2ℓ, zj = xj+1.

Then S′ has constructed T following an ordered sequence of queries (x1, y1), (x2, y2), · · · , (x2ℓ, y2ℓ).

Proof. Using a contradiction proof, we will assume that the sequence (x1, y1, z1), (x2, y2, z2), · · · , (x2ℓ, y2ℓ, z2ℓ) was not

done in the right order. Therefore we can deduce that there exists an entry (xi+1, yi+1, zi+1) in T before a query (xi, yi) for

1 6 i 6 2ℓ− 1 was made. In this case, the response zi of a query (xi, yi) should be chosen regardless of RO (i.e., randomly)

by S′ such as zi = xi+1 (the condition 3 in the claim). Hence, S′ will collapse because of event 2 holds.

Therefore, the only possible interaction between A and S′ is that mentioned in Claim 2.

Claim 3. If S′ does not collapse, at a given moment where it has in table T , (x′
1, y

′
1, z

′
1), (x

′
2, y

′
2, z

′
2), . . . , (x

′
2t, y

′
2t, z

′
2t) such

that

• For 1 6 j 6 2t, z′j = x′
j+1.

• Y = (y′1||y
′
2, . . . , y

′
2t) is suffix of Pad(M) (i.e., Pad(M) = Pad(M ′)||Y ).

• x1 = h such that RO(M ′) = h.

Then S′ has constructed T following an ordered sequence of queries (x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
2t, y

′
2t).

Proof. The proof is similar with the proof of Claim 2, and thus omitted.

After a review of some properties of S′ let us comeback to view distribution between (S′, P ) in Game 3 and (S, P ) in

the previous game.

Our goal is to show that

• For any query (Pad−1(y1|| · · · ||y2ℓ), P of Game 3 is consistent with P of Game 2.

• For any query (xi, yi), S′ of Game 3 is consistent with S of Game 2.

• The responses of S′ in Game 3 is always consistent with P in the same Game.

For the first point, it is obvious as Games 2 and 3 use the same program P .

For the second point, as S′ is defined on S with additional constraints of collapses. Hence, we can deduce that S is

consistent with S′ unless the constraints of collapses happen.

We show that the responses of S′ is always consistent with P .

Claim 4. If there is no sequence of entries in table T , (x1, y1, z1), (x2, y2, z2), . . . , (x2ℓ, y2ℓ, z2ℓ) such that

• y1|| · · · ||y2ℓ is a valid padding.

• x1 = IV.

• For 1 6 j 6 2ℓ, zj = xj+1.

• The P ’s response to a (Pad−1(y1|| · · · ||y2ℓ) query is different from (z2ℓ).

Then S′ does not collapse.

Proof. By definition, P is just a relay algorithm between A and RO. So, P responds for any query (Pad−1(y1|| · · · ||y2ℓ)

by RO(Pad−1(y1|| · · · ||y2ℓ) from one hand. On other hand, from Claims 2 and 3, we know that if A want to compute

HS
′

on Pad(M) = y1|| · · · ||y2ℓ by using S′, the only way that it has (to not collapse S′) is to queries an ordered sequence

(x1, y1), . . . , (x2ℓ, y2ℓ).

From the two-first conditions of the claim, we can say that S′ has in T (x1, y1, z1), . . . , (x2ℓ−1, y2ℓ−1, z2ℓ−1) before the

query (x2ℓ, y2ℓ).

By definition, unless S′ collapses, the only possibility response of S′ to a query (x2ℓ, y2ℓ) is RO(Pad
−1(y1|| · · · ||y2ℓ) since

(y1|| · · · ||y2ℓ is valid padding, y1= IV and for 1 6 j 6 2ℓ− 1, zj = xj+1.

Hence, unless S′ collapses, it is always consistent with P .
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Finally, we can say the view of A between Games 2 and 3 differs only where S′ collapses. This event probability equals

to the one of Event 1 or 2.

|Pr[G3]− Pr[G2]| = Pr[S′ collapses]

= Pr[event1]+ Pr[event2]

6
(qS′ + qRO)2

2n
+

(qS′)2

2n

6 O

(

q2

2n

)

.

Game 4. A small change to P occurred such that the new program P ′ relies on S′ instead of RO in its responses.

Hence, A has an oracle access to P ′ which has an oracle access to S′. In order to stay consistent, we give the capability

to P ′ to compute Pad(Y ) = y1|| · · · ||y2ℓ for any random oracle query (Y ) before make successive queries (xi, yi) to S′.

Therefore, P ′ is almost the same as our construction H except of using S′ instead of CF .

Define G4 as the event: A outputs 1 after interacting with P ′ and S′. It is represented by Pr[G4]= Pr[AP ′,S′

(1λ) = 1].

In the following we show that the view of A between Games 3 and 4 does not differ because, unless S′ collapses, there

is a consistency in responses of

• P and S′ of Game 3.

• S′ of Game 4 and S′ of Game 3.

• P ′ and S′ of Game 4.

• P ′ of Game 4 and P of Game 3.

Proof. For the first point, we shown in Claim 4 that P and S′ in Game 3 are consistent unless S′ collapses. For the second

point, it is obvious that it is right since S′ in Games 3 and 4 are same. P ′ and S′ of Game 4 are consistent because by

definition P ′ is based on S′. To show P ′ of Game 4 is consistent with P of Game 3 we will use a transitivity proof for P ,

S′ and P ′. Recall that, unless S′ collapses, P and S′ are consistent (Claim 4) and S′ is consistent with P ′ than we can

deduce that P and P ′ are consistent unless S′ collapses.

Therefore, we can conclude that the difference of A’s view between Games 3 and 4 is summed up only when S′ collapses

in Games 3 and 4: |Pr[G4]− Pr[G3]| 6 Pr[S′ collapses in Game 3] + Pr[S′ collapses in Game 4], where Pr[S′ collapses in

Game 3] =
(q

S′+qp)
2

2n
+

(q
S′ )

2

2n
. Let q = qS′ + qP then Pr[S′ collapses in Game 3] 6 q2

2n
.

Let us compute Pr[S′ collapses in Game4]. Assume that the maximum length of padding function Pad is 2ℓ then the

total number of query that S′ received is (qS′ + 2ℓqP ′).

Pr[S′collapses in Game 4] =
(qS′ + 2ℓqP ′)2

2n
+

q2
S′

2n
,

Pr[S′collapses in Game 4] 6
(2ℓq)2

2n
+

q2

2n
,

|Pr[G4]− Pr[G3]| = O

[

(ℓq)2

2n

]

.

Game 5. This time we make changes to S′ so that the new S′′:

• Is independent from RO.

• Does not have to check about the collapse events.

So, for a query (x, y), S′′ will look in its table T if there is an entry (x, y, z). If it is, then it returns z. Otherwise it returns

a uniformly random z, while updating its table T by (x, y, z).

In the following we show that the view of A between Games 4 and 5 does not differ unless S′ collapses or S′′ returns

with z that satisfy one of the collapse events. Indeed, if these two conditions are not satisfied, A sees S′ and S′′ as same

because both of them use a random oracle that is uniformly distributed.

As the responses distribution of S′ and S′′ are identical, it can be deduced that the probability of occurrence of these

two conditions is the same.

Define G5 as the event: A outputs 1 after interacting with P ′ and S′′. It is represented by Pr[G5]= Pr[AP ′,S′′

(1λ) = 1].

|Pr[G5]− Pr[G4]| 6 Pr[S′ collapse in Game 4] + Pr[S′′ collapse in Game 5]=O[
(ℓq)2

2n
].

Game 6. We come to the last game that should simulate CF and H. In this game S′′ is replaced by CF . Thus, P ′ will

be based on CF and become by definition equivalent to HCF .

It is easy to see that Game 6 is identical to Game 5. Define G6 as the event: A outputs 1 after interacting with HCF

and CF . It is represented by Pr[G6] = Pr[AH
CF ,CF (1λ)] = 1, as Game 6 is equivalent to Game 5 then Pr[G6] = Pr[G5].

Recall that Game 1 emulates (RO,S) and Game 6 is (H, CF). By transitivity between Games 1 and 6, we can conclude

that: Adv(A)= |Pr[AH,CF = 1]− Pr[ARO,S = 1]| = O[
(ℓq)2

2n
].

Appendix B Chop-MD, NMAC, SFPF, MDP are PFC

Chop-MD is PFC. For a message M = m0, . . . ,mn, the sequential tuples representation of Chop-MD hash function

HCF,S(IV,M), using a function S that outputs (n − s)-bits for any n-bits input, is (CF , h0||m0, h1), (CF , h1||m1, h2), . . . ,

(CF , hn||mn, hn+1), (S, hn+1, hn+2). This sequential tuples representation is prefix of another sequential tuples representa-

tion ofHCF,S(IV,M ||m)=(CF , h0||m0, h1), (CF , h1||m1, h2), . . . , (CF , hn||mn, hn+1), (CF , hn+1||m,h′
n+2), S(h

′
n+2, h

′
n+3)
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if and only if the adversary A can recover the hn+1 chopped s-bits from hn+2 which is possible with probability (1/2s).

So, depending on the length size of chopped-bits (s), Chop-MD is PFC.

NMAC is PFC. NMAC-MD provided by Coron et al. [11] is PFC because, for a message M = m0, . . . ,mn, the se-

quential tuples representation of HCF1,CF2 (IV,M) = (CF1, h0||m0, h1), (CF1, h1||m1, h2), . . . , (CF1, hn||mn, hn+1), (CF2,

h0||hn+1, h) can be prefix of another sequential tuples representation of HCF1,CF2 (IV,M ||m) = (CF1, h0||m0, h1), (CF1,

h1||m1, h2), . . . , (CF1, hn||mn, hn+1), (CF1, hn+1||m,hn+2), (CF2, h0||hn+2, h) if and only if (CF2, h0||hn+1, h) = (CF1,

hn||mn, hn+1), that is hn = h0 and mn = hn+1 and hn+1 = h. It is obvious that this is possible with a negligible

probability.

SFPF is PFC. SFPF provided by Bagheri et al. [15] is PFC because for a message M = m0, . . . , mn, the se-

quential tuples representation of a SFPF hash function HCF1,CF2,CF3(IV,M) is (CF1, h0||m0, h1), (CF2, h1||m1, h2),

. . . , (CF2, hn−1||mn−1, hn), (CF3, hn||mn, hn+1). This later can be prefix of another sequential tuples representation of

HCF1,CF2,CF3(IV,M ||m) = (CF1, h0||m0, h1), (CF2, h1||m1, h2), . . . , (CF2, hn||mn, h′
n+1), (CF3, h′

n+1||m,h) if and only

if (CF3, hn||mn, hn+1) = (CF2, hn||mn, h′
n+1) i.e., h′

n+1 = hn+1 which is possible with a negligible probability (1/2n) as

CF1 and CF2 are FIL-RO.

MDP is PFC. MDP proposed by Hirose et al. [21] is PFC because for a message M = m0, . . . ,mn, the sequential

tuples representation of MDP hash function HCF,π(IV,M) using a permutation π is (CF , h0||m0, h1), (CF , h1||m1, h2), . . . ,

(CF , hn||mn, hn+1),(π, hn+1, h). This later is prefix of another tuples representation of MDP hash functionHCF,π(IV,M ||m)

= (CF , h0||m0, h1), (CF , h1||m1, h2), . . . , (CF , hn||mn, hn+1), (CF , hn+1||m,hn+2), (π, hn+2, h′) if and only if h = hn+1.

The probability to have a fixed point for an permutation (π(h) = h) is negligible (1/2n).
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