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Abstract Multiple differential cryptanalysis is one of the extensions of classic differential cryptanalysis. In

this paper, we present a generic automatic search method for clustering multiple differentials on a target block

cipher. Our search method has two steps. Firstly, the sets of input and output differences will be determined.

With these sets, we get different multiple differentials. Then for each one of these multiple differentials, we

enumerate and record all satisfied differential trails, which leads to a more accurate evaluation of the multiple

differentials distinguisher. Among these different multiple differentials distinguishers, we can choose the best

one for key recovery attack. We demonstrate our search method by applying it on the part of differentials

of the block cipher MANTIS. As a result, we find a new 10-round multiple differentials distinguisher with

probability 2−55.98 and an 11-round multiple differentials distinguisher with probability 2−63.71, which is the

longest distinguisher for MANTIS so far as we know. This new 10-round distinguisher can lead to a better

signal-to-noise ratio, so we derive an improved key recovery attack on MANTIS-6 with the complexity of

about 251.79 chosen-plaintext queries, 251.91 encryptions and data-time product 2103.70, which is better than

the previous best one with data-time product 2110.61 . Aiming at exploring the gap between the performance

of multiple differential attack and the security margin on MANTIS, we also use the 11-round distinguisher

to derive a key recovery attack on MANTIS-7 with the complexity of about 261.86 chosen-plaintext queries,

2102.92 encryptions and data-time product 2164.78 . It does not threat the security of full version MANTIS

(MANTIS-7) since the security bound of data-time product claimed by the designers is 2126.
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1 Introduction

Differential cryptanalysis [1] is a classic cryptanalytic method, based on which many cryptanalytic tech-

niques have been developed. One of them is the multiple differential cryptanalysis, proposed by Blondeau

et al. [2] at FSE 2011. Its main improvement is using many differentials to reduce the data complexity.

Later, at FSE 2013, Wang et al. [3] proposed structure attack, which is a subclass of multiple differential

attack in general. The structure attack uses multiple input differences and a single output difference.

Wang et al. found that multiple output differences may not be better than the single output difference

according to the complexities of data and time on some block ciphers such as PRESENT [4].

Traditionally, there is no explicit rule to direct how to cluster multiple differentials so as to mount

the final distinguisher that is used in key recovery attack. In order to identify a distinguisher with
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Table 1 Summary of attacks on MANTIS

Target version Data (D) Time (T ) D × T Source

MANTIS-5 228 238 266 Ref. [5]

MANTIS-6 255.09 255.52 2110.61 Ref. [6]

MANTIS-6 251.79 251.91 2103.70 Section 4

MANTIS-7 261.86 2102.92 2164.78 Section 5

high probability, we need to cluster differential characteristics with high probability as many as possible.

Based on this underlying rule, the clustered differential characteristics with high probability may be

constrained with some specific properties, such as the active S-box number and branch number of linear

layer. These properties do let us find many good differential characteristics efficiently, but it also let

us ignore some differential characteristics with high probability, which may lead to the better multiple

differentials distinguisher for key recovery attack.

We can observe the impact of these restrictions on clustering multiple differentials by comparing two

previous differential attacks [5, 6] on MANTIS, which is a tweakable block cipher proposed by Beierle

et al. [7] at CRYPTO 2016. Encouraged to attack the aggressive versions by the designers, a practical

attack on MANTIS-5 was given by Dobraunig et al. [5] with 228 chosen-plaintexts and about 238 encryp-

tions, which used a 9-round multiple differentials distinguisher. This 9-round distinguisher was found

by hand and simple to be evaluated. Dobraunig et al. started with a differential characteristic and just

found the similar characteristics that could be clustered. Later, Eichlseder et al. [6] derived a key re-

covery attack on MANTIS-6 with 255.09 chosen-plaintexts and 255.52 encryptions, which used a 10-round

multiple differentials distinguisher. The data-time product is 2110.61 below the designers’ bound 2126.

Different from the previous attack, Eichlseder et al. generalized the clustering approach from the attack

on MANTIS-5. They started from a truncated differential characteristic and considered all compatible

differential characteristics, which relaxed some restrictions on the clustered differentials. By clustering

more characteristics, they got a longer distinguisher to attack more rounds.

Concentrating on clustering multiple differentials, Eichlseder et al. [6] proposed a general method for

finding and evaluating the multiple differentials on target block cipher, but it still has some restrictions

on these differentials during the clustering process. Taking MANTIS as an example, it will forbid the

branch number > 4. Hence, it may loose some differentials with high probability during the clustering

process. So, we want to find a way to relax these restrictions during the differentials clustering process,

even just a part of the differentials. However, there are some problems when relaxing the restrictions on

clustering multiple differentials: how to search out different kinds of differential characteristics with high

probability, how to select the differentials to be used in the final distinguisher and how to evaluate the

final probability.

Our contributions. To deal with the problems above, we firstly propose a generic automatic search

method for clustering multiple differentials. With this new search method, we can get different sets of

input and output differences as many as possible and we classify these sets according to their active

patterns of input and output differences. Then under each set of input and output differences, we

enumerate all satisfied differential characteristics. At the same time, the detailed distribution of these

satisfied differential trails is recorded, hence leading to a more accurate and easier evaluation of the

multiple differentials distinguisher. Finally, we can choose the best distinguisher for key recovery attack.

We also give an improved enumerating algorithm as a part of our new automatic search method.

Secondly, based on the inner structure in [6], we apply our automatic search method to find multiple

differentials on some rounds of MANTIS. We find a new 10-round multiple differentials distinguisher and

give an improved key recovery attack on MANTIS-6. Then we find an 11-round multiple differentials

distinguisher as well, which is the longest distinguisher for MANTIS so far as we know, and we derive a

key recovery attack to explore the security margin of full version MANTIS against multiple differential

attack. All results are shown in Table 1.

Outline. This paper is organized as follows. In Section 2, we give a brief description of MANTIS

and introduce several lemmas related to MILP technique. Then some notations used in this paper are
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Figure 1 SubCells (S). Figure 2 DDT of MANTIS.

given. In Section 3, the new automatic search method for clustering multiple differentials is presented and

applied on MANTIS. Based on the two multiple differentials distinguishers we find, we give an improved

key recovery attack on MANTIS-6 in Section 4 and explore the security margin of full version MANTIS

in Section 5. In Section 6, we conclude the paper.

2 Preliminary

2.1 The brief description of MANTIS

MANTIS is a tweakable block cipher proposed by Beierle et al. [7] at CRYPTO 2016. It has several

versions MANTIS-r according to the number of total rounds 2r. The message block M , tweak T , and

secret key K of each version are 64, 64, and 128 bits, respectively. What’s more, every 64-bit internal

state can be regarded as a 4×4 matrix with sixteen 4-bit nibbles Ni (0 6 i 6 15), where (N0, N1, N2, N3)

is the first row. The key schedule of MANTIS is simple, the master key is divided into two 64-bit k0 and

k1. Then k0 and k′0 = (k0 ≫ 1) + (k0 ≫ 63) are used as whitening keys, k1 is used as subkey in each

round function.

Similar to PRINCE [8], MANTIS-r is composed by r forward rounds Ri (i = 1, . . . , r) and r backward

rounds R−1
i (i = r + 1, . . . , 2r), and an unkeyed inner layer S ◦M ◦ S between the r-th and (r + 1)-th

round. The round function Ri and R−1
i are shown in (1), which are made up of five components and

described as follows. For more details about MANTIS, we refer to [7].

Ri = M ◦ P ◦Ai ◦ Ci ◦ S,
R−1

i = S ◦ Ci ◦Ai ◦ P−1 ◦M.
(1)

• SubCells (S). The involutive S-box S given in Figure 1 is applied to each nibble of the state. The

differential distribution table (DDT) is shown in Figure 2.

• AddTweakeyi (A) and AddConstanti (C). Add the round constant Ci, round tweakey state hi(T )⊕k1
(for Ri) or hi(T ) ⊕ k1 + α (for R−1

i ), where α is the constant. The tweakey update function h simply

permutes the order of nibbles as specified in Figure 3.

• PermuteCells (P ). All nibbles of the state are permuted by P, specified in Figure 4.

• MixColumns (M). Multiply each column of the state with an involutive near-MDS matrix M,

specified in Figure 5.

2.2 Sun et al.’s MILP-based automatic search model

Here, we briefly recall the automatic differential search method based on MILP (mixed integer linear
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programming) by Sun et al. in [9, 10].

Constraints of subsets in {0, 1}n ⊆ R
n. For a subset X ⊆ R

n, the convex hull conv(X) is defined

as the smallest convex set in R
n containing X. In Lemma 1, we describe the H-representation.

Lemma 1. The set of all solutions of the following system of (in)equalities































λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n > 0,
...

λi,0x0 + · · ·+ λi,n−1xn−1 + λi,n > 0,
...

(2)

is the convex, where λi,j is fixed as a real number. For any subsetX ⊆ R
n with finite discrete points, there

exists a system Hconv(X) of linear inequalities of the form like (2) such that Sol(Hconv(X)) = conv(X),

and we call Hconv(X) the H-representation of conv(X).

Constraints of differential model. According to Lemma 1, all propagation pattern of difference

through every component such as S-box, XOR and Branch operations can be described by a set of

linear inequalities, as long as input and output differences are regarded as variables. By combining the

inequalities of each component of a target cipher, we can describe the differential propagation behaviors

precisely. As a result, each solution is a differential characteristic. By setting the objective function such

as the total number of active S-boxes, the model can be solved by any MILP optimizer like Gurobi [11].

Constraint of removing a solution. Assume x is a solution of the MILP model M̃ , if all solutions

in model M̃ except x satisfy the constraint l(x). Then, we can add l(x) to model M̃ to remove the solution

x according to Lemma 2, which is used in [9] and firstly proposed by Balas et al. [12].

Lemma 2. For a given 0-1 vector σ = (σ0, . . . , σn−1) ∈ {0, 1}n ⊆ R
n. All 0-1 vectors except σ satisfy

the constraint
∑n−1

i=0 [σi + (−1)σixi] > 1.

2.3 Notations

• |S|: the size of the set S.

• χL: all input differences on plaintext.

• 〈χL〉: the linear span generated by χL.

• l: the size of the best key candidates list.

• β: the filtering probability on ciphertext.

• δ: the difference of one nibble in MANTIS.

• ∆: the difference of one state in MANTIS.

• ∆in: the input difference of a r-round differential characteristic.

• ∆out: the output difference of a r-round differential characteristic.
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• δi: the i-th nibble of the state in MANTIS.

• δi⊕j⊕k: the XORed value of the i, j, k-th nibbles of the state in MANTIS.

• {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}: the state differences representation (arranged by nibble’s index

N0, N1, N2, N3, . . . , N15) in MANTIS.

3 New method to search multiple differentials and its application on MAN-

TIS

In this section, we propose a new automatic search method for clustering multiple differentials, consisting

of two steps. The first step is to get the sets of multiple input and output differences for multiple

differentials. Then in the second step, with the sets of multiple input and output differences obtained

in the first step, we construct corresponding multiple differentials search model and enumerate out all

satisfied differential characteristics from this model. During this step, we need to record all gained

differential characteristics to help us cluster and precisely evaluate the final distinguisher that is used for

key recovery attack.

3.1 Determing the sets of input and output differences

For multiple differential cryptanalysis, it is not easy to determine which sets of input and output dif-

ferences can lead to the final best multiple differentials for key recovery attack. In other words, it is

difficult to cluster the best multiple differentials distinguisher for the target cipher. However, in general,

the best multiple differentials include at least one best differential characteristic. Inspired by this fact,

we propose a new method to search multiple differentials. Before introducing our search algorithm, we

give the definition of Pattern as follows.

Definition 1. Assume ∆ is a difference state, which can be represented on nibble-level as ∆ =

{δ0, δ1, . . . , δn−1}, then ∆̄ = {δ̄0, δ̄1, . . . , δ̄n−1} is called the Pattern of ∆, where

δ̄i =

{

0, if δi = 0,

1, otherwise.

With the definition of Pattern, we illustrate the basic idea of our new search method. Firstly, we search

out enough differential characteristics with best probability, then store the pair of Patterns of input and

output differences for each characteristic. Then, due to the little contribution of the differential with

low probability on multiple differentials, we only focus on the differentials with high probability under

each pair of Patterns. As a result, their corresponding sets of input and output differences only involve

part of difference values on active nibbles. Thus, under each pair of Patterns, we search out sufficient

differentials with high probability to get the specific sets of input and output differences, which lead to

a multiple differentials distinguisher. The whole detailed process is shown in Algorithm 1.

In Algorithm 1, N1 different best differentials are searched out to deduce enough expected Pat-

terns (∆̄in, ∆̄out) at first, and we store such Patterns into the set Act∆in,∆out
. Then for each pair

of Patterns in Act∆in,∆out
, we search out N2 different best differentials and store their actual input and

output differences (∆in,∆out) into the corresponding set Dist(∆̄in,∆̄out). As a result, Dist(∆̄in,∆̄out) leads to

a multiple differentials distinguisher for the target cipher. Actually, we can obtain |Act∆in,∆out
| multiple

differentials and choose the most suitable one to derive the key recovery attack.

In order to explain the relationship among ∆in, ∆̄in and Dist∆̄in
more clearly, we present an example

as follows. If an input difference of MANTIS is

∆in = {a, 0, 0, 0, f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

then its Pattern is

∆̄in = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
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Algorithm 1 New method to cluster multiple differentials

Input: M: r-round MILP differential model of the target cipher.

N1: the number of sample differential characteristics to find enough Patterns.

N2: the number of sample differential characteristics under each pair of Patterns.

Output: Dist = {Dist(α,γ)|(α, γ) ∈ Act∆in,∆out
}: |Act∆in,∆out

| multiple differentials.

1: M1 = M;

2: sol count = 0;

3: Act∆in,∆out
:= None;

4: while sol count < N1 do

5: curr sol = Solve the model M1 to get the best differential characteristic;

6: Extract (∆in,∆out) from curr sol and get (∆̄in, ∆̄out);

7: Act∆in,∆out
= Act∆in,∆out

∪ (∆̄in, ∆̄out);

8: Add l(curr sol) to update model M1; /* Remove current solution from the model */

9: sol count++;

10: end while

11: Dist := None;

12: for each pair of Patterns (∆̄in, ∆̄out) ∈ Act∆in,∆out
do

13: M2 = M;

14: sol count = 0;

15: Dist(∆̄in,∆̄out)
:= None;

16: Add constrains corresponding with (∆̄in, ∆̄out) to model M2;

17: while sol count < N2 do

18: curr sol = Solve the model M2 to get the best differential characteristic;

19: Extract (∆in,∆out) from curr sol;

20: Dist(∆̄in,∆̄out)
= Dist(∆̄in,∆̄out)

∪ (∆in,∆out);

21: Add l(curr sol) to update model M2;

22: sol count++;

23: end while

24: Dist = Dist ∪Dist(∆̄in,∆̄out)
;

25: end for

26: return Dist.

which means that only the 0-th and 4-th nibbles are active (non-zero difference). What’s more, assume

we find two differentials under this input Pattern, whose input differences are ∆0
in and ∆1

in as follows:

∆0
in = {a, 0, 0, 0, f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

∆1
in = {f, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

Now, the input differences set of such multiple differentials can be denoted as

Dist∆̄in
= {I1, 0, 0, 0, I2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

where I1, I2 = {a, f}.
Note that there are two parameters in Algorithm 1, which are N1 and N2. In general, the more

differential trails we sample, the more number of Patterns and sets of input and output differences we

may cover. But, the large values for N1 and N2 will lead to long excution time. To strike a balance,

values for N1 and N2 can be heuristically explored. During our searching process, we can get enough

Patterns and sets of input and output differences from just small part of best differential characteristics.

In addition, with these sets returned by Algorithm 1, we still can refine and reduce the set Dist(∆̄in,∆̄out)

according to the specific property of the target cipher (like linear layer and numbers of keys to be guessed

in key recovery phase), which can save the searching time for the second step.

3.2 Enumerating process for searching multiple differentials

With each set of input and output differences Dist(∆̄in,∆̄out) returned by Algorithm 1, we still need an

enumerating algorithm to search out all satisfied differential characteristics to evaluate the probability.

Sun et al. [9] proposed an enumerating algorithm to search differential (with fixed input and output

difference), truncate differential and boomerang/rectangle distinguishers, while it does not cover multiple
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differentials. So before starting the enumerating process, we need to use the constraints of subset in

Subsection 2.2 to describe the set Dist(∆̄in,∆̄out). Then combined with r-round differential model, we get

the corresponding multiple differentials search model.

However, during our enumerating process, we find that there are some invalid1) solutions when solving

the model. To overcome this problem and record the detailed infomations of all satisfied characteristics,

we give our improved multiple differentials enumerating algorithm in Algorithm 2. Here, for an invalid

solution during the enumerating process, we do not discard it directly. We extract all variables from

the invalid solution, and we set the approximate binary values for such continuous values to get an

approximate solution. Then, we check this approximate solution, if it is an invalid characteristic, we

discard it. If it is a valid one, we still need to check whether it is repeated with the obtained characteristics

before. So, we use a hash table H to check these repeated characteristics. With checking and recording

on the run, we discard the invalid solution and repeated solution characteristic promptly, which gains

more proficiency and reduces the unnecessary impacts (no need to add the removing constraints) on the

multiple differentials search model.

Algorithm 2 Improved multiple differentials enumerating algorithm

Input: M(∆̄in,∆̄out)
: multiple differentials model of the target cipher under Dist(∆̄in,∆̄out)

.

Output: O(∆̄in,∆̄out)
: all characteristics for multiple differentials under Dist(∆̄in,∆̄out)

.

1: H := None;

2: while True do

3: Solve the model M(∆̄in,∆̄out)
;

4: if model M(∆̄in,∆̄out)
is infeasible then

5: break;

6: end if

7: curr sol = extract a characteristic from the solution returned by solver (get the approximate solution when the

solution has continuous values);

8: Check the status of curr sol;

9: if the status of curr sol is an invalid characteristic then

10: Continue;

11: end if

12: if Hash(curr sol) ∈ H then

13: Continue;

14: else

15: H = H ∪ Hash(curr sol);

16: Record curr sol to O(∆̄in,∆̄out)
;

17: end if

18: Add l(curr sol) to update model M(∆̄in,∆̄out)
;

19: end while

20: return O(∆̄in,∆̄out)
.

3.3 Mount 10-round multiple differentials distinguisher on MANTIS

Both of the previous attacks on MANTIS use the same inner structure in their distinguishers, because

in [6] the authors said, “most of the resulting solutions display the same inner structure as the existing

5-round characteristic”. So we still use this good inner structure as a part of our distinguisher. Except

this inner part, there may be many other differentials with the high probability in other parts of the

distinguisher. Clustering such other differentials with high probability, not only will it provide more

choices for our key recovery attack, but also may enhance the probability of distinguisher and even to

mount a longer one.

Now, we use our new proposed automatic search method to mount a new 10-round multiple differentials

distinguisher, shown in Figure 6 and consisting of three parts. The first part is the good inner structure

mentioned above. The second part is from round 2 to 4. The third part is from round 9 to 11.

1) Some solutions have continuous values rather than exactly binary values. We find that this is caused by Gurobi

optimizer due to the limitations of finite-precision arithmetic.



Chen S Y, et al. Sci China Inf Sci March 2019 Vol. 62 032111:8

A

A
⊕

k0

L

A

A
⊕

k1

A

A

S

1

·2− 21 .82

E

D F

E H D

E D
⊕

k1

E

D F

E H D

E D

P
D F E

H

D E

D E

M
H

D F E

H F

H F

S

2

I

I J a

a I

J a
⊕

k1

P

· · ·

a

U V W
a V
a V

S

11

R

R X a

a R

X a
⊕

k1 +

P

· · ·

a

Y
⊕

k0

C

a

Y
⊕

k1 + α

Y

S

12

·1

W

U V

W U

W U
⊕

k1 +

W

U V

W a U

W U

P
U V W

a

U W

U W

M

M

· · ·

S

3

⊕

k1

k1 k1

P M S

4

a

a ⊕

k1

a

a

P
a

a M
a

a

· · ·

M

· · ·

S

10

⊕

k1 +

P M S

9

a

a ⊕

k1 +

a

a

P
a

a M
a

a

· · ·

a

a S

· · · 5

·2− 4

a

a ⊕
P M S

6

a

a S

· · · 8

·2− 4

a

a ⊕

k1 +

P M S

7

⊕ a

a

P
a

a

M
a

a

S

Inner

L

L

⊕

k1 +

a

a

P
a

a

M
a

a

S

Inner

L

L

a

a

a

a

a

a

h ° C h ° C · · ·

a

a

a

a
· · · h ° C h ° C h ° C · · ·

a

a a

a· · · h ° C

M

·2− 4

a = a = + a (XORed with value 0xa)

= 0 I ∈ {a, f, d, 5, 7}

∈S({a, f, d, 5}) A Y ∈S({a, f, d, 5 } + a)

Differential search part D E F H J L

U V W R X Y

∈{a, f, d, 5}

α α

αα

α α

δ

δ

δ δ δ

δ

δ

δ

Figure 6 (Color online) Multiple differential attack on MANTIS-6.

The first part (rounds 4 to 9). It starts from the the state after S in round 4 with the difference

state

{0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0},

and ends at the state before S in round 9 with

{0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0}.

As we take this inner structure, we also need take its all tweak difference (owing to the linear tweak

schedule in MANTIS), which is shown in Figure 6.

The second part (rounds 2 to 4). For this 3-round multiple differentials (includes three layers of

Soperation), it ends at the state after S in round 4 with

∆out = {0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0}.



Chen S Y, et al. Sci China Inf Sci March 2019 Vol. 62 032111:9

Table 2 The distribution of active nibbles’ differences of the state after S in round 2 of 1664 trails with probability 2−28

under Dist′α0

Differences a f d 5 7

N0 1408 160 16 16 64

N5* 1408 160 16 16 64

N6 1160 328 88 88 0

N7 1664 0 0 0 0

N8 1664 0 0 0 0

N10* 1408 160 16 16 64

N12 1160 328 88 88 0

N14 1664 0 0 0 0

* The 5-th and 10-th nibbles are equaling and can be used in key recovery phase.

So, we have just one output difference here.

Step 1. To get the sets of multiple input differences for this 3-round multiple differentials, we need

to set N1 and N2 for the sampling according to Algorithm 1. After some trials, we let N1 = 200 and

N2 = 200, which are enough to get the detailed results. After sampling N1 best characteristics (the best

probability of this 3-round differential characteristic is 2−28) in just several minutes2), we get only one

pair of Patterns of input and output differences Act∆in,∆out
= {(α0, γ0)},

α0 = {1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0},

γ0 = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0}.

With (α0, γ0), after sampling N2 differential characteristics, we get the set of input differences:

Distα0
= {G1, 0, 0, 0, 0, G2, G3, G4, G1, 0, G3, 0, G1, 0, G3, 0},

where G1, G3, G4 = {a, f, d, 5} and G2 = {a, f, d, 5, 7}.
Step 2. With Distα0

obtained in Step 1, we divide it into two sets as follows:

Dist′α0
= {G1, 0, 0, 0, 0, G5, G3, G4, G1, 0, G3, 0, G1, 0, G3, 0},

Dist′′α0
= {G1, 0, 0, 0, 0, 7, G3, G4, G1, 0, G3, 0, G1, 0, G3, 0},

where G1, G3, G4, G5 = {a, f, d, 5}. We build corresponding multiple differentials search model for each

set of input differences and use the improved enumerating algorithm to search out all satisfied differential

characteristics.

Under these two sets of input differences, we get 2192 differential characteristics in total (this enumer-

ating process costs about 5 hours). All these characteristics have only two kinds of probabilities, 2−28

and 2−32. For Dist′α0
, we get 1664 characteristics with probability 2−28 (256 input differences) and 336

characteristics with probability 2−32 (36 input differences). For Dist′′α0
, we get 32 characteristics with

probability 2−28 (4 input differences) and 160 characteristics with probability 2−32 (16 input differences).

We summarize the part of search results in Table 2, which decides the second part of the final distinguisher

used for key recovery attack.

The third part (rounds 9 to 11). For this 3-round multiple differentials (includes 3 layers of

S operation), it starts at the state before S in round 9 with

∆in = {0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0}.

So, we have just one input difference here. It can noted that this part is the same as the inverse of the

second part (rounds 4 to 2). We can reuse the search results in the second part, from which we just give

the final results in Table 3.

2) By default, the programs are running on a PC using one thread with Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz

and 4 GB RAM.
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Table 3 Number of trails for each output statea)

State after S in round 12 Number of differential trails

{a, 0, 0, 0, 0, a, a, a, a, 0, a, 0, a, 0, a, 0} 32

{a, 0, 0, 0, 0, a, G6, a, a, 0, G6, 0, a, 0, G6, 0} 52

{G7, 0, 0, 0, 0, a, G6, a, G7, 0, G6, 0, G7, 0, G6, 0} 116

{a, 0, 0, 0, 0, a, G6, G8, a, 0, G6, 0, a, 0, G6, 0} 208

{a, 0, 0, 0, 0, G9, G6, G8, a, 0, G6, 0, a, 0, G6, 0} 640

a) G6, G7, G8, G9 = {a, f,d, 5}

The final 10-round multiple differentials. Now, we use the three parts above to combine the final

10-round multiple differentials. However, not all trails contribute to the probability of the distinguisher,

the collection of data and the key recovery phase, so we need to carefully select the multiple input or

output differences according to detailed search results of all characteristics above.

For the second part, we just use 1664 differential characteristics with probablity 2−28 under the set

Dist′α0
. It starts with

{G1, 0, 0, 0, 0, G5, G3, G4, G1, 0, G3, 0, G1, 0, G3, 0},
where G1, G3, G4, G5 = {a, f, d, 5}. It ends with

{0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0}.

So, the probability of the second part is 2−28·1664
256 ≈ 2−25.30. Then, for the third part, we start with

{0, 0, 0, 0, 0, 0, a, 0, 0, 0, a, 0, 0, 0, 0, 0}.

Considering data and time complexities of the whole attack, we use the output differences set with

{a, 0, 0, 0, 0, G9, G6, G8, a, 0, G6, 0, a, 0, G6, 0},

where G6, G8, G9 = {a, f, d, 5}. The probability of the third part is 2−28 · 640 = 2−18.68. Finally, we

combine these three parts to gain a new 10-round multiple differentials distinguisher with probability

p∗ = 2−25.30 · 2−12 · 2−18.68 = 2−55.98 > 2−58 (here the random probability is 2−58, because there are 26

output differences).

3.4 Mount 11-round multiple differentials on MANTIS

Similarly, we also find an 11-round multiple differentials with the same inner part. Owing to the space

limitations, we just give the input and output differences of our distinguisher, shown in Figure 7. It starts

at the state before S in round 2 with

{0, 0, a, 0, F, 0, a, 0, F, 0, 0,K, 0, a, 0, 0},

where F = {a, f} and K means being included in key recovery (so the probability is calculated in key

recovery phase, not included in distinguisher). It ends at the state after S in round 12 with

{a, 0, 0, 0, 0, a, a,K, a, 0, a, 0, a, 0, a, 0}.

Then we get an 11-round multiple differentials distinguisher with probability p∗ = 2−30.71 ·2−12 ·2−21 =

2−63.71 > 2−64 (random probability).

4 Improved key recovery attack on MANTIS-6

In this section, we give an improved key recovery attack on MANTIS-6 based on the 10-round multiple

differentials distinguisher with probability 2−55.98 in Subsection 3.3. The data and time complexities

are 251.79 chosen-plaintexts and 251.91 encryptions respectively, so the data-time product is 2103.70. The

whole attack involves data collection phase and key recovery phase, whose details are given in this section.
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Figure 7 (Color online) Multiple differential attack on MANTIS-7.

4.1 Data collection

As is shown in Figure 6, the plaintext covers |χL| = 136 ·142 ≈ 229.82 input differences, and the size of its

linear span3) is |〈χL〉| = 168 = 232. To generate our data efficiently, we describe the structure as follows:

with a fixed plaintext L ∈ χL and a fixed tweak T , we get a plaintext pair (L, T ) and (L, T ⊕ a) under

the tweaks (T, T ⊕ a). Then, the set
⋃

L{L ⊕∆|∆ ∈ 〈χL〉} is called a structure. So, with |〈χL〉| = 232

chosen-plaintext pair queries, we obtained |χL| · |〈χL〉| = 261.82 compatible plaintext pairs.

The probability of a plaintext pair to follow the input of distinguisher in Figure 6 is 2−21.82. For

example, the difference of nibble N2 of the state before S in round 1 are in the set S({a, f, d, 5}). From

DDT of MANTIS, we know S({a, f, d, 5}) = {1, 3, 4, 5, 6, 7, 9, a, b, c, d, e, f}, which has 13 elements in total.

Thus, the transition probability of the set S({a, f, d, 5}) to the set {a, f, d, 5} is 1
13 ·4 = 2−1.7. Meanwhile,

we also need to consider the probability for three equaling set E, which is 2−2 · 2−2 = 2−4. Similarly, we

can calculate the transition probabilities for other nibbles. Finally, we can get the probability 2−21.82.

To include a right pair following the whole 12-round differentials, we need to generate 255.98+21.82 =

277.80 pairs, that means we need Nst = 277.80/261.82 = 215.98 structures illustrated above. The data

complexity for one right pair is NQ = 2 ·Nst · |〈χL〉| = 248.98 chosen-plaintext queries.

For the filter probability β on ciphertext, there are two parts: inactive nibbles and active nibbles.

To satisfy the 8 inactive nibbles on ciphertext, the probability is 2−4·8 = 2−32, while the probability to

satisfy 5 nibbles with difference S({a, f, d, 5}), 1 nibbles with difference S({a, f, d, 5}) + a, 1 nibble with

difference S({a, f, d, 5}+ a) and 1 nibbles with difference a, the probability is (1316 )
6 · 14

16 · 1
16 ≈ 2−5.99. As

a result, β = 2−37.99 and NF = Nst · |χL| · |〈χL〉| · β = 239.81 filtered pairs containing one right pair will

be used in key recovery phase. Since we expect Nright = 7 right pairs in the following key recovery phase,

thus we need Nright ·NQ = 251.79 chosen-plaintexts to generate Nright ·NF = 242.62 filtered pairs.

4.2 Key recovery

Before mounting a key recovery attack, we generalize an important key relation of MANTIS used in [6]

as Lemma 3 and give the proof in Appendix A.

Lemma 3. In MANTIS, for any 0 6 i, j, k < 15 (i, j, k are different from each other), assume knowing

the i-th, j-th, k-th nibbles of (k0 + k1) and the i-th, j-th, k-th nibbles of (k′0 + k1), 3 out of 4 bits in

δi⊕j⊕k of k1 can be directly deduced by guessing another bit.

Recovery 62 bits from the filtered pairs. We use Nright · NF = 242.62 filtered pairs to recovery

the right 62 bits key informations according to the conditions in Table 4 as follows.

3) Here, we can regard all bits in active nibbles as a binary vector.
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Table 4 Conditions and their filter probabilities in key recovery on MANTIS-6

Rounds Condition Nibbles Difference Probability Key bits

1 (C1) δ2,8,13 {a, f, d, 5}, equal∗ 2−9.1 12

(C2) δ4,11,14 {a, f,d, 5}, equal[+a]∗∗ 2−9.21 12

(C3) δ10 {a, f,d, 5} + a 2−1.81 4

(C4) δ6 {a, f, d, 5} 2−1.7 4

12 (C5) δ2,8,13 {a, f, d, 5} 2−9.1 12

(C6) δ4,11,14 {a, f,d, 5}, equal[+a] 2−9.21 12

(C7) δ6 {a, f, d, 5} 2−1.7 4

2,11 (C8) δ2⊕8⊕13 {a} 2−4 1

(C9) δ4⊕11⊕14 {a, f, d, 5} 2−2 1

* The differences of corresponding nibbles are equal.

** The differences or the difference XORed with value a of corresponding nibbles are equal.

Table 5 Conditions for key recovery and filter probabilities on MANTIS-6 (for 7 right pairs)

Round Condition Nibbles Difference Probability

2 (V1) δ14 {a} 2−2

2 (V2) δ5,10 {a, f,d, 5, 7}, equal 2−3.30

11 (V3) δ10 {a, f,d, 5} 2−1

11 (V4) δ14 {a} 2−2

(1) Guess 12 bits in δ2,8,13 of k0 + k1 in round 1 and compute forward to check the condition (C1).

242.62 · 2−9.1 = 233.52 pairs will be left.

(2) Guess 12 bits in δ2,8,13 of k′0 + k1 in round 12 and compute forward to check the condition (C5).

233.52 · 2−9.1 = 224.42 pairs will be left.

(3) Guess 1 bit in δ2⊕8⊕13 of k1, compute forward and check the condition (C8). 224.42 · 2−4 = 220.42

pairs will be left.

(4) Guess 12 bits in δ4,11,14 of k0 + k1 in round 1, compute forward and check the condition (C2).

220.42 · 2−9.21 = 211.21 pairs will be left.

(5) Guess 12 bits in δ4,11,14 of k′0 + k1 in round 12, compute forward and check the condition (C6).

211.21 · 2−9.21 = 22.00 pairs will be left.

(6) Guess 1 bit in δ4⊕11⊕14 of k1, compute forward and check the condition (C9). 22.00 · 2−2 = 1 pair

will be left.

(7) Guess 4 bits in δ6 of k0+k1 in round 1, compute forward and check the condition (C3). 1 ·2−1.81 =

2−1.81 pair will be left.

(8) Guess 4 bits in δ10 of k′0 + k1 in round 1, compute forward and check the condition (C4). 2−1.81 ·
2−1.7 = 2−3.51 pair will be left.

(9) Guess 4 bits in δ10 of k′0 + k1 in round 12, compute forward and check the condition (C7). 2−3.51 ·
2−1.7 = 2−5.21 pair will be left.

After this process, the right key suggests at least 7 pairs, the wrong key suggests 2−5.21 pair on

average. The signal-to-noise ratio is SN = 7
2−5.21 = 28.02. The key suggested with the most times is

expected to be the right key. The 62 bits key material is found. We expect that only the 7 right pairs

remain. So, the major time complexity of this phase is 259.49 S-box operations, which can be reduced to

259.49 · 1
12 · 1

16 = 251.91 encryptions.

Recovery 26 bits from the right pairs. We can use the 7 right pairs and 62 bits right key to

recover another 26 bits key information according to the conditions in Table 5 as follows. In round 2, the

nibbles N5, N10 of the state after S have the same difference with probability 2−3.30, the nibble N14 of

the state after S has the difference {a} with probability 2−2. Similarly, the filter probability for round

11 is 2−3. All involved keys are illustrated in Figure 8. With already known 62 bits, another 26 bits key

need to be guessed. Condition (V1 & V2 & V3 & V4) holds with the probability of 2−8.30·7 = 2−58.10 for

7 right pairs. We expect that only the right 26-bit subkey is remained. Then, the left 128− 62− 26 = 40

bits key material can be exhausted. So, the time complexity of this phase is about 240 encryptions.
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4.3 Complexity and success probability

In the whole attack on MANTIS-6, the data complexity is 251.79 chosen-plaintext queries, the time

complexity is about 251.91 12-round encryptions, so the data-time product is 2103.70. We calculate the

success probability by the following formula in [13]:

PS = Φ

(√
µSN − Φ−1(1− 2−a)√

SN + 1

)

, (3)

where Φ is the normal distribution, µ is the number of right pair, SN is the signal-to-noise ratio and a is

the advantage key bits. As we leave only one best candidate, that means l = 20, a = 62− 0 = 62. So, the

success probability is PS = 98.1%.

5 Key recovery attack on MANTIS-7

In order to explore the gap between the multiple differential attack and security margin on full version

MANTIS claimed by the designers, we mount a key recovery attack on MANTIS-7 without considering

the data-time product restriction.

Data collection. We give the data collection phase as follows.

Step 1. Put 260.855 ciphertexts under tweak T and T + α (totally 261.855 ciphertexts) into a 224 size

hash table T with size of 224 (indexed by 24 bits, the 5 inactive nibbles and 1 nibble with difference {a})
on plaintext.

Step 2. In each entry of the table T, it has 260.855−24 = 236.855 pairs on average. So we can combine

236.855·2 = 273.71 pairs in each entry.

Step 3. We get 273.71+24 = 297.71 plaintext pairs. After filtered by the active bits on plaintext, it

remains NF = 297.71 · 227.02

235 = 289.73 filtered pairs.

Step 1 needs 261.855 chosen-ciphertext queries. Step 2 needs 297.71 memory access. Step 3 needs 297.71

memory access. The filtered NF pairs including one right pair will be used in key recovery phase.

Key recovery. We list all filter conditions in Table 6. For each pair in NF = 289.73 filter pairs, we do

the following steps:

(1) Guess 23 differences of δ4,13 before S in round 2. Then we can squeeze out one 44-bit (corresponding

to 11 nibbles δ1,2,5,6,7,9,10,11,12,13,14) key information of k0 + k1 on average.

(2) Guess 212 differences of δ2,4,6,8,11,13 after S in round 13. Then we can squeeze out one 64-bit

(corresponding to all 16 nibbles) key information of k′0 + k1 on average.
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Table 6 Conditions for key recovery and filter probability on MANTIS-7

Round Condition Nibbles Difference Probability Key bits

1 (C1) δ3 {a} 1 4

2 (C2) δ2⊕7⊕13 {a} 2−2 1

13 (C3) δ2⊕7⊕13 {a} 2−2 1

(C4) δ1⊕11⊕14 {a} 2−2 1

(C5) δ3⊕6⊕9 {a} 2−2 1

(C6) δ3⊕9⊕12 {a} 2−2 1

(C7) δ0⊕10⊕15 {a} 2−2 4

(C8) δ0⊕5⊕10 {a} 2−2 4

12 (C9) δ2⊕8⊕13 {a} 2−2 4

(3) Guess 1 bit in δ2⊕7⊕13 of k1. If the pair satisfies (C2) and (C3) in Table 6 (with probability

2−2−2 = 2−4), then we remain it, otherwise discard it. 21−4 = 2−3 keys will be left.

(4) Guess 1 bit in δ1⊕11⊕14 of k1. If the pair satisfies (C4), then we remain it, otherwise discard it.

2−3+1−2 = 2−4 keys will be left.

(5) Guess 4 bit in δ3 of k0 + k1. 2
−4+4 = 20 keys will be left.

(6) Guess 1 bit in δ3⊕6⊕9 of k1. If the pair satisfies (C5), then we remain it, otherwise discard it.

20+1−2 = 2−1 keys will be left.

(7) Guess 1 bit in δ3⊕9⊕12 of k1. If the pair satisfies (C6), then we remain it, otherwise discard it.

2−1+1−2 = 2−2 keys will be left.

(8) Guess 4 bits in δ0⊕10⊕15 of k1. If the pair satisfies (C7), then we remain it, otherwise discard it.

2−2+4−2 = 1 keys will be left.

(9) Guess 4 bits in δ0⊕5⊕10 of k1. If the pair satisfies (C8), then we remain it, otherwise discard it.

20+4−2 = 22 keys will be left.

(10) Guess 4 bits in δ2⊕8⊕13 of k1. If the pair satisfies (C9), then we remain it, otherwise discard it.

22+4−2 = 24 keys will be left.

After this phase, 289.73+15+4 = 2108.73 candidate keys are suggested in total. While the squeezed and

guessed bits include 44 + 64 + 20 = 128 (the 20 bits are guessed in step (3) to (10)) bits independent

key informations. The time complexity of this phase is 2110.73 S-box operations, which can be reduced

to 2110.73 · 1
14·16 = 2102.92 encryptions, the signal-to-noise ratio SN = 1

2108.73/2128 = 219.27.

Complexity and success probability. With one right pair, the data complexity is about 261.86

chosen-ciphertexts. The major time complexity of the whole attack is about 2102.92 encryptions. As we

leave 296 best candidate keys (time complexity of this brute searching part can be ignored), that means

l = 296, a = 128− 96 = 32. So the success probability is PS = 83.94%.

6 Conclusion

In this paper, we propose a generic automatic search method for clustering multiple differentials. Com-

pared to traditional searching process, our method removes restrictions on searching multiple differentials

as much as possible. We apply this new search method on MANTIS and find a new 10-round distin-

guisher to derive an improved key recovery attack, which improves the data-time product of the previous

best differential attack on MANTIS from 2110.61 down to 2103.70. We also find an 11-round distinguisher

for MANTIS, which is the longest one until now. Based on this distinguisher, we explore the gap be-

tween multiple differential attack and the security margin on MANTIS. The result shows that full version

MANTIS is still secure enough against multiple differential attack.
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Appendix A Proof of Lemma 3

Proof. For the sake of simplicity, we use K0,1[a, b] to denote

k0[(a)mod64]⊕ k1[(b)mod64],

K1[a, b, c] to denote

k1[(a)mod64]⊕ k1[(b)mod64]⊕ k1[(c)mod64].

If we know the i-th, j-th, k-th (i, j, k ∈ {0, 1, . . . , 14}) nibbles of k0 + k1 and k′0 + k1, which are the following 24 bits:

K0,1[4i, 4i], K0,1[4i+ 1, 4i+ 1], K0,1[4i+ 2, 4i+ 2], K0,1[4i+ 3, 4i+ 3], (A1)

K0,1[4j, 4j], K0,1[4j + 1, 4j + 1], K0,1[4j + 2, 4j + 2], K0,1[4j + 3, 4j + 3], (A2)

K0,1[4k, 4k], K0,1[4k + 1, 4k + 1], K0,1[4k + 2, 4k + 2], K0,1[4k + 3, 4k + 3], (A3)

K0,1[4i− 1, 4i], K0,1[4i, 4i+ 1], K0,1[4i+ 1, 4i+ 2], K0,1[4i+ 2, 4i+ 3], (A4)

K0,1[4j − 1, 4j], K0,1[4j, 4j + 1], K0,1[4j + 1, 4j + 2], K0,1[4j + 2, 4j + 3], (A5)

K0,1[4k − 1, 4k], K0,1[4k, 4k + 1], K0,1[4k + 1, 4k + 2], K0,1[4k + 2, 4k + 3], (A6)

then we can combine first 3 bits in (A1) and last 3 bits in (A4) to get 3 bits

K1[4i, 4i+ 1], K1[4i+ 1, 4i+ 2], K1[4i+ 2, 4i+ 3].

Similarly, we can get

K1[4j, 4j + 1], K1[4j + 1, 4j + 2], K1[4j + 2, 4j + 3],

K1[4k, 4k + 1], K1[4k + 1, 4k + 2], K1[4k + 2, 4k + 3].

Once we get one bit K1[4i, 4j, 4k], as we already know

K1[4i, 4i+ 1]⊕K1[4j,4j + 1]⊕K1[4k,4k + 1],

then we get another three bits

K1[4i+ 1, 4j + 1, 4k + 1], K1[4i+ 2, 4j + 2, 4k + 2], K1[4i+ 3, 4j + 3, 4k + 3].

https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2014/747&version=20140926:084100&file=747.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2014/747&version=20140926:084100&file=747.pdf
http://www.gurobi.com
https://doi.org/10.1137/0123007
https://doi.org/10.1007/s00145-007-9013-7

	Introduction
	Preliminary
	The brief description of MANTIS
	Sun et al.'s MILP-based automatic search model
	Notations

	New method to search multiple differentials and its application on MANTIS
	Determing the sets of input and output differences
	Enumerating process for searching multiple differentials
	Mount 10-round multiple differentials distinguisher on MANTIS
	Mount 11-round multiple differentials on MANTIS

	Improved key recovery attack on MANTIS-6
	Data collection
	Key recovery
	Complexity and success probability

	Key recovery attack on MANTIS-7
	Conclusion
	Proof of Lemma 3

