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Abstract The randomness of random number generators (RNGs) is important for the reliability of cryp-

tographic systems since the outputs of RNGs are usually utilized to construct cryptographic parameters.

Statistical tests are employed to evaluate the randomness of the RNG outputs. The discrete Fourier trans-

form (DFT) test is an important test item of the most popular statistical test suite NIST SP800-22. In the

standard NIST DFT test and related improved studies, there exist accuracy and efficiency issues. First, the

bit sequences generated by known good RNGs have a high probability to be rejected when the sequences are

long or the sequence number is large, due to the deviation between the actual distribution of the test statistic

values and the assumed normal distribution. Second, the long test time and high memory consumptions of

the complex DFT test algorithm also affect its practicability. To solve these problems, we propose a new

DFT test method for long sequences (106 or more bits). Different from the previous DFT test methods fo-

cusing on making the distribution of the test statistic values closer to the normal distribution, we reconstruct

the statistic to follow the chi-square distribution. Our experiment result shows that our method has higher

reliability in the two-level test, and could effectively reduce the test time and the memory consumptions.

When applying our method on randomness test, the test efficiency has been increased to about 4 times for

106-bit sequences and 7 times for 107-bit sequences. In conclusion, our method has lower probability of

making errors, and is more suitable for practical application scenarios.
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1 Introduction

Random number generators (RNGs) are widely used in various fields, especially in cryptographic systems.

There are two types of RNG: true random number generator (TRNG) and pseudo random number

generator (PRNG). TRNGs use nondeterministic source (random physical phenomenons) combining some

process functions to generate bit sequences which can be used as random numbers directly or seeds for

PRNGs. PRNGs utilize mathematical methods to produce deterministic sequences. Random numbers

generated by RNGs are basic components in cryptographic systems which are usually utilized to construct

cryptographic parameters such as encryption keys [1] and message authentication codes, so the quality

of RNG outputs has a direct impact on the security of cryptographic schemes and protocols. There are

various test methods to evaluate the randomness of the RNG outputs and the most widely used one is

statistical randomness test.
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Statistical randomness test is an important area of cryptography. It can not only evaluate the outputs

of RNGs, but also assess the randomness of cryptographic system’s outputs [2]. What’s more, statistical

randomness test can be employed to analysis the internal states of cryptographic algorithms [3, 4], so

the weakness of the cryptographic algorithms can be found. There exist a number of commonly used

statistical test suites: Marsaglia’s Diehard1), CryptXS2), SP800-22 [5] published by US NIST (National

Institute of Standards and Technology). NIST SP800-22 is the most popular one. It is composed of 15

test items which provide comprehensive randomness evaluation for the test bit sequences.

Statistical test is based on the hypothesis testing which is a classical mathematical statistic method

to detect whether the experimental data set fits with the given hypothesis. When the statistical test is

used to evaluate the randomness of RNGs, the definition of null hypothesis H0 is that the RNG under

test is ideal, which means that the output sequences cannot be computationally distinguished from true

random source. Assuming the output sequences are independent and identically distributed [6], the test

statistic values computed on the sequences conform to a specific distribution which usually is binomial

distribution or chi-square distribution. When the statistic values are in line with the assumed distribution,

H0 is accepted. Otherwise, H0 is rejected.

To evaluate whether the distribution of the statistic values is consistent with the assumed distribution,

a P-value is calculated based on the value of statistic. P-value is a real number in [0,1], which represents

the probability that the true random sequence is worse than the sequence under test. The commonly used

testing approaches for statistical tests are one-level and two-level test. For the one-level test, if P-value is

greater than the significance level, H0 is accepted and the sequence under the test is considered random.

However the one-level test is not reliable enough. The two-level test can improve the reliability of the

randomness test [7]. It focuses on the distribution of N obtained P-values and involves two estimate

ways. (1) Passing proportion test: test whether the passing ratio of the N P-values can be approximated

with a normal random variable. (2) Uniformity test: use a chi-square goodness-of-fit test in k bins to

compare the distribution of the N P-values with the uniform distribution. The two-level test is passed

only if both the passing proportion test and the uniformity test are passed. A test item is considered to

be passed if its two-level test is passed. A RNG is considered ideal if its output sequences pass all the

included test items of a statistical test suite.

Related work. There are some related studies to improve the accuracy and efficiency of the NIST

SP800-22 test suite, which generally fall into two kinds. Some studies are designed for a specific statistic

test of the test suite, while others aim to find a general improved method which is suitable for the whole

test suite.

For the first kind of studies, Hamano [8, 9] corrected the overlapping template matching test and ad-

justed the parameters used in “test for the longest run of ones in a block”. Fan et al. [10] adjusted the

freedom degree of the statistical value and the expected number of different lengths runs in runs distri-

bution test, which made the test more accurate. Chen et al. [11] studied the correlation of templates in

non-overlapping template matching test, and gave an effective selection strategy based on the correlation

of templates, making the number of templates reduced about 50%. Sýs et al. [12] improved the linear

complexity test by proposing a new version of the Berlekamp-Massey algorithm and the test efficiency is

effectively increased.

The second kind of studies aim to find a general method to improve the whole test suite. To improve the

test efficiency and practicability, some studies evaluate the correlations of different test items of the whole

test suite and give solutions to select the appropriate test items. Huang and Lai [13] used the conditional

entropy to construct a quantitative value for comparing the tests and proposed a basic method on how to

determine the tests’ optimal execution order. In [14], Fan et al. gave a general hypothesis testing method

to evaluate the correlation of statistical tests. And in [15], Sulak et al. defined the coverage efficiency of

a test suite which is used to determine the most efficient, the least efficient, and the optimal subsuites of

the NIST SP800-22 test suite. There also exists studies to improve the test accuracy and reliability by

1) Marsaglia G. The Marsaglia random number CD-ROM including the DieHard battery of test of randomness. 1995.
2) Caelli W, Dawson E, Nielsen L, et al. CRYPTCX statistical package manual, measuring the strength of stream and

block ciphers. 1992.
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correcting the errors in the two-level test. Pareschi et al. [16] indicated that the two-level test is sensitive

to the errors produced by the approximate computation of P-values. Furthermore, Pareschi et al. [6]

indicated a more accurate approximation of the cumulative distribution function (CDF) of P-values and

used it to compute the reliability conditions for the two-level test. In [17], Zhu et al. presented that using

the absolute value of the statistic to compute the P-value would impact the accuracy of the uniformity

test. They proposed to use Q-value, which is computed by the statistic value directly, to replace P-value.

And the theoretical proofs and experimental results showed that the reliability of the uniformity test is

improved when using Q-value.

In this paper, we prefer the first way and focus on improving the discrete Fourier transform (DFT)

test (known as the spectral test) in the NIST SP800-22 test suite. The DFT test is based on the binomial

distribution, and is an important test item of NIST SP800-22. It evaluates the randomness of a sequence

by detecting periodic features in the bit series. There are some related studies to improve the accuracy

of the DFT test. Hamano et al. [18, 19] pointed out the dependence of the spectrums, corrected the

threshold value from
√
3n to 1.7308 · · ·×√

n and indicated that the test statistic approximately followed

the normal distribution N(0, 0.5). Kim et al. [20] modified the value of the threshold and the variance,

which made the distribution of statistic more closer to the standard normal distribution. In [6], Pareschi et

al. further modified the value of the variance in the DFT test and the new distribution was more coherent

with experimental results. In [17], Zhu et al. used the Q-value to replace P-value when conducting the

uniformity test based on the DFT test, which made the DFT test is more accurate.

Our contribution. There exist several problems in the DFT test method. First, we find that the

sequences with good randomness which are generated by known good RNGs have a high rate to be rejected

in the standard NIST DFT test, when the sequences are long or the sequence number is large. This

phenomenon is caused by the deviation between the distribution of statistic and the normal distribution,

which leading to the unreliability of the two-level test. Although previous studies [6,17–20] tries to reduce

this deviation to improve the accuracy of two-level test, they cannot solve this problem completely for the

DFT test. Second, none of previous studies consider the actual performance issues of the DFT test. As the

DFT computation is time-consuming and the time complexity is nonlinear, the test time will significantly

increase along with the sequence length and the sequence number, which is unsuitable for some practical

application scenarios, such as fast test of very long sequences on ordinary computers. Although the

studies [13–15] for test items’ correlations could reduce the test time by appropriately selecting partial

test items, instead of performing the whole test items, they cannot fundamentally improve the test

efficiency of any specific test item, including the DFT test. Third, the DFT algorithm requires high

memory consumptions, previous DFT test methods have a high possibility to crash for long sequence

test, due to the memory limitations of ordinary computers. In fact, we find that the official DFT test

program of NIST SP800-22 and its corrections will always work abnormally on our experiment computer

(equipped with Intel i7 CPU and 8 GB RAM) when testing long sequences whose length is 108 or more

bits.

In this paper, we propose a new DFT test method to solve the above problems. Since there is a deviation

between the distribution of statistic and the normal distribution, we jump out of the old correction

ideas which focus on making the distribution of statistic closer to the standard normal distribution,

and construct a new statistic following the chi-square distribution, by dividing a sequence into several

subsequences. Through this correction, our two-level test is more reliable and the probability of rejecting

good RNGs is reduced. The test efficiency is also effectively improved. When applying our new DFT

method, the test efficiency has been increased to about 4 times for sequences with length 106 bits and 7

times for sequences with length 107 bits. Moreover, our method could reduce the memory consumptions

in the DFT test, thus could test longer sequences than previous methods on devices with the same

computing capabilities. So our method is more suitable for some practical application scenarios, such as

fast test of very long sequences (e.g., 108 and 109 bits) on ordinary computers. Our experiment result also

proves that our method could achieve these advantages without effectiveness sacrifice, i.e., our method

has nearly the same capability with the standard NIST method and its corrections to detect bad RNGs.

So our method has the same level ability to avoid false positive errors compared with previous studies.
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In a word, the new DFT test method we proposed has higher reliability in the two-level test, lower

probability of making errors, and is less time-consuming and memory-consuming.

Organization. The paper is organized as follows. In Section 2, we briefly introduce the one/two-level

test and present the procedure of the official DFT test in NIST SP800-22 [5] and its corrections. In

Section 3, we propose a new DFT test method for long sequences after analysing the errors in standard

NIST DFT test and the reliability in two-level test based on the official DFT test. In Section 4, we

conduct some experiments about our new DFT test method and give the comparisons with the previous

DFT test methods. In Section 5, we draw some conclusion.

2 Preliminaries

In this section, we briefly introduce the one/two-level statistical test based on hypothesis testing method.

We also present the standard DFT test in NIST SP800-22 [5] and the improved studies of it.

2.1 One-level (standard) test

In the one-level testing approach, a sequence of n bits is generated by the RNG under test and a P-value

p is computed using the assumed distribution of the statistical test. Compare the P-value p with the

significance level α:

• If p > α, H0 is accepted and the sequence generated by the RNG under test is regarded as random;

• If p 6 α, H0 is rejected and the sequence generated by the RNG under test is considered not random.

A RNG is considered perfect when its generated sequences are accepted by all test items in a statistical

test suite.

However, the test is sometimes not exact. There exist two kinds of errors [16]:

• Type I error. Reject H0 when the sequence is generated by a perfect RNG.

• Type II error. Accept H0 when the sequence is generated by a RNG that is not random.

The probability of type I error (denoted by α) is called level of significance. The value of α is usually

small. NIST suggests that α = 0.01.

It is well known that the one-level test is not reliable enough, i.e., sometimes a PRNG which is not

random enough can also pass the test. For example, if a RNG is not random, but the numbers of 0

and 1 in the sequence generated by the RNG are balanced, this non-random generator can also pass the

frequency test.

2.2 Two-level (second-level) test

Because of the unreliability of one-level test, the two-level test is proposed to improve the reliability of

statistical tests, which has been adopted by NIST SP800-22. In the two-level test, N sequences with

length n are generated by the RNG under test. The one-level test is repeated N times and N P-values

are obtained. There are two estimate ways to test the distribution of the N P-values.

(1) Passing proportion test. Focus on the passing ratio τ of the N P-values and judge whether the

passing ratio can be approximated with a normal random variable. When the P-value of a sequence is

equal or greater than α, the sequence is considered to have passed the test. Compute the passing ratio of

the N sequences. If N is large enough, τ can be approximated to a normal random variable whose mean

µ = 1 − α and standard deviation σ =
√

α(1 − α)/N . The passing proportion test is passed when the

ratio τ lies in the confidence interval defined as 1−α± 3σ. The parameter of significance level suggested

by NIST is α = 0.01.

(2) Uniformity test. Focus on the uniformity of N P-values and compare the distribution with the

uniform distribution by a chi-square goodness-of-fit test in k bins. The interval [0,1] is uniformly di-

vided into k bins. Compare the observed number Oj of P-values in each sub-interval with the expected

uniform number Ej = N/k. A statistic is computed by performing a chi-square goodness-of-fit test

χ2 =
∑k

j=1
(Ej−Oj)

2

Ej
and calculating a level-two P-value pT = igamc(k/2, χ2/2). Given a significance αT ,

the uniformity test is considered passed if pT > αT . NIST suggests that k = 10 and αT = 0.0001.
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The two-level test is passed only if both the passing proportion test and the uniformity test are passed.

A test item is considered to be passed if its two-level test is passed. A RNG is considered random if its

outputs pass all the included test items of a statistical test suite.

2.3 The DFT test in NIST SP800-22

The DFT test is based on the discrete Fourier transform and is used to find the deviation from the

assumption of randomness by detecting periodic features in the bit series [5]. The procedure of the DFT

test in NIST SP800-22 is as follows.

Let ε be the input binary sequence which is generated by a RNG. The length of ε is n. εi is the i-th

bit of the sequence ε, where i = 1, . . . , n. Convert the bits of sequence ε to the sequence X with values

of −1 and +1, as xi = 2εi − 1, 0 6 i 6 n− 1. Apply the discrete Fourier transform on {xi}n−1
i=0 to get a

sequence of complex numbers {fj}n−1
j=0 ,

fj =

n
∑

k=1

xke
2πi(k−1)j/n, (1)

where e2πikj/n = cos(2πkj/n)+i sin(2πkj/n), j = 0, . . . , n−1, and i ≡
√
−1. fj equals to fn−j because of

the symmetry of the real to complex-value transform, so only half of the complex numbers {fj}n/2−1
j=0 are

considered. Then calculate the modulus of {fj}n/2−1
j=0 and get a sequence of absolute values {|fj |}n/2−1

j=0 .

95% of the values {|fj|}n/2−1
j=0 should be less than a threshold value Th =

√

(log 1
0.05 )n. Let N1 be the

number of |fj | less than Th. N1 approximately conforms to a normal distribution. Let N0 = 0.95n/2,

which is the mean value µ of the normal distribution. And let the variance σ2 = 0.95 · 0.05 · n/c with

c = 4. The statistic d = (N1 −N0)/
√

n(0.95)(0.05)/4. So, the P-value is computed as

p = 2(1− Φ(d)) = erfc

( |d|√
2

)

. (2)

The test parameters NIST SP800-22 suggests are: sequence length n = 106, sequence number N = 1000.

There are several related studies to improve the accuracy of the official NIST DFT test method.

Pareschi et al. [6] modified the variance σ2 of the assumed normal distribution and corrected the value

of c from 4 to 3.8. The variance was modified from σ2 = 0.95 · 0.05 · n/4 to σ2 = 0.95 · 0.05 · n/3.8. The
experiments indicated that the new variance was more accurate.

Zhu et al. [17] replaced the P-value with Q-value when conducting the uniformity test. P-value is

computed by the absolute value of the statistic, while Q-value is computed by the statistic directly. When

using the Q-value, the test was proved to be more detectable and reliable. The Q-value is calculated as

q =
1

2
erfc

(

d√
2

)

. (3)

3 The new DFT randomness test

3.1 Error analysis of DFT test

According to the DFT test in NIST SP800-22, the number of |fj | less than the threshold value Th (denoted

as N1) approximately conforms to a normal distribution with mean µ = 0.95n/2 and variance σ2 =

0.95 · 0.05 · n/4. The statistic is computed on the approximate normal distribution of N1. However, after

carrying out a large number of experiments, we found that there is a deviation between the distribution

of N1 and the normal distribution, which is consistent with previous studies [19].

We conduct DFT tests using several known good RNGs and get the distributions ofN1. The experiment

results indicate that the probability distributions of N1 are not all perfectly in line with the normal dis-

tribution. For example, we apply discrete Fourier transform on 2×106 sequences whose length is 105 bits
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Figure 1 (Color online) Comparisons of theoretical and experimental distribution. (a) Probability distribution of normal

distribution; (b) experimental probability distribution of N1.

generated by the default good PRNG AES-256 [21] and the number of |fj | less than the threshold value

Th for each sequence is recorded. Then we get the probability distribution of N1 (shown in Figure 1(b)),

which has a little difference from the normal distribution in Figure 1(a). To show the comparisons of

distribution intuitively, we let µ, µ ± σ and µ ± 1.96σ be the cut-off points and divide the distribution

into six intervals. When n = 105, the expected distribution of N1 should be a normal distribution with

µ = 47500, σ = 0.95× 0.05× 100000/4≈ 34.5. Since the actual probability distribution of N1 is discrete,

we give the probability of N1 = 47500 individually.

Figure 1 presents the deviation between the distribution of N1 and the normal distribution. The

probability distribution ofN1 is not completely symmetric as the normal distribution. And the probability

of each interval for N1 is different from the normal distribution. The standard NIST DFT test [5] assumes

that the distribution ofN1 conforms to the normal distribution, which is not accurate. When the sequence

under test is long or the number of sequences is large, the deviation will be more obvious. The deviation

further leads to the approximation error in the computation of P-values. So some sequences generated

by RNGs with good randomness cannot pass the standard NIST DFT test.

3.2 Reliability analysis of two-level test

It is well known that the two-level test is not reliable since the known good RNGs always fail in the

two-level test when sequence number N is extremely large [6, 7]. This is due to the approximation error

in the computation of P-values, which is caused by the deviation between the distribution of the test

statistics and the normal distribution. To ensure the reliability of the two-level test, we must derive the

error between the approximated P-value p and the actual one p0. We can compute the upper threshold

of N by giving a boundary of the error. The two-level test is considered reliable when N is smaller than

its upper threshold.

To give the reliability condition of two-level testing approach, Pareschi et al. [6] proposed a more

accurate approximation of the CDF of P-values (presented as Eq. (4)), which is fit for all tests based

on binomial distribution in NIST SP800-22. He also gave the error between the level-two P-value pT
calculated by the approximated CDF of P-value and the level-two P-value pT0

calculated by the more

accurate CDF.

F ′
p(x) = x+ 2d(x)z(

√
2σ2erfc−1(x)). (4)

The definition of d(x) and z are

d(x) =
1√
2πσ2

e−(erfc−1(x))
2

,
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Table 1 The upper threshold values of sequence number

Length
Passing proportion test Uniformity test

DFT (c = 4) DFT (c = 3.8) DFT (c = 4) DFT (c = 3.8)

10000000 12312 6228 2878 4134

1000000 584 99 345 191

100000 32 13 25 35

10000 2 3 2.47 2.84

1000 0.16 0.15 0.26 0.26

z(ξ) =































ξ(mod 1), ξ(mod 1) < min(ψ, 1− ψ);

ξ(mod 1) −
1

2
, min(ψ, 1− ψ) < ξ(mod 1) < max(ψ, 1− ψ);

ξ(mod 1) − 1, ξ(mod 1) > max(ψ, 1− ψ);

lim
x→ξ−

z(x), otherwise.

For the passing proportion test of two-level test, assuming f1−α(x) = dF1−α(x)/dx, the error between

pT and pT0
is given as

pT − pT0
≃ −

√
Nf1−α(F

−1
1−α(1 − pT0

))|F ′
p(α) − α|, (5)

where F1−α(θ0) = 1− erfc(
|Nτ−N(1−F ′

p(α))|√
2Nα(1−α)

) with θ0 =
√
N |τ − (1 − F ′

p(α))|.
Similarly, for the uniformity test, assuming fχ2(x) = dFχ2 (x)/dx, the error between pT and pT0

is

given in

p′T − pT0
≃ −fχ2

(

F−1
χ2 (1− pT0

)
)

NCχ2 , (6)

where Cχ2 = k
∑k

j=1 (F
′
p(

j
k )− F ′

p(
j−1
k )− 1

k )
2
, Fχ2(χ2) = γ((k−1)/2;χ2/2)

Γ((k−1)/2) , γ(k;x) is the incomplete gamma

function and Γ(k) is the complete gamma function.

The equations of error given by Pareschi et al. [6] are proper for all tests based on the binomial

distribution in NIST SP800-22. We can give the reliability condition of DFT test with two-level testing

approach since the DFT test is based on the binomial distribution. Given a boundary of the error between

pT and pT0
, we can get the upper threshold of sequence number N .

The assumptions are given as follows:

(1) For the passing proportion test, let α = 0.01 and the maximum error of the two-level P-value

|p′T−pT0
| < 0.01, where 0 6 pT0

6 1.

(2) For the uniformity test, the maximum error of the two-level P-value |p′T−pT0
| < 0.01 and 0 6 pT0

6 1

using k = 10 bins.

According to the assumptions, we calculated the upper threshold values of the sequence number N for

standard NIST DFT test with c = 4 [5] or c = 3.8 [6]. The upper threshold values are shown in Table 1.

Theoretically, the two-level test is unreliable when the number of sequences under test is larger than the

upper threshold values. So sequences with good randomness cannot always pass the passing proportion

test and the uniformity test, which is consistent with our experiment results: PRNG AES-256’s output

sequences with test parameters n = 107 and N = 30000 and PRNG SHA-512’s [22] output sequences

with test parameters n = 106 and N = 100000 cannot pass the two-level test based on the NIST DFT

test. The upper threshold values in Table 1 will be used as a reference baseline to decide the sequence

number of our experiments detailed in Subsection 4.1.

3.3 New construction of DFT test statistic

Previous studies for the DFT test always focus on making the distribution of statistic closer to the normal

distribution. After analysing the approximation error and the reliability of the DFT test in NIST SP800-

22, we decide to jump out of the old correction idea and reconstruct the statistic to follow the chi-square

distribution. To achieve this, we divide the input sequence into short sub-sequences with the same length

m. We apply the discrete Fourier transform on every sub-sequence and record the number of |fj | less
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than the threshold value Th for every sub-sequence. Then we can get the distribution of N1. The statistic

is calculated by comparing the experimental distribution of N1 with the expected distribution using a

chi-square goodness-of-fit test in k bins.

To construct the expected distribution, we need first figure outK+1 specific ratio intervals ofN1/m. In

Subsection 3.1, we compare the distribution of N1 with normal distribution by dividing the distribution

into six intervals. Similarly, we also let µ ± σ and µ ± 1.96σ be the cut-off points where µ = m/2,

σ = 0.95×0.05×m/4. Since the distribution of N1 is discrete and the probability of each interval cannot

be too small3), we add µ ± 0.06σ as the cut-off points. So the distribution of N1 is divided into seven

intervals: [0, µ− 1.96σ], (µ − 1.96σ, µ− σ], (µ − σ, µ− 0.06σ], (µ− 0.06σ, µ+ 0.06σ], (µ+ 0.06σ, µ+ σ],

(µ + σ, µ + 1.96σ], (µ + 1.96σ,m/2]. Given the value of m, we can calculate the K + 1 specific ratio

intervals of N1/m with K = 6. For example, let m = 100000, then µ = 47500, σ ≈ 34.5. Seven intervals

of N1/m are as follows: [0, 0.47432], [0.47433, 0.47465], [0.47466, 0.47497], [0.47498, 0.47502], [0.47503,

0.47534], [0.47535, 0.47567], [0.47568, 0.5].

Then we need to figure out the expected probability of N1/m in each interval. For a specific sub-

sequence length m, we use known-good RNGs to generate large numbers of m-bit sequences and get the

distribution of N1 by applying the discrete Fourier transform on every m-bit sequence. Since the RNGs

are all known-good, the N1 distribution can be used as the expected one. And the larger the sequence

number is, the more accurate the expected distribution will be. Then the expected probability of N1/m in

each interval can be calculated. For example, we use PRNG AES-256 to generated 200 million sequences

with length 100000 bits and apply the discrete Fourier transform on them. Then, for m = 100000, we can

get the probability of N1/m in each interval. We repeat this experiment with different known-good RNGs

and a set of probability of N1/m in each interval is obtained. Then we can analyse the distributions of

N1 for these RNGs and finally get an expected probability of N1/m in each interval.

We give a length set {1000, 10000, 100000} of the sub-sequences to satisfy the test of long sequences

with different lengths. The expected probability πr (0 6 r 6 K) of each interval for different subsequence

lengths are shown in Table 2. Through our correction, the deviation between the distribution of statistic

and the expected distribution is reduced, making the two-level test more reliable. What’s more, our

method to divide the input sequence also reduces the test time and memory consumptions. These

advantages will be detailed in Section 4.

3.4 The new DFT test procedure

According to the new construction of statistic, we propose a new DFT randomness test for long sequences

(106 or more bits). The symbols and their definitions are shown in Table 3.

The procedure of the new DFT test is as follows:

(1) For a n-bit binary sequence ε. Uniformly divide the sequence ε into M subsequences, each

one’s length is m bits, where m ×M = n, M > 200, m > 1000, and the value of m is in the range

{1000, 10000, 100000}. Si is the i-th subsequence, 0 6 i 6 M − 1. sij is the j-th bit of the subsequence

Si, 0 6 j 6 m− 1.

(2) For each subsequence Si, 0 6 i 6 M − 1, convert it to subsequence Zi, as zij = 2sij − 1,

0 6 i 6M − 1, 0 6 j 6 m− 1.

(3) Apply the discrete Fourier transform on {Zi}M−1
i=0 and get M subsequences {fi}M−1

i=0 of complex

numbers, fij is the j-th bit of fi.

fij =

m
∑

t=1

zite
2πi(t−1)j/m, (7)

where e2πitj/m = cos(2πtj/m)+ i sin(2πtj/m), j = 0, . . . ,m− 1, 0 6 i 6M − 1 and i ≡
√
−1. Because of

the symmetry of the real to complex-value transform, only half of the complex numbers {fij}m/2−1
j=0 are

considered in each subsequence.

3) According to the required sample size of chi-square test, the expected frequency of every interval should be equal to

or larger than 5.
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Table 2 The expected proportions in each intervals for sequences of different lengths

Sub-sequence length m Interval Probability πr

[0, 0.468] 0.034601

[0.469, 0.471] 0.126173

[0.472, 0.474] 0.278188

1000 0.475 0.112357

[0.476, 0.478] 0.287042

[0.479, 0.481] 0.130616

[0.482, 0.5] 0.031023

[0, 0.4728] 0.027910

[0.4729, 0.4739] 0.145946

[0.4740, 0.4749] 0.306825

10000 0.4750 0.035620

[0.4751, 0.4760] 0.309415

[0.4761, 0.4771] 0.147452

[0.4772, 0.5] 0.026832

[0, 0.47432] 0.028502

[0.47433, 0.47465] 0.136399

[0.47466, 0.47497] 0.306491

100000 [0.47498, 0.47502] 0.056363

[0.47503, 0.47534] 0.307504

[0.47535, 0.47567] 0.136647

[0.47568, 0.5] 0.028094

Table 3 Symbols of new DFT test

Symbol Description

n The test sequence length, n > 106

N The test sequence number

m The sub-sequence length, m ∈ {1000, 10000, 100000}
M The sub-sequence number, M > 200

Si The i-th subsequence, 0 6 i 6 M − 1

sij The j-th bit of the subsequence Si, 0 6 j 6 m− 1

fi The complex sequence after applying the discrete Fourier transform on Si

fij The j-th bit of sequence fi

Ni1 The number of |fij | less than Th

vr The number of Ni1/m belonging to the i-th interval

πr The expected probability of each interval for different subsequence lengths

(4) For each subsequence Zi, 0 6 i 6M − 1, compute the modulus of {fij}m/2−1
j=0 and getM sequences

of absolute values |fij |, 0 6 i 6M − 1, 0 6 j 6 m/2− 1.

(5) Compare the values |fij | (0 6 i 6 M − 1, 0 6 j 6 m/2 − 1) with the threshold value Th =
√

(log 1
0.05 )m. For each subsequence Si, 0 6 i 6M − 1, let Ni1 be the number of |fij | less than Th.

(6) For different subsequence length m, the proportion Ni1/m is different. K + 1 (K = 6) specific

ratio intervals of Ni1/m for different subsequence lengths are given. Let vr, 0 6 r 6 K be the number

of Ni1/m belonging to the r-th interval. Compute the probability of Ni1/m falling into the interval and

compare it with the expected probability. The expected probabilities πr, 0 6 r 6 K of each interval for

different subsequence lengths are shown in Table 2.

(7) Compute a test statistic:

X2 =

K
∑

r=0

(vr −Mπr)
2

Mπr
. (8)

Under the randomness hypothesis, X2 approximately follows the X2-distribution with K degrees of
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freedom. When using the X2-distribution, a conservative condition is that M minr πr > 5. So M should

exceed 200.

(8) Compute the P-value:

p =

∫∞

X2(obs)
e−u/2uK/2−1du

Γ(K/2)2K/2
= igamc

(

K

2
,
X2(obs)

2

)

. (9)

If p > α, then ε is accepted as random. Otherwise, ε is considered non-random. α is the significance

level whose value is suggested as 0.01 by NIST SP800-22. Here we also define α = 0.01.

The algorithm pseudocode for the new DFT test is shown in Algorithm 1.

Algorithm 1 The new DFT test procedure for long sequences

Require: A binary sequence ε; the length of the input sequence n; the length of a sub-sequence m, m ∈ {1000, 10000,
100000}; K + 1 specific ratio intervals of Ni1/m for different subsequence lengths; the expected probabilities of each

interval, πr , 0 6 r 6 K.

Ensure: P-value, p.

1: M = n/m;

2: if M < 200 then

3: return The choice value of m is too big;

4: else

5: Let Si be the i-th subsequence, 0 6 i 6 M − 1 and sij is the j-th bit of the subsequence Si, 0 6 j 6 m− 1;

6: for i = 0 to M − 1 do

7: for j = 0 to m− 1 do

8: zij = 2sij − 1;

9: Apply the discrete Fourier transform on zij , i ≡
√
−1;

10: fij =
∑m

t=1 zite
2πi(t−1)j/m;

11: end for

12: for j = 0 to m/2− 1 do

13: Compute the modulus of fij ;

14: end for

15: Th =
√

(log 1
0.05

)m;

16: Let Ni1 be the number of |fij | less than Th;

17: end for

18: for r = 0 to M − 1 do

19: Count the number of Ni1/m belonging to the r-th interval, vr ;

20: end for

21: Compute a test statistic: X2 =
∑K

r=0
(vr−Mπr)

2

Mπr
;

22: Compute the P-value: p = igamc(K
2
, X2(obs)

2
);

23: return p;

24: end if

Then we conduct the two-level test based on the new DFT test procedure. First perform the algorithm

for N sample sequences {ε1, ε2, . . . , εN} and get N P-values. Conduct the two-level test with the N

P-values, the detail test procedure is shown in Subsection 2.2. When the passing proportion test and

the uniformity test of the two-level test are all passed, the RNG that generates the input sequences is

concluded to be good.

4 Experiment results

In this section, we first conduct some comparison experiments to evaluate the accuracy and efficiency of

our method with other three methods: the official DFT test in NIST SP800-22 (c = 4) [5], DFT test

corrected by Pareschi et al. (c = 3.8) [6], and DFT test corrected by Zhu et al. [17] (using Q-value to

replace P-value in the uniformity test). Moreover, as our method effectively reduces the test time and

the memory consumptions, we also carry out experiments for long sequences (108 and 109) test, which

usually cannot be done by previous methods [5, 6, 17] on ordinary computers, due to the limitations

of computation ability and memory capacity. The experiment result shows that our method has lower

probability of making type I errors, the same ability to avoid type II errors and requires less test time
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Table 4 Detail information of sequences

PRNG Length Number

AES-256
1000000 100000

10000000 30000

SHA-512
1000000 100000

10000000 30000

Table 5 Comparisons of passing proportion

Sequence length Number Lower limit PRNG DFT test Passing ratio

1000000 100000 0.98906

NIST (c = 4) [5] 0.98790

AES-256 NIST (c = 3.8) [6] 0.99010

Ours (m = 1000) 0.98990

NIST (c = 4) [5] 0.98810

SHA-512 NIST (c = 3.8) [6] 0.98990

Ours (m = 1000) 0.98997

10000000 30000 0.98828

NIST (c = 4) [5] 0.98760

AES-256 NIST (c = 3.8) [6] 0.99000

Ours (m = 1000) 0.99010

Ours (m = 10000) 0.98960

SHA-512
NIST (c = 4) [5] 0.98863

NIST (c = 3.8) [6] 0.99050

Ours (m = 1000) 0.98990

Ours (m = 10000) 0.98950

and memory consumptions. So our method has higher reliability in two-level test and is more suitable in

practical application scenarios.

4.1 Comparison experiments for occurrence of type I errors

We first evaluate our method’s accuracy to avoid type I errors. We use known good PRNGs (AES-

256 and SHA-512) to generate binary sequences with good randomness. The detail information of the

output sequences is shown in Table 4. These sequences are used to perform the two-level tests using the

four DFT methods described above. Note that the sequence numbers we choose are all larger than the

upper threshold values in Table 1. As explained in Susbection 3.2, the larger than the upper threshold

values the sequence number is, the higher the probability of errors occurring in two-level test will be. As

presented in [6], the two-level test is relatively unreliable when the sequence number is larger than 10000

bits. To highlight the reliability advantages of our method against the other three methods, we choose

larger sequence numbers to perform our experiments. Similarly, the sequence length in the comparison

experiments is also large (106 and 107), as the error probability will increase along with the sequence

length.

4.1.1 Comparisons of passing proportion

For the passing proportion test, the significance level α is set to 0.01. We conduct experiments of our

DFT test method and the standard NIST DFT test using c = 4 and c = 3.8 separately. The passing

ratios of sequences generated by PRNG AES-256 and SHA-512 are presented in Table 5.

If the passing ratio is larger than the lower limit, the passing proportion test is passed. We highlight

the passing ratio values less than the lower limit in Table 5. Since the passing ratio value of 30000

SHA-512 output 10000000-bit sequences is only a little larger than lower limit, we also highlight this

value. As shown in Table 5, when the sequences are long and the sequence number is large, the sequences

do not pass the standard NIST DFT test with c = 4 [5], but pass the DFT test with c = 3.8 [6] and

our method. This means that in the passing proportion test, our DFT test method is more reliable

than the DFT test with c = 4 [5], thus reducing the probability of occurrence of type I errors. Also, our
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Table 6 Comparisons of uniformity (n = 106, N = 105)

PRNG DFT test P/Q P-value pT

AES-256

NIST (c = 4) [5]
P-value 0.000000

Q-value [17] 0.000000

NIST (c = 3.8) [6]
P-value 0.000000

Q-value [17] 0.012646

Ours (m = 1000) 0.659908

SHA-512

NIST (c = 4) [5]
P-value 0.000000

Q-value [17] 0.000000

NIST (c = 3.8) [6]
P-value 0.000000

Q-value [17] 0.043125

Ours (m = 1000) 0.250616

method has consistent accuracy with the DFT test with c = 3.8 [6]. However, as shown in Subsections 4.3

and 4.4, our method is more efficient, and requires less memory consumptions than the DFT test with

c = 3.8 [6], thus is more suitable for practical application scenarios.

4.1.2 Comparisons of uniformity

In the uniformity test, we use sequences whose length and number is 106 and 105. We set k = 10 and

the significance level αT = 0.0001 according to the suggestion of NIST. Since Zhu et al. [17] replaced

the P-values with Q-values to improve the reliability of the uniformity test, our comparison experiments

include five methods: the NIST DFT test (c = 4) using P-value, the NIST DFT test (c = 4) using

Q-value, the NIST DFT test (c = 3.8) using P-value, the NIST DFT test (c = 3.8) using Q-value, and

our method. Then we can carry out the uniformity test with the P-values and Q-values and obtain the

level-two P-values pT of the five methods. The experiment results are shown in Table 6.

Note that the larger the pT is, the more uniformity the P-values or Q-values will have. If the pT is

smaller than the significance level αT , the uniformity test is not passed. So in Table 6, we highlight

all the level-two P-values pT smaller than 0.0001. According to the test results, the NIST DFT test

using P-values with c = 4 or c = 3.8, the NIST DFT test using Q-values with c = 4 all fail to pass the

uniformity test, although AES-256 and SHA-512 are known good PRNGs (thus occurring type I errors),

while the NIST DFT test using Q-values with c = 3.8 and our method both pass the uniformity test. So

our method is more reliable than the first three methods in the uniformity test.

To further exhibit our method’s uniformity advantage, we compare the probability of Q-values with

c = 3.8 [6] and P-values of our method in each sub-interval (K = 10, n = 106), and present the

comparisons in Figure 2. From Figure 2, the uniformity of Q-values with c = 3.8 is not good enough.

We prove that the distribution of N1 has a deviation from the normal distribution in Subsection 3.1.

So no matter P-values or Q-values computed by the statistic based on the normal distribution all have

approximation errors. The larger the sequence number is, the more obvious the errors will be. Compared

with P-value in the original NIST method, Q-value has reduced the computation error, but it cannot

ensure the accuracy of the uniformity test when the sequence number is extremely large. In contrast,

P-values of our method based on chi-square distribution have better uniformity, which is more consistent

with the fact that AES-256 and SHA-512 are known good PRNGs. We conclude that our method is more

reliable than other DFT test methods in the uniformity test.

4.2 Comparison experiments for occurrence of type II errors

As described above, our method has a lower probability to cause type I (false negative) errors than

origin NIST DFT test [5] and its corrections [6, 17] do. In these subsections, we also conduct several

contrast experiments to prove our method’s correctness to avoid type II (false positive) errors, i.e., to

ensure that RNGs with bad randomness cannot pass our DFT test. We use three different types of

non-random sequences to perform DFT tests through our method, the standard NIST method (c = 4)

and its correction work (c = 3.8) [6] separately. As NIST SP800-22 suggests, the test parameters we
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Figure 2 (Color online) Comparisons of probability in each sub-interval (K = 10, n = 106).

Table 7 Comparisons to detect type II errors for periodic sequences

Sequence length Sequence period Sequence number Lower limit DFT test method Passing ratio

NIST (c = 4) 0.00000

1000000 100000 1000 0.98056 NIST (c = 3.8) 0.00000

Ours (m = 1000) 0.00000

used are: sequence length n = 106, sequence number N = 1000. The experiment results prove that our

method has at least the same capability with the standard NIST method and its corrections to avoid

type II errors.

Non-random sequences with periodic components. As the DFT method evaluates the ran-

domness of a sequence by detecting periodic features in the bit series, we first evaluate the accuracy of

our method using non-random sequences with periodic components. We use a loop method to generate

sequences with specific length and period. For example, for length n = 106 and period P = 105, we first

use one well-known good PRNG (e.g., AES-256 in our experiments) to generate a random subsequence

of length 105, as a periodic component. Then we repeat the subsequence 10 times, link them together,

and finally obtain a non-random 106 sequence whose period is 105. The comparison experiment results

are given in Table 7. As the results show, the passing ratios of the three test methods are all lower than

the lower limit. So all the sequences fail to pass the passing proportion test based on our method and

other methods, thus proving that our method has at least the same accuracy with the standard NIST

method to avoid type II errors for non-random RNGs with periodic features.

Non-random sequences based on linear congruence. We evaluate our method using the standard

random function rand() in the C library. This function is based on linear congruence and is generally

considered as a PRNG called LCG whose randomness is not good enough. The comparison experiment

results using sequences of rand() are given in Table 8. As the results show, the passing ratios of the three

test methods are all lower than the lower limit. So all the sequences fail to pass the passing proportion

test of our method and the other methods, which is consistent with the fact that the randomness of LCG

sequences is not good enough.

Non-random sequences based on inappropriate AES encryption. We also evaluate our method

using inappropriate AES encryption as a PRNG. Due to the encryption properties of the AES algorithm,

using inappropriate parameters will impact the security of the entire encryption procedure. So the

randomness of the output ciphertext will not be good enough. We perform AES encryption on several

normal files using insecure parameters, i.e., using a wrong S-Box whose outputs are all zero bits, an
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Table 8 Comparisons to detect type II errors for linear congruence generator rand()

Sequence length Sequence number Lower limit DFT test method Passing ratio

NIST (c = 4) 0.00000

1000000 1000 0.98056 NIST (c = 3.8) 0.00000

Ours (m = 1000) 0.00000

Table 9 Comparisons to detect type II errors for inappropriate AES encryption

Sequence length Sequence number Lower limit DFT test method Passing ratio

NIST (c = 4) 0.86600

1000000 1000 0.98056 NIST (c = 3.8) 0.86800

Ours (m = 1000) 0.85900

Table 10 Comparisons of test time

Sequence length DFT test Test time (s)

1000000
NIST SP800-22 [5] 1.95

Ours (m = 1000) 0.48

NIST SP800-22 [5] 16.88

10000000 Ours (m = 1000) 2.278

Ours (m = 10000) 2.424

incomplete encryption round number (2 rounds) and the ECB encryption mode. The output ciphertext

sequences are used to conduct our comparison DFT tests. As the experiment results in Table 9 show, the

passing ratios of the three test methods are all lower than the lower limit. So the sequences fail to pass

the passing proportion test of both our method and the other methods, thus proving that our method

has nearly the same accuracy with the standard NIST method to avoid type II errors for PRNG using

inappropriate AES encryption.

Summary. To make our work more comprehensive and persuasive, we have conducted our comparison

experiments to detect type II errors using different types of non-random sequences. The experiment results

are all consistent with our conclusion, i.e., our method has nearly the same accuracy with the standard

NIST method and its correction works to avoid type II errors for PRNG with poor randomness.

4.3 Comparisons of test efficiency

For sequences with length 106 and 107, we do the experiments using the standard NIST DFT test

(c = 4) [5] and our DFT test method. Since the computation complexity of DFT test using c = 3.8 [6],

DFT test using Q-value in the uniformity test [17] and the standard NIST DFT test (c = 4) [5] are almost

the same, the test times of them are similar. We only record the test time of the standard NIST DFT

test as a representation. The comparisons of test time for one sequence are shown in Table 10.

The test time of our new DFT test is significantly less than the other three methods. This is because

the time complexity of DFT computation is non-linear. The test time will significantly increase along

with the sequence length. The total time in our method to perform discrete Fourier transform to every

divided subsequence separately is much smaller than performing one discrete Fourier transform to the

whole sequence in other methods. For 106-bit sequences, the test efficiency is increased to about 4 times.

For 107-bit sequences, the test efficiency is increased to about 7 times. So our new DFT test method

could effectively improve the test efficiency of previous methods.

4.4 Experiments for long sequences (108 and 109 bits)

As the DFT algorithm requires high memory capacity, previous DFT test methods have a high possibility

to crash for long sequence test, due to the memory limitations of ordinary computers. In fact, we find that

the official DFT test program of NIST SP800-22 and its corrections will always work abnormally on our

experiment computer (equipped with Intel i7 CPU and 8 GB RAM) when testing long sequences whose

length is 108 or more bits. By analysing the source code of the official NIST DFT test program, when
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Table 11 Experiment results for long sequences

PRNG Sequence length Number Lower limit m Passing ratio P-value pT Test time (s)

AES-256

1000 0.99400 0.026948 20.14

100000000 1000 0.98056 10000 0.98900 0.841226 22.515

100000 0.98800 0.189625 25.74

1000 0.98500 0.176657 230.7

1000000000 200 0.96889 10000 0.99000 0.554420 234.4

100000 0.98000 0.911413 271.5

SHA-512

1000 0.99200 0.191687 20.14

100000000 1000 0.98056 10000 0.98200 0.686955 22.515

100000 0.98900 0.340858 25.74

1000 0.98500 0.605916 230.7

1000000000 200 0.96889 10000 0.99500 0.025193 234.4

100000 0.99000 0.930026 271.5

the sequence length is 108, about 1.3 GB memory is required to store the sequence and the intermediate

states of the DFT computations, which is much larger than the memory capacity common commercial

operating systems (e.g., Windows and Linux) could offer to one single program on ordinary computers.

This phenomenon will impact the practicability of previous methods, because for evaluating the quality

of a RNG, the longer the sequence generated by the RNG in one single test is, the more accurate the

test result will be. In contrast, our method effectively reduces the memory consumptions in one DFT

test, by dividing an sequence into several subsequences. So our method could test longer sequences than

previous methods on devices with the same computing capabilities.

To prove this, we conduct DFT tests of our method for sequences with length 108 and 109 bits on the

same experiment computer, using different subsequence lengths. The test results are given in Table 11,

which shows that long sequences can be tested normally by our method. The passing ratios are larger

than the lower limit and the P-values of uniformity test are bigger than the significance level αT = 0.0001,

which means that the sequences generated by PRNG AES-256 and SHA-512 passed the test. This result

is consistent with the recognized good randomness of the PRNG AES-256 and SHA-512, so our method

can ensure the accuracy of the test. Furthermore, the test times are all in the acceptable range. In

conclusion, our method has stronger capability to test long sequences, hence is more suitable for practical

application scenarios.

5 Conclusion

There exist accuracy issues in previous DFT random test methods, leading to a high probability of making

type I (false negative) errors when the tested sequences are long or the sequence number is large. The

large test time and high memory consumptions of the complex DFT test algorithm also seriously affect

its practicability, which is not considered and solved in previous studies. In this paper, we propose a

new DFT test method for long sequences (106 or more bits). Different from previous studies focusing

on making the distribution of statistic closer to the normal distribution, we reconstruct the statistic to

follow the chi-square distribution by dividing a long sequence into short sub-sequences. Our experiment

results show that our new DFT test method has higher reliability in two-level test, lower probability of

making type I errors and nearly the same accuracy with previous methods to avoid type II errors. The

test time and memory consumptions are also effectively reduced, making our method more suitable for

practical application scenarios, such as fast test for very long sequences on ordinary computers. In the

future, we will give more choice of subsequences length, improve our construction algorithm to reduce

the probability of making type II errors and improve the capability of our DFT test method.
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15 Sulak F, Uğuz M, Koçak O, et al. On the independence of statistical randomness tests included in the NIST test suite.

Turk J Electric Eng Comput Sci, 2017, 25: 3673–3683

16 Pareschi F, Rovatti R, Setti G. Second-level testing revisited and applications to NIST SP800-22. In: Proceedings of

the 18th European Conference on Circuit Theory and Design, 2007. 627–630

17 Zhu S Y, Ma Y, Lin J Q, et al. More powerful and reliable second-level statistical randomness tests for NIST SP

800-22. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information

Security, 2016

18 Hamano K, Satoh F, Ishikawa M. Randomness Test Using Discrete Fourier Transform. Technical Report 6841, 2003

19 Hamano K. The distribution of the spectrum for the discrete Fourier transform test included in SP800-22. IEICE

Trans Fund Electron Commun Comput Sci, 2005, 88: 67–73

20 Kim S J, Umeno K, Hasegawa A. Corrections of the NIST statistical test suite for randomness. 2004.

https://eprint.iacr.org/2004/018.pdf

21 Daemen J, Rijmen V. The Design of Rijndael: AES – the Advanced Encryption Standard. Berlin: Springer, 2002

22 U.S. Department of Commerce. Secure Hash Standard - SHS: Federal Information Processing Standards Publication

180-4. Charlestone: CreateSpace Independent Publishing Platform, 2012

https://doi.org/10.1145/945511.945515
https://doi.org/10.1007/s11432-011-4401-x
https://doi.org/10.1109/TIFS.2012.2185227
https://doi.org/10.1093/ietfec/e90-a.9.1788
https://doi.org/10.1049/el.2015.3097
https://doi.org/10.1049/el.2016.0260
https://doi.org/10.1145/2988228
https://doi.org/10.3906/elk-1605-212
https://doi.org/10.1093/ietfec/e88-a.1.67

	Introduction
	Preliminaries
	One-level (standard) test
	Two-level (second-level) test
	The DFT test in NIST SP800-22

	The new DFT randomness test
	Error analysis of DFT test
	Reliability analysis of two-level test
	New construction of DFT test statistic
	The new DFT test procedure

	Experiment results
	Comparison experiments for occurrence of type I errors
	Comparisons of passing proportion
	Comparisons of uniformity

	Comparison experiments for occurrence of type II errors
	Comparisons of test efficiency
	Experiments for long sequences (108 and 109 bits)

	Conclusion

