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Abstract Software defined networks (SDNs) are innovative network frameworks that have recently received
wide attention. Their programming flexibility facilitates automatic network management and control, thus
mitigating existing issues in the traditional network architecture. However, SDNs face several security risks,
in particular denial-of-service (DoS) attacks, the most common and serious network attacks. To address
such a threat, an SDN-DoS attack detection method is proposed based on fusing multiple flow features for
describing the network catastrophe between the normal and the attack state. Several statistic attributes of
SDN flow information are first chosen as detection features; subsequently, the cusp model is used to establish
a catastrophe equilibrium surface for SDN states. After being trained, the cusp catastrophe model can be
utilized to infer whether an SDN is under DoS attack. The experimental results demonstrate that the method
can effectively and timely perceive SDN-DoS attacks, not only in simple networks but also in larger enterprise

networks.

Keywords DoS attacks, software defined network, flow features, cusp model, equilibrium surface

Citation Guo Y, Miao F, Zhang L. C, et al. CATH: an effective method for detecting denial-of-service attacks in
software defined networks. Sci China Inf Sci, 2019, 62(3): 032106, https://doi.org/10.1007/s11432-017-9439-7

1 Introduction

Software defined networks (SDNs) represent one of the most widely used software-based network ar-
chitecture and have loosely coupled control and data planes. They support centralized network state
control, and their underlying facilities are transparent to upper layer applications [1,2]. Their program-
ming flexibility facilitates automatic network management and control, thus mitigating existing issues in
the Internet, such as inflexibility in network reorganization and resource expansion. Accordingly, SDN-
related technologies and businesses have rapidly developed over the past few years and have been widely
deployed in various network environments, such as backbone networks, data centers, enterprise networks,
and mobile networks.

The centralized control mechanism and open programming interface of SDNs have increased the flexi-
bility of network management and operation. However, they also provide new and greater opportunities
for network attacks [3]. Specifically, the centralized management structure causes all network “intelli-
gence” to concentrate on the controllers. Once some controllers fail or their service capacity declines,
the performance of the global network is seriously affected. Currently, the most common and effective
attacks on SDNs are denial-of-service (DoS) or distributed denial-of-service (DDoS) attacks from the
data plane. Henceforth, these will be called SDN-DoS attacks. The attacks presented in [4,5] are two
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Table 1 Typical SDN-related DoS attack detection mechanisms

Corresponding scenario DoS detection method Basic principle

Using SYN proxy based module to verify the legality of each
flow.

Utilizing the real-time rate of PACKET_IN messages and the
FloodGuard [9] infrastructure (controller memory and CPU) to identify po-
tential flooding attacks.

AvantGuard [8]

DoS detection in SDN

Entropy-based methods Identifying attacks by comparing the values of selected flow
[10,11] features with their preset values.

SOM-based methods Using the self-organizing map machine learning technique for
[12,13] detecting SDN-aimed DoS attacks.

Using the OpenFlow technology as a flow regulation tool to
Fresco [14,15] monitor traffic.

SDN for DoS detection VAVE [16] Utilizing the SDN architecture to validate source addresses.
Using the flexibility of SDN to steer suspicious traffic through
Bohatei [17] the defense VMs while minimizing user-perceived latency and

network congestion.

typical SDN-DoS attacks. They are based on sending a large number of carefully constructed data flows
to a target SDN. As the OpenFlow [6] switches in the target SDN have no flow table entry to match
those malicious flows, they will send PACKET_IN messages to SDN controllers to obtain suitable for-
warding rules. That is, the controllers should generate and publish new rules to the switches by sending
PACKET_OUT messages. Obviously, if there is an overly large number of un-matched flows, both the
storage and computing resources of the controllers will be rapidly consumed, as well as the connection
resources between the controllers and the switches. As a result, most normal forwarding requests will be
rejected. In this case, the SDN is in a denial-of-service state.

There are several effective DoS/DDoS attack detection solutions for traditional networks. However,
little research has been conducted on SDN-DoS attack detection [7]. Typical SDN-related DoS attack
detection mechanisms are summarized in Table 1. AvantGuard [8] introduced an SYN proxy based
module to verify the legality of each flow based on TCP handshake. FloodGuard [9] used both the
real-time rate of PACKET_IN messages and the infrastructure (such as buffer memory and CPU) to
identify flooding attacks based on a certain anomaly threshold. Giotis et al. [10] proposed an entropy-
based anomaly detection method implementing the sFlow technology to collect traffic. Mousavi et al. [11]
proposed using the central control of SDNs for attack detection and introduced an entropy-based solution.
These entropy-based methods have the advantage of flexible configuration and convenient computation;
however, expert experience is required for determining the threshold and assigning weight values to
key factors, which puts high demands on users. Braga et al. [12] used a self-organizing map (SOM)
machine learning technique for detecting SDN-DoS attacks. Yao et al. [13] proposed an SDN-DoS attack
detection method based on object features using the growing hierarchical SOM (GSHOM) technology.
Common problems in SOM-based methods are slow convergence and long training time under suboptimal
conditions. Shin et al. [14,15] used the OpenFlow technology as a flow regulation tool to monitor traffic in
cloud networks. Yao et al. [16] utilized the SDN architecture to validate source addresses. Fayaz et al. [17]
used the flexibility of SDNs to steer suspicious traffic through the defense virtual machines (VMs) while
minimizing user-perceived latency and network congestion. These studies address traditional network
security threats using SDN-related technologies rather than focus on security issues in the new network
paradigm.

In the present study, the principles and characteristics of SDN-DoS attacks are first analyzed, and it
is demonstrated that there are certain obvious catastrophe characteristics when an SDN suffers a DoS
attack. Subsequently, using an idea from catastrophe theory in system state transition modeling, an SDN-
DoS attack detection method is proposed that is called CATH. As shown in Figure 1, certain statistic
attributes of SDN flow information are selected as detection features (DFs). They can effectively represent
the catastrophe state of an SDN. According to the number of state variables and control variables obtained
from detection features, the cusp model is used to establish a catastrophe equilibrium surface for SDN
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Figure 1 (Color online) Workflow of CATH.

states, including the normal and the attack states. After being trained, the cusp catastrophe model
can be used to infer whether the network is under attack, thus allowing real-time detection of SDN-DoS
attacks.

The remainder of the paper is organized as follows. In Section 2, a brief analysis of SDN-DoS attacks
is provided. In Section 3, the feasibility of utilizing catastrophe theory to detect SDN-DoS attacks
is demonstrated. The CATH method, which can effectively perceive SDN-DoS attacks, is presented in
Section 4. In Section 5, two experiments are conducted to verify the effectiveness of the proposed method.
Section 6 concludes the paper.

2 Analysis of SDN-DoS attacks

As a current key protocol of SDNs, OpenFlow defines the communication standard between SDN con-
trollers and switches. The switch flow tables, which are used to indicate the forwarding paths, are
distributed from the controllers through the OpenFlow protocol. It can be said that all SDN “intel-
ligence” is concentrated on the controllers. If they fail or their service capacity declines, the network
performance is seriously affected.

DoS attacks are one of the most common and serious threats in the Internet [18]. They can be carried
out using a variety of techniques, such as SYN flood, smurf, and ping-of-death. However, they have the
same goal, that is, to render target hosts or networks unable to provide normal services [19,20]. For
example, to conduct an SYN flood attack, attackers should send a large number of SYN TCP attack
packets directly to the target (may be a host or a network), thus exhausting the connection resources
of the target because it should wait for an excessively large number of TCP semi-connections. However,
these target-oriented DoS attacks are no longer effective against SDN controllers because the controller
is transparent and invisible to network users. Switches are the only intermediaries between users and an
SDN, and the ports of a switch connected to users are isolated from the ports connected to the controllers.
Therefore, users cannot directly send flows to the controllers, i.e., the controllers are not reachable by
users.

When an OpenFlow switch receives network flows, it performs the matching process according to the
local flow tables. If the match is not successful, the switch extracts the header of the flow and encapsulates
it as a PACKET_IN message that is sent to the controller immediately. If the flow table or the cache of
the switch is full, the entire received packet is encapsulated as a PACKET _IN message and is then sent
to the controller. Utilizing the characteristics of the above mechanism, an attacker can generate a large
number of attack flows and send them to the target SDN, as shown in Figure 2. The controller should
use most of its resources to handle those malicious flows. Thus, the service capability of the controller
substantially declines, and a DoS attack is successfully implemented on the target network.
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Figure 2 (Color online) SDN-DoS attacks based on (a) forged source IP and (b) port transformation.

3 Feasibility of catastrophe theory for detecting SDIN-DoS attacks

A catastrophe is a process that leads from quantitative changes to qualitative changes. There are various
catastrophes in real life, such as rock ruptures, bridge collapses, and tire bursts. Catastrophe theory
is a methodology for studying catastrophe phenomena and their regularity in nonlinear systems. In
this section, a brief introduction to catastrophe theory is provided, and catastrophe characteristics of
SDNs when suffering DoS attacks are analyzed, so that the feasibility of catastrophe theory for detecting
SDN-DoS attacks may be demonstrated.

3.1 Catastrophe theory

Catastrophe theory is a branch of bifurcation theory in the study of dynamical systems [21,22]. It is
concerned with the case that the long-run stable equilibrium can be identified with the minimum of a
smooth and well-defined potential function F(X, B), where X = (X1, Xo,...,X,,) is an n-dimensional
state variable and B = (B, Ba, ..., By,) is an n-dimensional control variable of the system. The state
variable reflects the external changes of system behavior, whereas the control variable controls the intrinsic
nature of the system [22]. Tt can also be said that the change of the state variable describes the interaction
between control variables.

If F'(X, B) = 0, an equilibrium surface is obtained consisting of all critical points. If F/(X, B) = 0, the
equation of the singular point set corresponding to the equilibrium surface can be obtained. Furthermore,
if F/(X,B) = 0 and F”(X, B) = 0 simultaneously, a bifurcation set is obtained, which is the projection
of the singular point set on a particular control space. In catastrophe theory, the bifurcation set is used
to determine whether catastrophes have occurred in a system.

The potential function of a catastrophe model may be highly complicated. However, if the number of
control variables is at most four, there are at most seven types of catastrophes, namely, fold catastrophe,
cusp catastrophe, swallowtail catastrophe, butterfly catastrophe, hyperbolic umbilic catastrophe, elliptic
umbilic catastrophe, and parabolic umbilic catastrophe [21].

3.2 Catastrophe characteristics of SDIN flows

As catastrophe theory is capable of explaining and predicting various catastrophe phenomena, it has been
applied in several fields, such as physics, biology, medical engineering, and social science. For example,
the cusp catastrophe model can be used to analyze the phase transition law of eutectoid steel.

There is no difference between SDNs and traditional networks in terms of main functions and workload.
The traffic carried by an open SDN is the same as the global Internet traffic, which presents several
catastrophe characteristics. Although certain statistical attributes of network traffic, such as the average
packet number in a flow, the percentage of correlative flow, the number of source IP address, and the
number of ports, frequently fluctuate in a certain period, they vary within a small range and have a stable
and continuous trend, implying that the network is in an equilibrium state. In this case, even if there are
some disturbances, their impact will soon disappear.

The traffic of any open network is constantly moving, as it is in close contact with other networks. In
terms of system methodology, the moving traffic can be treated as a complex dynamical system. With
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Figure 3 Catastrophe between normal/abnormal equilib- Figure 4 (Color online) CDF of the flow table matching
rium state. rate in a DoS attack.

the occurrence of various events, a network shifts from one equilibrium state to another. As shown in
Figure 3, an abnormal event transfers the network from a normal equilibrium state (NES) to an abnormal
equilibrium state (AES). As an SDN-DoS attack is to occupy service resources of the target network and
to render it unable to respond to normal requests, when a network is under SDN-DoS attack, it is said to
be in the DoS state. Once the anomaly disappears, the network returns to another normal equilibrium.
Different types of anomalies would take the network to different equilibrium states. The procedure of
equilibrium transformation is not a slow and gradual change but a non-stationary and discontinuous
catastrophe process.

Guo et al. [23] and Shin et al. [8] analyzed the change of several statistical attributes of network
traffic in various cases. They drew the conclusion that regardless of network state, certain statistical
attributes of the traffic, namely, the packet number in a single flow, the source IP growing speed, and
the port generating speed, fluctuate within a small range, whereas they greatly vary in different states.
Considering that the normal state (NS) and the DoS state (DS) are two different equilibrium states of
an SDN, there must be a qualitative change when the network transitions between the two states. As
shown in Figure 4, the flow table matching rate of an SDN decreases exponentially from the NS to the
DS. CDF is the abbreviation of cumulative distribution function. It is also verified that the transition is
sudden and dramatic.

This analysis implies that in an SDN, both the NS and the DS are stable equilibrium states. The
transition between them is a process of nonlinear and non-stationary qualitative change. All these
characteristics are similar to a catastrophe process in catastrophe theory. Therefore, utilizing catastrophe
theory to detect the SDN-DoS attack is quite sensible.

4 SDN-DoS attack detection method

As the transformation of an SDN from the normal state to the DoS state is a typical catastrophe, an
SDN-DoS attack detection method based on catastrophe theory is proposed. It is called CATH, and in
this section, its principles and workflow are presented in detail.

4.1 Detection features and normalization process

The features that can accurately represent the network state are selected to form the detection feature
set. Thus, SDN-DoS attack detection can be achieved by tracing the changes of detection features.

(1) Detection features. As analyzed in Section 2, to perform an effective DoS attack, attackers should
carefully schedule their own computing and bandwidth resources, so that a large number of attack flows
into the target SDN may be rapidly assembled. The values of several statistical attributes of a network
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under DoS attack are quite different from those in the normal state. Those attributes reflecting the
catastrophe process from a normal state to a DoS state will be used as SDN-DoS attack detection
features to jointly describe the operating state of an SDN.

Definition 1. The size of a single flow (SSF) describes the size of every flow entering the SDN. It
includes two attributes, the number of packets in a single flow (NPF) and the number of bytes of a single
flow (BSF). Moreover, the average NPF (ANPF) and the average BSF (ABSF) are defined, namely,
ANPF = Y Fo"Num (NPE,) /FlowNum and ABSF = Y219 (BSF,)/FlowNum, where FlowNum is
the number of flows entering the network during the sampling period, NPF; is the number of packets in
flow i, and BSF; is the number of bytes of flow ¢. In the following, the variable v will be used to represent
SSF, namely, v = {ANPF, ABSF}.

To carry out an SDN-DoS attack more effectively, attackers increase the rate of generating attack
flows, usually by reducing the number of packets in every flow. In addition, as the number of bytes of
every single attack flow has little effect on the attack performance, the flows used to carry out SDN-DoS
attacks are always considerably smaller than normal flows. Thus, if a network suffers a DoS attack, both
ANPF and ASPF are significantly smaller than in the normal state.

Definition 2. The address growing speed (AGS) consists of two attributes: source IP growing speed
(IPGS) and port generating speed (PGS). They are defined by IPGS = SrcIP_Num/interval and PGS =
PortNum/interval, where SrcIP_Num and PortNum represent the number of source IP addresses and
the number of ports, respectively, that appear in a sampling period, and interval is the length of a
sampling period. Similarly, in what follows, a single variable will be used to represent AGS, namely
p = {IPGS,PGS}.

By analyzing the traffic collected when the SDN runs normally, it is seen that both the number of
source IP addresses and the number of ports are stable, exhibiting only a small fluctuation. However,
in an SDN-DoS attack, attackers construct and send a large number of attack flows to the target SDN
network. The common method for constructing attack flows is to generate packets with different source
IP addresses and port numbers. Thus, when a network is attacked, the number of source IP addresses
and ports grow rapidly. That is, IPGS and PGS in the DoS state are significantly larger than in the
normal state.

Definition 3. The flow table matching ratio (MR) is the proportion of flows that can be matched
directly by switch flow tables. That is, MR = MatchNum/FlowNum, where MatchNum is the number of
matched flows, and FlowNum is the total number of flows entering the network during a sampling period.
In the following, the variable A will be used to represent MR.

The main goal of an SDN-DoS attack is to induce controllers to frequently generate and send new flow
rules to switches; thus, the attacker should construct and send large numbers of unmatched flows to the
target SDN. In this case, MR would decline substantially. Namely, if an SDN is under SDN-DoS attack,
MR will obviously be smaller than in the normal state.

There are several features that can characterize the SDN catastrophe between the normal state and the
DoS state. A larger number of features results in a more accurate catastrophe model but also in higher
overall computational overhead and thus reduced detection efficiency. Based on the statistical analysis
of a large amount of historical traffic data, three features are selected, namely, SSF, AGS, and MR, to
jointly describe the catastrophe of the SDN.

(2) Normalization process. The value ranges and dimensions of the three detection features are quite
different, and a feature with large value range has great influence on the calculation. To unify the
value ranges of different features, normalization in [0,1] is performed. As these three values do not have
probability distribution characteristics, the Min-Max scaling method is adopted to linearly normalize the
raw data and achieve equal scaling. Specifically, all detection features should be normalized, including
ANPF and ABPF in SSF, IPGS and PGS in AGS, and MR. The process is described as z’ = %,
where z’ is the normalized data point, x is the raw data point, and Zm.x and Tni, are the maximum
value and the minimum value of the raw dataset, respectively.

Furthermore, the catastrophe progression method is utilized to fuse SSF and AGS into one variable,
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as each of them contains multiple sub-features. If a feature contains two sub-features, the cusp nor-
malization formula is usually selected for the fusion process, whereas if a feature can be decomposed
into three sub-features, the dovetail formula should be selected. As SSF has two sub-features (ANPF
and ABSF), and ANPF has greater potential for characterizing SDN-DoS attacks, the cusp normal-
ization formula is adopted, namely, v = min(VANPF’, VABSF’), where ANPF’ and ABSF’ are the
normalization values of ANPF and ABSF, respectively. AGS also contains two sub-features (IPGS and
PGS), and IPGS has greater characterization potential; thus, the cusp formula can be used as well,
i.e., p = min(vVIPGS', VPGS’), where IPGS’ and PGS’ are the normalization values of IPGS and PGS,
respectively.

4.2 Cusp catastrophe model

In catastrophe theory, the system state is described by the potential function, and estimating the system
state can be reduced to computing the minimal value of the potential function, whose type is determined
by the number of its control and state variables [21].

(1) Catastrophe potential function. The factors that may cause network catastrophe are referred to
as control or external variables, whereas factors that may vary during a catastrophe are called state or
internal variables. If a network suffers SDN-DoS attacks, it receives a large number of abnormal flows
(unmatched flows). That is, the transition from the normal state to the DoS state is due to the large-scale
abnormal incoming traffic, resulting in a dramatic decrease of the flow table matching rate. Therefore,
the traffic features are external factors that lead to a state catastrophe, and the flow table matching rate
is a varying factor. Thus, the two traffic features (SSF and AGS) are selected as control variables, and
MR as a state variable. According to Thom’s research in [21], the cusp catastrophe potential function
that is suitable for this case has the form F(z) = 2* + aux® + bvx, where x is a state variable, u and v
are control variables, and a and b are two parameters. The equilibrium surface of the catastrophe model
is described as follows:

M : F'(z) = 42® + 2aur + bv = 0, (1)

and the surface equation of the singular set S can be described as
S:F"(z) = 6%+ au=0. (2)

Eliminating the variable x by combining (1) and (2), we obtain an expression for the bifurcation set.
It consists of the critical points of the equilibrium surface. The bifurcation set is also a control space,
where the network state catastrophe takes place:

Bs : 8a2u® + 27b%v? = 0. (3)

The geometric structure of the cusp model is shown in Figure 5. The upper part is the equilibrium
surface of the cusp catastrophe model. It consists of an upper leaf (A4), a middle leaf (B), and a lower
leaf (C'). A represents the normal stable state, C' represents the DoS equilibrium state, and B is the
unstable position, namely, the inaccessible region of the network. If the network transits from point p
of A to point g of C, a sudden jump occurs, which is a so-called catastrophe process. The lower part of
the figure refers to the bifurcation set, which is governed by the control variables u and v. In fact, the
bifurcation set is the projection of the cusp catastrophe manifold on the u-v plane. From the projection
plane, it can be seen that the trajectory from p to ¢ passes through the bifurcation set (Bs) curve.

(2) Estimating model parameters. As the solution of a potential function may be positive or negative,
a translation transformation of the sample data should be performed to easily distinguish the normal
state and the DoS state. Let the normalized sample sequences U = {v*},V = {p*}, and X = {\*} be
defined, where k =1,2,..., N and N is the length of a sample sequence. The translation transformation
of the sample sequences is as follows.

The translated sequence of the state variable X = {\} is X = {(A\¥ — zayg)|k = 1,2,..., N}, where
Zave 1S the average value of X , namely, Tavg = % Zivzl A’. For the two control variables, their sample
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Projection

Figure 5 Geometry of the cusp catastrophe model.

sequences U = {y*} and V = {pF} can be translated into U = {(v* — tmax)|k = 1,2,..., N} and
V = {(p* = vavg)lk = 1,2,..., N}, where tmax = max(v',72,...,7V) and vayg = & SN, o

a and b are two parameters of the cusp model. Their optimal values are obtained by determining the
extremum of multiple functions. Specifically, the least square fitting method is used. J(a, b) is defined
as the square sum of M and Bs, namely,

N
J(a,b) = {AX])? + 2aU X{ + bV{]? + [4a®(U)? 4 270° (V/)?]?}. (4)
i=1
Furthermore, the partial derivatives of J(a, b) with respect to a and b are obtained and set equal to

{ dJ(a,b)/da =0, 5)
8.J(a,b)/0b = 0.

Zero:
That is,

N

S {UX((XY)? + aU' X+ bV'] + 12a° (U [4a®(U7)? + 276*(V*)]} = 0,
v (6)

Z S L alU' X + VIV + 54b(VH)2[4a®(UP)? + 2762 (VH)?]} = 0.

Eq. (6) is a system of nonlinear equations with two variables. Substituting all sequences (X% U, V?)
of the training sample set into (6), we obtain six complex solutions and three real solutions for the two
parameters (a and b). As X* and U® are real numbers, by (2), a and b cannot be complex. Therefore,
the six complex solutions for a and b should be ruled out. The real solution that minimizes J(a, b) is the
optimal solution.

4.3 Network state inference

After the values of the model parameters have been obtained, the cusp catastrophe detection model can
be defined. Hereafter, the model for inferring the state of a testing dataset is utilized. The specific
inference procedure is as follows.

Step 1. The testing dataset is normalized and translated in time order. The processed dataset is
denoted by {(Zéest’ u‘éest’ véest”i = 1’ 27 T m}

Step 2. It is determined whether the projection of a testing sample on the u-v plane is on the left side
of the curve Bs, which is defined in (3), namely whether ul,, > —<{/27a2(vi)?/8b% and vi,, < 0. If
the two conditions are met, the state is normal. Otherwise, if uly > —{/27a2(v]os )2 /863 and vy > 0,
which represents that the projection of the testing sample on the u-v plane is on the right side of the
curve Bs, then the state is abnormal.
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Figure 6 (Color online) Criteria for determining network states.

Step 3. If neither of the two conditions in step 2 is satisfied, the point lies on or inside the curve, and

the previous dataset (2, Ul Viest ) should be used to decide whether ui i > —{/27a2(v{_{)?/8b3 and

viot < 0. If these two conditions are satisfied, then the network is in normal state; otherwise, it is under
SDN-DoS attack.

Step 4. The inference result is put into the network state base in time order; this is necessary for
subsequent detection.

In the following, Figure 6 is used as an example to illustrate the inference procedure of the CATH
method. There are ten points, ¢, d, e, f, h, i, j, k, [ and m, which are the projections of ten samples onto
the u-v plane. ¢ — d,e — f,h — i,7 — k,l — m represent the sample points of two consecutive periods.
The trajectory of I — m does not pass through the bifurcation curve Bs and lies on its left side. This
indicates that both are normal. The trajectory of ¢ — d passes through the curve Bs, which indicates
network catastrophe from the normal state to the DoS state. The trajectory of j — k is on the right
side of the curve Bs, which indicates that the network is in the DoS state at these two consecutive times.
The trajectories of e — f and h — i pass through the curve Bs, and both points f and i are inside the
curve; thus, the previous samples should be combined to complete the inference. As h corresponds to the
normal state, it can be inferred that i is in the normal state as well. As e corresponds to the DoS state,
it can be inferred that f is also in the DoS state.

5 Experiments and evaluation

To verify the capacity of CATH to detect SDN-DoS attacks and its adaptability to networks of different
scale, two experiments are conducted in this section. One is performed on a simple network simulating
a small office/home office (SOHO) network, whereas the other experiment is conducted on a complex
network simulating a large scale enterprise network.

5.1 Experiment setup

(1) Network emulator. In the following experiments, Mininet!) was used as the network emulator. The
code developed in Mininet can be easily moved to real production networks. POX [24] was selected for
the controllers, and all algorithms were implanted as POX applications written in Python. Open virtual
switch (OVS) ) was selected as the network switch, and all switches were assumed to communicate with
the controllers through the OpenFlow protocol.

To simulate SDNs of different scale, a simple network and a complex network were constructed. Their
topologies are shown in Figure 7. The simple network included three switches, whereas the complex
network included eight switches.

1) Mininet. http://mininet.org.
2) Open Vswitch. http://openvswitch.org.



Guo Y, et al. Sci China Inf Sci ~ March 2019 Vol. 62 032106:10

(a)

S

~
Simulated traffic

Simulated
traffic

Figure 7 (Color online) Topology of (a) the SOHO network and (b) the larger scale enterprise network.

(2) Traffic generation. To evaluate CATH’s performance in a wide range of network environments,
benign traffic was collected at two different locations in the network of NDSC (Chinese National Dig-
ital Switching System Engineering and Technological Research Center). Initially, the performance was
evaluated in a low network traffic environment by utilizing packets traced from our laboratory. Thereby,
the network traffic conditions of a SOHO environment could be simulated. For further evaluation of
the proposed method, higher traffic was also used to simulate a larger enterprise environment. Hence,
network traffic was captured from a part of the NDSC network center. These trace files were employed
in the experiments to evaluate the accuracy and detection capacity of the proposed method.

Tepreplay® is a network tool with the ability to replay the captured traffic at the speed it was captured.
It was used in the experiments to replay the captured packet trace files, injecting the generated traffic to
a specific Ethernet port. In addition, Scapy® was employed for the attack traces. It is a powerful tool for
packet generation and forging. It was used to generate attack traffic with a predefined set of destination
IP addresses and port numbers, and a random and constantly varying set of source IP addresses and port
numbers.

5.2 Ability to detect SDN-DoS attacks

The application of CATH to detect SDN-DoS attacks is first explained through the experiment with the
simple network and the related analysis. In the experiment with the complex network, the detection
ability of CATH will be further evaluated.

(1) Attack detection in the simple network. Once the SDN simulation network had run stably for some
time, capturing of the real time traffic began. The background traffic was the normal network traffic
collected from our lab network (50 Mbps) and replayed by Tcpreplay. It consisted approximately 65%
of TCP traffic, 20% of UDP traffic, 5% of ICMP traffic, and 10% of other traffic. The SDN-DoS attack
traffic was generated by Scapy and included three types of DoS attack traffic (TCP-SYN-Flood-based,
UDP-Flood-based, and ICMP-Flood-based). To simulate different attack rates, attacks of 4000, 4500,
and 6000 p/s were carried out.

The background traffic and the attack traffic were sampled in a mixed manner. As there is usually a
large amount of background traffic in a real network environment, the sampling period was extended to
increase the scale of background traffic for more realistic experimental conditions. The sampling period
of background traffic T was gradually extended from 1 to 5 s by increments of 1 s, and the sampling
period of attack traffic ¢ was fixed at 0.2 s. After the raw traffic was sanitized, the normal and the attack
sample sets of the three detection features were obtained through further statistical analysis. To take
into account the accuracy and performance of the detection, 1200 consecutive samples were included in
each sample set.

Figures 8-10 show the trends of ANPF, PGS, and MR for the training sample set (600 normal samples
and 600 attack samples), where T is 2 s and the attack rate is 4000 flows/s. The trends of ABSF and
AGS are not given because they are similar to those of ANPF and PGS, respectively. It can be seen that
in the attack period, the value of ANPF is between 1 and 2, which is significantly smaller than in the

3) Tcpreplay. http://tcpreplay.synfin.net.
4) Scapy. http://www.secdev.org/projects/scapy.
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Figure 10 (Color online) MR of normal and attack traffic. Figure 11 (Color online) ROC curve for the simple net-
work.

normal period. Even if the sampling interval of the background traffic is 100 times as large as that of
the attack traffic, PGS in the attack interval is at least 600, obviously larger than in the normal interval.
Moreover, MR is at most 0.2, which is significantly smaller than in the normal interval. Consequently,
there must have been a large number of abnormal flows entering the SDN network in the attack phase.
Most of these flows have one packet, and their source IP addresses and port numbers are random and
rarely repeated, resulting in a dramatic drop in the flow matching rate of the SDN switches.

The training sample traffic is used to train the catastrophe model for computing the model parameters.
After being trained, the model can be utilized to detect the unlabeled traffic. The flow statistical analysis
and normalizing (FSAN) module is called to obtain the values of the three detection features for each
testing sample. Subsequently, each sample of the feature dataset is projected onto the u-v plane and
taken as the input of the network state inference module. In this step, the side of the curve Bs on which
the projection point lies determines whether a testing sample is in the DoS state. The ROC curve in
Figure 11 shows the sensitivity and accuracy of CATH. An ROC curve is a plot with the false positive
(FP) rate on the X-axis and the true positive (TP) rate on the Y-axis. The area under the curve reflects
CATH’s sensitivity. As can be seen, the curve is close to the Y-axis and the point (0, 1). This indicates
that FP is low and the detection capacity is high.

(2) Experiment in the complex network. In this experiment, the background traffic was collected from
the NDSC network center (100 Mbps). It consisted approximately 75% of TCP traffic, 10% of UDP traffic,



Guo Y, et al. Sci China Inf Sci ~ March 2019 Vol. 62 032106:12

20

: : : ! 1000 ‘ : : ;

800

te:

.|
£ ol 3 ’ "” ‘I l‘ 600
Z 104fH----- 1A

<

Al
I ' II """ Wh‘\ I‘ ”l!ia ’ljiil'ﬁ![
mew|=rll V'TWF!

PGS

: L 1 t il i

Il I'||I\I\|| 400 F* : R
(L) ; ; ; :

|||“I‘ i

o .1 | i § v — _ S N N |
! : auack rate= 13000 p/s : : i i i
lattack- r\lc 12000 p/s attack-r: 1lc 13000 p/s : 0 ‘ | : : ‘
O |
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) Time (s)

Figure 12 (Color online) ANPF of detected traffic when Figure 13 (Color online) PGS of detected traffic when

t=0.5s. t=10.5s.
1.0 : ! : T ! 100
80
S
Ll \q;; 60
: 5
.‘(: é
; =40
5 B
| H H E H =
] E— SR U TN —— 20
0 1 1 1 i i O
0 100 200 300 400 500 600 0 10 20 30 40 50 60 70 80 90 100
Time (s) False positive (%)
Figure 14 (Color online) MR of detected traffic when t= Figure 15 (Color online) ROC curves of CATH and
0.5 s. GHOSM.

5% of ICMP traffic, and 10% of other traffic. The SDN-DoS attack traffic included TCP-SYN-Flood-
based, UDP-Flood-based, and ICMP-Flood-based DoS attack traffic generated by Scapy. The variation
of attack rates was achieved by carrying out attacks of 12000, 13000, and 15000 p/s. The background
traffic and the attack traffic were sampled in a mixed manner as before.

However, the sampling period of attack traffic ¢ was gradually extended from 0.1 to 0.5 s by increments
of 0.1 s, and the sampling period of background traffic T was fixed to 2 s. Accordingly, five sample traffic
sets were collected, each containing 1200 samples. Figures 12-14 show the trends of ANPF, PGS, and
MR, respectively, for the detected traffic (mixed attack and background traffic) as the attack rate ranged
from 12000 to 15000 p/s and t was 0.5 s. As the scale of the background traffic was significantly larger
than that of the attack traffic, it was not easy to clearly determine by a single feature whether attack
was carried. However, using the CATH method with multiple features, satisfactory detection results were
obtained, as shown in Table 2. Obviously, higher attack rates yielded better detection results.

To illustrate the difference of CATH with other detection methods, such as those proposed in [13, 25,
26], the same background traffic and attack traffic were used as input, and the detection results were
analyzed. In particular, a method based on growing hierarchical self-organizing maps (GHSOM), which
was proposed in [13] and is widely used for anomaly detection based on machine learning, was compared
with the proposed method. It applies the GHSOM algorithm to the analysis and detection of SDN-
DoS attacks. Figure 15 shows the detection ROC curves of CATH and GHSOM in the above scenario.
It is obvious that the detection accuracy of CATH is higher than that of the GHSOM-based method,
particularly when FP is slightly higher than 3% and TP is up to 90%.
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Table 2 Detection results at different attack rates

Detection result (%)

Attack-rate (p/s) TP or FP
t=0.1s t=02s t=0.3s t=04s t=05s
12000 TP 91.4 92.1 92.8 93.5 93.9
FP 4.89 4.87 4.73 4.23 3.97
13000 TP 91.6 92.4 93.5 94.1 94.7
FP 5.02 4.13 4.21 4.78 4.80
15000 TP 93.7 94.2 94.9 95.1 96.2
FP 3.76 3.51 3.41 3.64 2.97

It should be noted that in general, the network traffic has several phase characteristics. For example,
the scale and the protocol type of the traffic significantly vary with time. Consequently, the normal value
and the fluctuation range of detection features are different in different periods. To reduce the FP of
CATH, it is necessary to dynamically update the catastrophe model. In particular, the first-in first-out
(FIFO) strategy was adopted. The network administrator sets the update cycle (Tupdate = €) of the
catastrophe model according to the traffic characteristics of the local network. Once the update time ¢ is
up, the FSAN module is called to obtain training traffic samples collected during (¢t —e,¢). As storing an
overly large number of samples may reduce detection efficiency, new samples are added to the training set
by the FIFO method. Then, the catastrophe potential function can be regenerated. The detection model
can thereby be dynamically adjusted in real time and thus perceive new characteristics of the SDN-DoS
attack detection features.

5.3 Computational complexity

The workflow of CATH for detecting SDN-DoS attacks consists of two stages: model training (estimat-
ing model parameters) and network state inference. Model training is an off-line process that can be
performed in the idle time of the controller or in other network devices; thus, the time overhead of this
process can be ignored. State inference can be divided into two procedures. The first is to perform a
statistical analysis of the unlabelled network traffic, and the other is to infer the network state. The state
inference process, as described in Section 3, requires only simple numerical comparisons; thus, its time
overhead can be ignored as well. By contrast, the computational complexity of calculating the values
of detection features is high. By the definition of detection features in Section 3, the computational
complexity of calculating each eigenvalue is linearly related to the number of flows. That is, the com-
putational complexity is O(n). In the two experiments, by recording the time from the feature statistic
process to the state inference process, it is seen that the computation overhead is indeed linearly related
to the number of flows, and the required time is always in seconds.

6 Conclusion

With the rapid development of the Internet and the explosive growth of network users, the traditional
network architecture faces many issues. To address network imperfections, several new network architec-
tures have been put forward. Among them, the idea of separation between control and forwarding has
attracted particular attention. A representative network structure is the SDN, which has been highly
expected in the past few years. The centralized control mechanism and the open programming interface
of SDNs not only increase the flexibility of network management and operation but also provide new and
greater opportunities for network attacks. Currently, the most common and effective attack against SDNs
is the DoS attack. As there are several differences between SDNs and traditional networks, particularly
in network architecture and data forwarding technology, existing DoS attack detection methods have
obvious deficiencies in terms of accuracy and efficiency.

In this study, an SDN-DoS attack detection method was proposed (called CATH) based several detec-
tion features for describing the network state catastrophe between the normal and the DoS state. Certain



Guo Y, et al. Sci China Inf Sci ~ March 2019 Vol. 62 032106:14

statistic features of SDN flow information that have high potential to represent the state catastrophe of
the SDN are first selected as detection features. Subsequently, following an idea from catastrophe theory,
and according to the number of state variables and control variables selected from the detection features,
the cusp model is used to establish a catastrophe equilibrium surface for SDN states. After being trained,
the cusp catastrophe model can be used to infer whether the network is in the attack state, thus realiz-
ing real-time SDN-DoS attack detection. The experimental results showed that the CATH method can
timely and effectively perceive SDN-DoS attacks, not only in simple networks but also in larger enterprise
networks. As the comprehensiveness of the sample set has an important influence on the accuracy of
the proposed method, the focus in future work will be on obtaining more complete and representative
training sample sets. Additionally, it is difficult for network administrators to set the update frequency
of the cusp detection model; thus, it is necessary to develop a method for obtaining phase characteristics
of the local network traffic. Certainly, the prevention of SDN-DoS attacks deserves further study.
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