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Abstract SM2 key exchange protocol is a part of the SM2 public key cryptographic algorithm based on

elliptic curves which has been issued by Chinese State Cryptography Administration since 2010. Under the

guide of Chinese government, SM2 has been widely used in Chinese commercial applications. This paper

gives the first partially known information attack on SM2 key exchange protocol. Our attack is based on a

technique modified from the hidden number problem (HNP) which was introduced originally to study the

bit security of Diffie-Hellman and related schemes. We present a polynomial-time algorithm which could

recover the user’s secret key when given about half least significant bits of the two unknown intermediate

values in each congruence over about 30 to 40 instances. Compared with the standard HNP, our approach

deals with congruence involved two independent unknown variables and each of them possesses the same size

as the secret key. Moreover, our results almost coincide with the previous best result among the same field

considering the extreme case in which one variant is completely revealed.
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1 Introduction

SM2 public key cryptographic algorithm based on elliptic curves is a national standard published by

Chinese State Cryptography Administration in 2010 [1], which originally aims to guide the manufacturers

on developments of information security products for commercial uses in China. Recently, SM2 has more

and more extensive application in international security fields such as its approval in TPM 2.0 [2] and

ISO/IEC 14888-3 [3]. SM2 mainly contains three parts which are digital signature algorithm, public

key encryption algorithm, and key exchange protocol. In this paper, we mainly focus on the SM2 key

exchange protocol.

SM2 key exchange protocol is a variant of elliptic curve Diffie-Hellman key exchange protocol [4]. Recall

the Diffie-Hellman key exchange protocol. Let (G, ·) be a group with g ∈ G, there are two participants

who respectively choose random u and v. They compute gu and gv and then exchange it to each other.

Then the Diffie-Hellman secret key is guv. Theoretically, the security of SM2 key exchange protocol is

based on the computational intractability of the discrete logarithm problem on elliptic curves (ECDLP).

ECDLP-based cryptosystems need smaller size of parameters to enjoy the same security level in contrast

to many other well known public-key schemes based on hard problems over finite fields. Nevertheless,
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there still exist many practical cryptographic vulnerabilities during implementations caused by side-

channel attacks, fault injection attacks or software bugs. Therefore, special cares must be taken with the

nonce and other intermediate values during the establishment of shared keys. In this paper, we mainly

study partially known information attack on SM2 key exchange protocol. Concretely, with some leakage

of the intermediate values during the computation of the shared key on one of the participants, we aim

to disclose the private key.

Many types of attacks against information leaks in ECDLP-based public-key cryptosystems such like

digital signature algorithm (DSA) and elliptic curves digital signature algorithm (ECDSA) have been

carried out [5–8]. However there are fewer results on the security of ECDLP-based key exchange protocol,

especially for SM2. In 1996, Boneh and Venkatesan [9] first studied the nonce leakage from Diffie-Hellman

and other related schemes in prime fields by utilizing a tool named the hidden number problem (HNP) [9],

and they proved the bit security of the
√
log p most significant bits of the secret key. Indeed, HNP could

be regarded as a multidimensional linear congruences of truncated variables. It plays important roles

not only in the proof of bit security of Diffie-Hellman and related schemes [10], but also in attacks

against DSA-like signature schemes. In 1999, Howgrave-Graham and Smart [5] attacked the 160 bits

DSA, based on a reasonable number of signatures with knowledge of some bits from each corresponding

nonce. Subsequently, Nguyen and Shparlinski [8] gave a provable polynomial-time attack under some

assumptions against DSA in which the nonces are partially known. This result has been improved in [6].

A similar partially known nonces attack has been implemented to the 256 bits SM2 digital signature

scheme [11], in which one could recover the private key by 100 signatures with knowledge of 3 bits of

each nonce. Most of the above attacks succeeded under the fact that the security of related schemes is

guaranteed by the randomness of nounces chosen in the generation step. Different with this, statistical

biases derived from partially information leakage have been exploited for key recovery as well [12–15].

This type of attacks are expected to succeed with knowledge of fewer bits at the cost of larger number of

instances.

HNP usually deals with issues related to one unknown target together with a number of its random

approximations. A real-world cryptanalytic problem arises when the given approximations are inconsec-

utive, which means the disclosed bits distribute discretely. To relax the restriction on uniformity and

improve the usability of HNP for practical attacks, various variants of this problem adopted in different

applications have appeared [8,16,17]. In 2006, Hlaváč and Rosa [18] presented an extended hidden num-

ber problem (EHNP) and a polynomial time algorithm for recovering the secret key. EHNP significantly

relaxes the strict limitations on the position of information leakage in HNP and this is very important

to current side channel attacks. The technique was then improved and applied to attack OpenSSL

implementions with windowed non-adjacent form (wNAF) on ECDSA [19].

Lattice basis reduction algorithm is a crucial tool in solving HNP (and EHNP), because a short lattice

vector or a close lattice point of the related lattice often reveals the solution to HNP (or EHNP). Lattice

basis reduction has been a problem of lasting interest in lattice-based cryptographic constructions and

cryptanalysis. Since the seminal work of the LLL algorithm [20] proposed in 1982, many improved

algorithms have appeared subsequently. The most practical and widely-used algorithm by now is BKZ

2.0 proposed by Chen and Nguyen in 2011 [21], which is improved from the Schnorr-Euchner’s BKZ [22].

In recent years, some variants of BKZ which perform better in practice have been investigated [23–25].

Up to now, few results about partially information attack against elliptic curve key exchange protocol

could be found in the literature. Compared with other DSA-like schemes on the side of partially infor-

mation attack, the case of SM2 key exchange protocol is more intractable because there exist additional

unknown random variables related to the nonces, and this makes the private key still be covered, even if

the nonces can be completely disclosed. In this paper, we deal with issues when some partially informa-

tion about the intermediate variables are leaked in the generation of SM2 shared key, which is much more

natural to achieve in realistic scenario. This is the first result about partially information leak attack

against SM2 key exchange protocol. To recover the private key from a set of instances, we first transform

it to an EHNP-like problem and then use lattice basis reduction as a crucial tool to reduce the problem

to a closest vector search problem in related lattice corresponding to some target vector. Though the
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construction is very similar to classical technique, the proof of success probability is more intricate due

to the subtle difference between the problem and the standard EHNP. Furthermore, our experiments

show that, given about 40 instances with 512 unknown bits in each one, if several more than 265 least or

most significant bits of the intermediate variables are known, we can recover the maximum corresponding

part of private key in a personal laptop with success probability larger than 0.95. Moreover, the known

number of bits can decrease to 259 under proportional optimization. This result almost coincides with

the previous best result [11] among the same field when considering the extreme case in which one variant

is completely revealed.

This paper is organized as follows: Section 2 is the preliminaries where the introduction of SM2 key

exchange protocol and some necessary background are included. In Section 3, we give our attack on SM2

key exchange protocol with some partially information known. Section 4 shows our experimental results

on the attack proposed in Section 3. Section 5 concludes the paper.

2 Preliminaries

In this section, we briefly review the SM2 key exchange protocol, together with some basic knowledge of

lattice. The notations of HNP and EHNP are also introduced as crucial tools to our attack.

2.1 Overview of SM2 key exchange protocol

In the study of SM2 key exchange protocol within this paper, we focus on elliptic curves defined on prime

fields Fp with characteristic p > 3. For parameters a, b ∈ Fp satisfying 4a3 + 27b2 6= 0, the group E(Fp)

formed by rational points of the elliptic curve and the infinity point O is defined as

E(Fp) = {P = (x, y) | y2 = x3 + ax+ b mod p, x, y ∈ Fp} ∪ {O}.

In the key generation period, choose a base point G = (xG, yG) ∈ E(Fp) with prime order n. The SM2

protocol client A (and B, respectively), randomly selects dA ∈ [1, n− 1] (and dB ∈ [1, n− 1], respectively)

as its private key. The corresponding public key is PA = dAG (PB = dBG, respectively). Moreover, some

other necessary notations used in SM2 key exchange protocol are listed as follows. One can refer to the

official standard [1] for integrated description.

(1) h: cofactor, h = #E(Fp)/n, where #E(Fp) is the size of E(Fp).

(2) klen: the bit length of the session key.

(3) KDF(Z, klen): one-way derivation hash function with output length klen.

(4) ZA: hash value of client A’s identification.

(5) ZB: hash value of client B’s identification.

(6) Hash(): hash function.

(7) ‖: concatenation of two strings.

The main procedure of SM2 key exchange protocol is as follows. As the initiator, client A will establish

a session key with client B. Denote w = ⌈(⌈log2(n)⌉/2)⌉ − 1.

Client A.

(1) Randomly choose an integer rA ∈ [1, n− 1].

(2) Compute RA = rAG = (x1, y1).

(3) Send RA to client B.

Client B.

(1) Randomly choose an integer rB ∈ [1, n− 1].

(2) Compute RB = rBG = (x2, y2), x̄2 = 2w + (x2&(2w − 1)), tB = (dB + x2 · rB) mod n, x̄1 = 2w +

(x1&(2w − 1)) from RA, V = (h · tB)(PA + x̄1RA) = (xV , yV ), and KB = KDF(xV ‖ yV ‖ ZA ‖ ZB, klen).

(3) (Optional for key confirmation) Compute SB = Hash(0x02 ‖ yV ‖ Hash(xV ‖ ZA ‖ ZB ‖ x1 ‖ y1 ‖
x2 ‖ y2)).

(4) Send RB (and SB, optional for key confirmation) to client A.
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Client A.

(1) Compute x̄1 = 2w + (x1&(2w − 1)), tA = (dA + x1 · rA) mod n, x̄2 = 2w + (x2&(2w − 1)) from RB,

U = (h · tA)(PB + x̄2RB) = (xU , yU ), and KA = KDF(xU ‖ yU ‖ ZA ‖ ZB, klen).

(2) (Optional for key confirmation) Compute S1 = Hash(0x02 ‖ yU ‖ Hash(xU ‖ ZA ‖ ZB ‖ x1 ‖ y1 ‖
x2 ‖ y2)) and verify if S1 = SB holds. Terminate if it is not true.

(3) (Optional for key confirmation) Compute SA = Hash(0x03 ‖ yU ‖ Hash(xU ‖ ZA ‖ ZB ‖ x1 ‖ y1 ‖
x2 ‖ y2)), and send SA to client B.

Client B.

(Optional for key confirmation) Compute S2 = Hash(0x03 ‖ yV ‖ Hash(xV ‖ ZA ‖ ZB ‖ x1 ‖ y1 ‖ x2 ‖
y2)), and verify if S2 = SA holds. Terminate if it is not true.

Finally, the session key is established as K = KA = KB.

2.2 Lattices

Let b1, . . . , bn ∈ R
m are n linearly independent vectors. We define an m-dimensional lattice L as the set

of vectors:

L =

{

n
∑

i=1

xibi : xi ∈ Z

}

.

We denote B = {b1, . . . , bn} as a basis of L. Without loss of generality, only full-rank (which means

the rank n equals the dimension m) lattices are considered in the following of this paper because of the

reduction from other cases to full-rank.

In lattice-based cryptography, there are two crucial computational complexity problems known as

closest vector problem (CVP) and shortest vector problem (SVP). Although both of them are proved to

be NP-hard, their approximate variants will get easier as the increment of the approximate factor, and

this is of great importance to practical lattice-based cryptography and cryptanalysis. Next, the definitions

of some computational complexity problems and relevant results which are helpful to our discussion are

listed as follows.

Definition 1 ([26]). Recall the definitions of some lattice-based computational hard problems.

(1) Closest vector problem (CVP): Given a basis of a lattice L and a target vector t ∈ R
n, find

a lattice vector v which is closest to the target t, i.e., dist(v, t) 6 dist(u, t) for any vector u ∈ L, where
dist denotes the Euclid norm of two points.

(2) γ-approximate closest vector problem (CVPγ): Given a basis of a lattice L and a target

vector t ∈ R
n, find a lattice vector v such that dist(v, t) 6 γdist(u, t) for any lattice vector u ∈ L.

(3) Shortest vector problem (SVP): Given a basis of a lattice L, find a lattice vector v 6= 0 such

that ‖v‖ 6 ‖u‖ for any nonzero vector u ∈ L.
(4) γ-approximate shortest vector problem (SVPγ): Given a basis of a lattice L, find a lattice

vector v 6= 0 such that ‖v‖ 6 γ‖u‖, for any nonzero vector u ∈ L.
For an n-dimensional lattice, the LLL algorithm [20] can return an approximate shortest lattice vec-

tor with approximate factor (4/3)n/2. Inherited from the technique of blockwise reduction proposed by

Schnorr [27], the BKZ-algorithms [21, 22, 28] have been the most practical algorithm to lattice basis re-

duction. For the closest vector problem, Babai [29] provided a polynomial-time algorithm to approximate

CVP using basis reduction with factor 2n/2. This result was further improved to 2cn log logn/ log n on ac-

count of the blockwise algorithm and the reduction technique from approximating CVP to approximating

SVP [30], which is specified in the following lemma.

Lemma 1 ([8]). For any constant c > 0, there exists a randomized polynomial-time algorithm which

given an n-dimensional lattice L and a vector r ∈ R
n, finds a vector v ∈ L satisfying with probability

exponentially close to 1 the inequality:

‖v − r‖ 6 2cn log logn/ logn min{‖z − r‖, z ∈ L}.
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2.3 The hidden number problem (HNP) and extended hidden number problem (EHNP)

The HNP introduced in 1996 by Boneh and Venkatesan [9] is applied to recover the secret key of a

DSA-like signature [7,8,11] and their certain implementations such like OpenSSL [19], given some leaked

bits of nonces. For any real z and prime n, define the symbol | · |n as |z|n = minb∈Z |z − bn|. For any

rational l and m, let APPl,n(m) denote any rational r such that |m− r|n 6
n

2l+1 . The HNP can be stated

as follows: given many approximation APPl,n(αti) of αti for 1 6 i 6 d where ti is known and chosen

uniformly and randomly from [1, n− 1], recover the secret α ∈ Zn.

To broaden the usability of HNP to scenarios where the leaked bits distribute discretely, an EHNP

was proposed in [18], together with an efficient polynomial time algorithm to solve its instances. The

definition of EHNP is as follows.

Definition 2 ([18]). Let N be a prime, and let x ∈ ZN be a particular unknown integer such that

x = x̄+

m
∑

j=1

2πjxj ,

where the integers x̄ and πj (1 6 j 6 m) are known. The unknown integers xj satisfy 0 < xj < 2νj ,

where νj (1 6 j 6 m) are known rational constants. Given d congruences,

αi

m
∑

j=1

2πjxj +

li
∑

j=1

ρi,jki,j ≡ βi − αix̄ (mod N), 1 6 i 6 d,

where αi 6= 0 (modN), πj , ρi,j and βi are known values. The unknown integers ki,j satisfy 0 6 ki,j 6 2µi,j ,

where µi,j are known. The EHNP is to find x (the hidden number) and its instance is represented by

(x̄, N, {πj , νj}mj=1, {αi, {ρi,j, µi,j}lij=1, βi}di=1).

In the following of this paper, for x ∈ Z and k > 0, we denote LSBk(x) as the integer h ∈ [0, 2k) such

that h = x mod 2k, and MSBk(x) as the integer s > 0 such that s = (x−x mod 2length(x)−k)/2length(x)−k,

where length(x) denotes the binary length of x.

3 Partially known information attack on SM2 key exchange protocol

In the SM2 key exchange protocol, the idea to recover the private key dA of user A is to use the congruence,

tA = (dA + x1 · rA) mod n, (1)

where rA is randomly chosen from [1, n− 1] and x1 is a calculable value related to rA.

Obviously, if rA is leaked, then the ability to recover dA will be bounded by the extend of tA’s disclosure

due to the deterministic linear translation relationship between dA and tA. Nevertheless, it is an HNP-

like issue if tA is totally known as well as some least significant bits of the nonce rA. Suppose that

rA = 2l · b+ a with a leaked, rewrite the above congruence as

−(2lx1)
−1dA − 2−la+ (2lx1)

−1tA = b mod n,

where b ∈ [0, n/2l). Then recovering the secret key dA is therefore a generalized HNP provided that the

coefficient (2lx1)
−1 is sufficiently uniform to make the corresponding HNP provably tractable.

However, there are two obstacles in approaching HNP in the case of SM2 key exchange protocol. The

first one is that tA is private which is transformed from the private key by a perturbation of some random

nonce rA. The second one is the randomness of tA − dA, and this makes it impossible to take tA − dA as

unitary. As a result, it is reasonable to consider the cases in which partial information of rA and tA are

leaked, and this approach is much more preferable in practice from the perspective of side channel attack.

In this section, utilizing the similar technique of EHNP which is based on the lattice basis reduction, we

give a partially known information attack on SM2 key exchange protocol, by considering the LSBs and

MSBs leakage separately.
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3.1 Recover LSBs of private key with LSBs leakage of nonces

In this subsection, we consider the following scenario. Given a number of key exchange instances with

known x1, say m of them, we shall show that partially known LSBs of rA and tA will disclose some LSBs

of the private key dA. For simplicity, we rewrite congruences (1) as

ti = (dA + xi · ri) mod n,

for 1 6 i 6 m. If the l least significant bits of ri and the l′ least significant bits of ti are leaked (where

1 6 l 6 length(ri) and 1 6 l′ 6 length(ti)), that is

ri = 2l · bi + ai, ti = 2l
′ · ei + fi, 1 6 i 6 m.

Here ai ∈ [0, 2l − 1] and fi ∈ [0, 2l
′ − 1] are known LSBs of ri and ti respectively. bi ∈ [0, n/2l) and

ei ∈ [0, n/2l
′

) are unknown. Rearranging the congruences, we have

dA + 2lxibi − 2l
′

ei = fi − xiai mod n, 1 6 i 6 m.

The solutions to the system of the above equations could be represented by points from the lattice as

follows. Define a (3m+ 1)-dimensional lattice L spanned by the rows of the following matrix:

B =









































nIm

1 · · · 1 δ
n

2lx1
2lδ
n

−2l
′ 2l

′

δ
n

2lx2

−2l
′

. . .
. . .

2lxm
2lδ
n

−2l
′ 2l

′

δ
n









































,

where δ is a parameter to be determined later. We aim to transform the problem to CVPγ on the

lattice L.

Lemma 2. In SM2 key exchange protocol, {xi}mi=1 are independently and uniformly distributed from

[
√
n/2,

√
n].

Proof. First, we review the choices of {xi}mi=1. They are generated during independently invoking SM2

key exchange protocol repeatedly for m times. In the i-th key exchange procedure, client A randomly

chooses an integer ri ∈ [1, n− 1] and calculates (xi, yi) = riG, where G is the fixed point of order n, then

sends (xi, yi) to client B. xi is computed as 2w + (xi&(2w − 1)) with w = ⌈⌈logn⌉/2⌉ − 1. Clearly, xi is

independently and uniformly distributed due to the randomness of ri, and this is true for xi. According

to the definition of xi, we have

2w < xi < 2w + (2w − 1) = 2w+1 − 1.

It is clear that 2w+1 ≃ √
n. Hence, xi is distributed from [

√
n/2,

√
n].

The following lemma formalizes the characteristic of any lattice point when it is short enough in l∞
norm. The relationship between the short lattice vector and the private key stated in this lemma is

crucial to the success probability of our algorithm.

Lemma 3. For any lattice vector r = zB = (r1, . . . , r3m+1) ∈ L with the coordinates vector z =

(e1, . . . , em, y, t1,1, t1,2, . . . , ti,1, ti,2, . . . , tm,1, tm,2) satisfying ‖r‖∞ < κδ,

y = 0 mod n mod 2l
′

holds with probability higher than 1− κ2m+1nm+1

2(l+l′−2)m .
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Proof. Since ‖r‖∞ < κδ, we have

|ri| = |nei + y + 2lxiti,1 − 2l
′

ti,2| < κδ < 1, for 1 6 i 6 m,

|rm+1| =
∣

∣

∣

∣

δ

n
y

∣

∣

∣

∣

< κδ,

|rm+2i| =
∣

∣

∣

∣

2lδ

n
ti,1

∣

∣

∣

∣

< κδ < 1, for 1 6 i 6 m,

|rm+2i+1| =
∣

∣

∣

∣

∣

2l
′

δ

n
ti,2

∣

∣

∣

∣

∣

< κδ < 1, for 1 6 i 6 m.

Notice that r is an integer vector, then

2lxiti,1 − 2l
′

ti,2 = −y mod n, for 1 6 i 6 m, (2)

|y| < κn, (3)

|ti,1| <
κn

2l
, |ti,2| <

κn

2l′
, for 1 6 i 6 m. (4)

Assume the following relations for 1 6 i 6 m,

y = κyn+ y0 with |κy| < κ and 0 6 y0 < n,

2l
′

ti,2 = κin+ 2l
′

t′i,2 + ǫ with 0 < t′i,2 < n/2l
′

, |κi| < κ and 0 < ǫ < 2l
′

,

t′i,1 = ti,1 − (2lxi)
−1 ǫ mod n,

(2lxi) · (2lxi)
−1 = 1 + κ′

in,

e′i = ei + κy − κi + κ′
iǫ.

Then the vector r′ = z
′
B is also a lattice point with coordinates vector z = (e′1, . . . , e

′
m, y0, t

′
1,1, t

′
1,2, . . . ,

t′i,1, t
′
i,2, . . . , t

′
m,1, t

′
m,2), which satisfies

|r′i| = |ne′i + y0 + 2lxit
′
i,1 − 2l

′

t′i,2|
= |ne′i + y − κyn+ 2lxi(ti,1 − (2lxi)

−1 ǫ) + κin− 2l
′

ti,2 + ǫ|
= |n(e′i − κy − κ′

iǫ+ κi) + y + 2lxiti,1 − 2l
′

ti,2|
= |nei + y + 2lxiti,1 − 2l

′

ti,2|
= |ri| < κδ < 1, for 1 6 i 6 m.

This implies that ne′i + y0 + 2lxit
′
i,1 − 2l

′

t′i,2 = 0. Therefore, we obtain

2lxit
′
i,1 − 2l

′

t′i,2 = −y0 mod n, for 1 6 i 6 m. (5)

For some fixed y, consider the event E defined as 2l
′

t′i,2 − y0 6= 0 mod n for all 1 6 i 6 m. Notice

that, E implies that Eq. (2) has a non-trivial short solution on (ti,1, ti,2). To prove the upper bound for

the probability that E happens, we first evaluate the probability that Eq. (5) has a non-trivial solution

on {(ti,1, ti,2) | |ti,1| < κn
2l and |ti,2| < κn

2l′
for 1 6 i 6 m}, given that xi is uniformly and independently

distributed on [
√
n/2,

√
n] according to Lemma 2.

Clearly, there exist at most (2κn/2l − 1) · (2κn/2l′ − 1) number of possible tuples (ti,1, ti,2) such that

xi = (2lt′i,1)
−1(2l

′

t′i,2 − y0) mod n is non-zero. Considering the uniform distribution of xi on [
√
n/2,

√
n],

the probability that Eq. (5) has a non-zero solution on (ti,1, ti,2) is less than

Pi(y) =
(2κn/2l − 1) · (2κn/2l′ − 1) · √n/2n√

n/2

6
κ2n

2l+l′−2
.



Wei W, et al. Sci China Inf Sci March 2019 Vol. 62 032105:8

Because all {xi}mi=1 are independent, the probability that E happens under the condition of fixed y is

less than
m
∏

i=1

Pi(y) 6
(κ2n)m

2(l+l′−2)m
.

Denote PE as the probability that E happens. With the bound for y from (3), we obtain

PE 6 κn · (κ2n)m

2(l+l′−2)m
=

κ2m+1nm+1

2(l+l′−2)m
.

Consequently, there exists some w ∈ [1,m] such that

2l
′

t′w,2 − y0 = 0 mod n

holds with probability 1− PE . Correspondingly, we obtain

y = 0 mod n mod 2l
′

with probability 1− PE , and this concludes the proof.

Theorem 1. For SM2 key exchange protocol with the private key of Client A denoted as dA, there exists

a polynomial time algorithm which returns LSBl′(dA) with probability at least 1− κ2m+1nm+1

2(l+l′−2)m , with knowl-

edge of LSBl(ri) and LSBl′(ti) (1 6 i 6 m) for m instances. Here, l and l′ are integers smaller than the

length of recommended SM2 module parameter and κ = (1 + 2(3m+1) log log(3m+1)/ log(3m+1)
√
2m+ 1)/2.

Proof. For the sake of completeness, we briefly review the basics of exploiting the leaked information

during the protocol process. Given a sequence of random {xi}mi=1, LSBl(ri) and LSBl′(ti), denoted by ai
and fi respectively, we have

dA + 2lxibi − 2l
′

ei = fi − xiai mod n, 1 6 i 6 m,

where dA is the private key of client A, 0 6 bi < n/2l, and 0 6 ei < n/2l
′

.

Denote βi = fi − xiai for 1 6 i 6 m. Define the target vector

v =

(

β1, β2, . . . , βm,
δ

2
,
δ

2
, . . . ,

δ

2

)

∈ R
3m+1.

There exists a lattice vector

u = hB =

(

β1, β2, . . . , βm, dA
δ

n
, b1

2lδ

n
, e1

2l
′

δ

n
, . . . , . . . , bm

2lδ

n
, em

2l
′

δ

n

)

∈ L,

with coordinates vector h = (c1, . . . , cm, dA, b1, e1, b2, e2, . . . , . . . , bm, em) ∈ Z
3m+1.

Then

u− v =

(

0, . . . , 0,
δdA
n

− δ

2
, b1

2lδ

n
− δ

2
, e1

2l
′

δ

n
− δ

2
, . . . , bm

2lδ

n
− δ

2
, em

2l
′

δ

n
− δ

2

)

.

It is clear that

− δ

2
<

δ

n
− δ

2
6

δdA
n

− δ

2
6 δ − δ

2
=

δ

2
,

which leads to
∣

∣

∣

∣

δdA
n

− δ

2

∣

∣

∣

∣

<
δ

2
.

We also have

− δ

2
< bi

2lδ

n
− δ

2
<

n

2l
2lδ

n
− δ

2
=

δ

2
,

and

− δ

2
< ei

2l
′

δ

n
− δ

2
<

n

2l′
2l

′

δ

n
− δ

2
=

δ

2
,
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for all 1 6 i 6 m. Hence, we get

‖u− v‖∞ <
δ

2
.

Furthermore,

‖u− v‖ <
δ

2

√
2m+ 1.

For the target vector v, there exist a polynomial-time algorithm according to Lemma 1 which can find

a lattice vector w ∈ L satisfying

‖v −w‖ 6 2D log logD/ logDdist(v, L)

6 2D log logD/ logD‖v − u‖

6
δ

2
2D log logD/ logD

√
2m+ 1,

where D = 3m+ 1 is the dimension of L.

Let ∆ = u−w, then

‖∆‖∞ 6 ‖u− v‖∞ + ‖v −w‖∞
6 ‖u− v‖∞ + ‖v −w‖

6
δ

2
(1 + 2D log logD/ logD

√
2m+ 1).

Let κ = (1 + 2D log logD/ logD
√
2m+ 1)/2, and choose δ > 0 such that κδ < 1. Denote w =

(c′1, . . . , c
′
m, d′, k1,1, k1,2, . . . , km,1, km,2)B. Then according to Lemma 3, with probability larger than

1 − κ2m+1nm+1

2(l+l′−2)m , the (m + 1)-th coordinate of the representation of ∆ under basis B is 0 module 2l
′

.

Equivalently, we get

d′ mod n mod 2l
′

= dA mod 2l
′

.

It is noticed that d′ < n generally holds since the lattice vector w close to target vector v has been

reduced iteratively. So we have LSBl′(d
′) = LSBl′(dA). Hence, finding w discloses LSBl′(dA). Moreover,

the solution elaborated above could be referred to Algorithm 1.

Algorithm 1 Partially known information attack on SM2 key exchange protocol

Input: An integer m, {LSBl(ri)}mi=1, {LSBl′ (ti)}mi=1, {xi}mi=1;

Output: LSBl′ (dA), where dA is the private key of client A;

1: κ← (1 + 2(3m+1) log log(3m+1)/ log(3m+1)
√
2m+ 1)/2;

2: Select δ > 0 such that κδ < 1;

3: Compute βi = LSBl′ (ti)− xiLSBl(ri);

4: v ← (β1, β2, . . . , βm, δ
2
, δ
2
, . . . , δ

2
) ∈ R

3m+1;

5: Call algorithm from Lemma 1 to obtain a lattice vector w ∈ L with w = (c′1, . . . , c
′

m, d′, k1,1, k1,2, . . . , km,1, km,2)B,

which is close to v;

6: Return d′ mod n mod 2l
′

.

Additionally, we indicate that one cannot recover the complete private key in this scenario, only with

the leakage of LSBl(ri) and LSBl′(ti) (1 6 i 6 m). Indeed, LSBl′(dA) is the optimal result becasue there

exist plenty of solutions on the tuple (dA, t, r) which coincide with the leakage, and there is no sufficient

information to distinguish the right one. The maximum size of the least significant bits of dA which can

be revealed is bounded by t′is leakage.

3.2 Recover MSBs of private key with MSBs leakage of nonces

Based on the analysis of Subsection 3.1, a similar argument works for the case of MSBs leaks. Suppose

that the LSBl′(dA) has been recovered, we shall show how to recover the remainder part of the private

key with MSBs leakage of nonces.
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Let dA = 2l
′

d1+d0, ri = 2l ·bi+ai, and ti = 2l
′ ·ei+fi (1 6 i 6 m) with bi, ei known and d0 recovered.

The relationship ti = (dA + xi · ri) mod n holds among these variables, which could be rewritten as

2l
′

d1 + xiai − fi = 2l
′

ei − 2lxibi − d0 mod n, 1 6 i 6 m.

Similarly, we define a (3m+ 1)-dimensional lattice Λ spanned by the rows of the following matrix:

D =









































nIm

2l
′

. . . 2l
′ 2l

′

η
n

x1
η
2l

−1 η

2l′

x2

−1

. . .
. . .

xm
η
2l

−1 η

2l′









































,

where η is a parameter to be determined later.

Lemma 4. For any lattice vector r = zD = (r1, . . . , r3m+1) ∈ Λ with coordinates vector z =

(e1, . . . , em, y, t1,1, t1,2 . . . , ti,1, ti,2, . . . , tm,1, tm,2) satisfying ‖r‖∞ < κη,

2l
′

y mod n = (2l
′

y mod n) mod 2l
′

holds with probability at least 1− κ2m+12(l+l′+2)m−l′

nm−1 .

One can refer to Appendix A for the proof of Lemma 4 which is similar to that of Lemma 3.

Theorem 2. There exists a polynomial time algorithm which returns MSBl′(dA) with probability larger

than 1− κ2m+12(l+l′+2)m−l′

nm−1 where dA is the private key in SM2 key exchange protocol, given MSBl(ri) and

MSBl′(ti) (1 6 i 6 m) leakage of m instances.

Proof. For a sequence of m instances of SM2 key exchange protocol with the same private key ti =

(dA + xi · ri) mod n (1 6 i 6 m), suppose that the private key dA = 2l
′

d1 + d0, ri = 2l · bi+ ai, and ti =

2l
′ · ei + fi (1 6 i 6 m) with bi, ei known and d0 recovered. Then we have

2l
′

d1 + xiai − fi = 2l
′

ei − 2lxibi − d0 mod n, 1 6 i 6 m.

Now we aim to recover d1 based on the similar idea of Theorem 1 and the definitions are consistent

essentially.

Denote βi = 2l
′

ei−2lxibi−d0 mod n for 1 6 i 6 m. Define the target vector v = (β1, β2, . . . , βm, η
2 ,

η
2 ,

. . . , η
2 ) ∈ R

3m+1. Then, there exists a lattice vector u = hD = (β1, β2, . . . , βm, d1
2l

′

η
n , a1

η
2l , f1

η

2l′
, . . . , . . . ,

am
η
2l
, fm

η

2l′
) ∈ Λ, with coordinates vector h = (c1, . . . , cm, d1, a1, f1, a2, f2, . . . , . . . , am, fm) ∈ Z

3m+1.

Their distance in l∞ norm is bounded by

‖u− v‖∞ =

∥

∥

∥

∥

∥

(

0, . . . , 0, d1
2l

′

η

n
− η

2
, a1

η

2l
− η

2
, f1

η

2l′
− η

2
, . . . , am

η

2l
− η

2
, fm

η

2l′
− η

2

)∥

∥

∥

∥

∥

∞

6
η

2
,

A lattice vector w ∈ Λ could be found in polynomial time by the algorithm provided in Lemma 1

which is close to the target vector v by

‖v −w‖ 6 2D log logD/ logDdist(v,Λ)

6
η

2
2D log logD/ logD

√
2m+ 1,
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where D = 3m+ 1 is the dimension of Λ.

Denote ∆ = u−w, then

‖∆‖∞ 6 ‖u− v‖∞ + ‖v −w‖∞
6 ‖u− v‖∞ + ‖v −w‖
6

η

2
(1 + 2D log logD/ logD

√
2m+ 1).

Let κ = (1 + 2D log logD/ logD
√
2m+ 1)/2, and choose η > 0 such that κη < 1. Denote w =

(c′1, . . . , c
′
m, d′, k1,1, k1,2, . . . , km,1, km,2)Λ. Then according to Lemma 4, with probability larger than

1− κ2m+12(l+l′+2)m−l′

nm−1 , the (m+ 1)-th coordinate of the representation of ∆ under basis Λ satisfies

2l
′

(d′ − d1) mod n = (2l
′

(d′ − d1) mod n) mod 2l
′

,

which results in

d1 = (2l
′

d′ mod n− (2l
′

d′ mod n) mod 2l
′

)/2l
′

.

Indeed, 2l
′

d′ is usually smaller than n due to the properties of lattice basis reduction during the way

to find w, and this leads to

d1 = d′.

4 Experiments

In this section, we report our experimental results on partially known information attack to SM2 key

exchange protocol. Since the treatment of MSBs is similar to that of LSBs, we just list the results to

recover the private key with LSBs leakage of nonces.

We implement our attack provided in Section 3 repeatedly. All executions performed on an Intel Core

i7-6700 CPU running at 3.40 GHz and all the codes are written in C++. We invoke the BKZ algorithm

in NTL library [31] and use the embedding strategy [32] instead of Babai’s nearest plane algorithm to

disclose the hidden private key, because the embedding technique usually performs much better to solve

CVP in practice. Indeed, it is a method to reduce the bounded distance CVP to SVP. Given a lattice

with basis B = [b1, . . . , bn] and a target vector v ∈ span(B), the embedding technique constructs a

new (n + 1)-dimensional lattice spanned by the row vectors (bi, 0) (1 6 i 6 n) and (v, β), where β is a

parameter to be determined. In our experiments, we take β as δ/2 (or η/2 respectively) to balance the

coefficients of the lattice. The success of the strategy is guaranteed by the possibility that the shortest

vector from the reduced basis of the embedding lattice is of the form (v−a, β) where a is a lattice point

sufficiently close to the target v. This form of short lattice vector usually happens on the second or third

vector of the reduced basis in our experiments.

To verify the correctness of Theorem 1 and explore the asymptotic lower bound for the size of leakage,

we first simulate the cases of 64-bits n and 64-bits p and the results are shown in Figure 1(a). The results

on small size reveal that the success probability will be considerably large, if there are enough leaked bits

in each trial. Similarly, to determine the success boundary, for the set of parameters in SM2 document [1]

where n and p are recommended to be 256 bits, we do experiments on instances with 260 6 l+ l′ 6 280,

80 6 l 6 180 and 80 6 l′ 6 180. Our experiments show that the sum of known bits is crucial to

success probability, and this coincides with the result of Theorem 1. Since the existing lattice reduction

algorithms usually perform better in practice, the experiment results are much better than theoretical

analysis as shown in Theorem 1. Given several bits more than half of all the secrete intermediate values in

each instance, the corresponding part of the private key could be extracted over about 30 instances with

considerable success probability. The results are displayed in Figure 1(b). Specifically, when the known

fraction are more than 256 bits which means l+ l′ > 265, the success probability can achieve 0.95 under

the optimization of l and l′. When l and l′ are set to be 179 and 80 separately such that the number of
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Figure 1 (Color online) The hit rate of attacks on 20 random instances, each derived simulatively from a leakage of the

SM2 key exchange protocol with parameter size (a) 64 bits and (b) 256 bits.

known bits is 259, our experiments show that the attack can succeed with overwholeming probability over

40 samples. Additionally, note that our algorithm may perform better by further optimizations invoking

new techniques from [23–25].

5 Conclusion

In this paper, we give the partially known information attack on SM2 key exchange protocol. We

propose a polynomial-time algorithm which provably recover the user’s secret key when some bits of the

intermediate variables are leaked. Due to the better practical performance of lattice reduction algorithms,

the algorithm succeeds in our experiments possessing larger success probability with the same size of

leakage than theoretical results. Specifically, we show that, given about half least significant bits of the

two unknown intermediate values in each congruence over about 30 instances, the corresponding secret

key could be revealed with overwhelming probability. Inspired by our attack, to resist against side-

channel information leaks, countermeasures such like masking technique should be adopted to randomize

the intermediate values in the implementation of SM2 key exchange protocol.
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Appendix A Proof of Lemma 4

Since ‖r‖∞ < κη, we have

|ri| = |nei + 2l
′

y + xiti,1 − ti,2| < κη < 1, for 1 6 i 6 m,

|rm+1| =
∣

∣

∣

∣

∣

2l
′

η

n
y

∣

∣

∣

∣

∣

< κη,

|rm+2i| =
∣

∣

∣

η

2l
ti,1

∣

∣

∣
< κη < 1, for 1 6 i 6 m,

|rm+2i+1| =
∣

∣

∣

∣

η

2l′
ti,2

∣

∣

∣

∣

< κη < 1, for 1 6 i 6 m,

which implies

2l
′

y + xiti,1 − ti,2 = 0 mod n, for 1 6 i 6 m,

|y| < κn

2l′
,

|ti,1| < κ2l, |ti,2| < κ2l
′

, for 1 6 i 6 m.

Assume the following relations for 1 6 i 6 m,

2l
′

y = κyn+ 2l
′

y1 + y0 with |κy| < κ, 0 6 y1 < n/2l
′

and 0 6 y0 < n,

ti,2 = κi2
l′ + t′i,2 with 0 6 t′i,2 < 2l

′

and |κi| < κ,

t′i,1 = ti,1 + xi
−1(y0 − κi2

l′) mod n,

xi · xi
−1 = 1 + κ′

in,

https://doi.org/10.1007/BF01457454
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https://doi.org/10.1007/s11432-017-9307-0
https://doi.org/10.1016/0304-3975(87)90064-8
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e′i = ei + κy + κ′

i(y0 − κi2
l′ ).

Then the vector r′ = z
′
B is also a lattice point with coordinates vector z = (e′1, . . . , e

′

m, y1, t′1,1, t
′

1,2, . . . , t
′

i,1, t
′

i,2, . . . , t
′

m,1,

t′m,2), which satisfies

|r′i| = |ne′i + 2l
′

y1 + xit
′

i,1 − t′i,2|

= |ne′i + 2l
′

y − κyn− y0 + xi(ti,1 + xi
−1(y0 − κi2

l′ )) + κin2
l′ − ti,2|

= |n(e′i − κy − κ′

i(y0 − κi2
l′ )) + 2ly + xiti,1 − ti,2|

= |nei + 2l
′

y + xiti,1 − ti,2|
= |ri| < κη < 1, for 1 6 i 6 m.

This implies that ne′i + 2l
′

y1 + xit
′

i,1 − t′i,2 = 0. Therefore, we obtain

2l
′

y1 + xit
′

i,1 − t′i,2 = 0 mod n, for 1 6 i 6 m.

For some fixed y, consider the event E defined as 2l
′

y1 − t′i,2 6= 0 mod n for all i. We first prove the upper bound for

the probability that E happens. For any 1 6 i 6 m, we have

xi
−1 = t′i,1(2

l′y1 − t′i,2)
−1 mod n. (A1)

There exist at most (2κ2l − 1) · (2κ2l′ − 1) number of possible tuples (ti,1, ti,2) which lead to a non-zero xi
−1. Thus the

probability that Eq. (A1) has a non-zero solution on (ti,1, ti,2) is less than

Pi(y) =
(2κ2l − 1) · (2κ2l′ − 1)

n
6

κ22l+l′+2

n
.

Because all {xi}mi=1 are independent, the probability that E happens under the condition of fixed y is less than

m
∏

i=1

Pi(y) 6
κ2m2(l+l′+2)m

nm
.

Denote PE as the probability that E happens. With the bound for y, we obtain

PE 6
κn

2l′
· κ

2m2(l+l′+2)m

nm

=
κ2m+12(l+l′+2)m−l′

nm−1
.

Consequently, there exists some w ∈ [1,m] such that

2l
′

y1 − t′w,2 = 0 mod n

holds with probability 1− PE .

Since t′w,2 and y1 are bounded by 2l
′

and n/2l
′

respectively, we get

2l
′

y1 = t′w,2 = 0,

which implies y1 = 0 and this completes the proof.
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