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Abstract Rijndael is a substitution-permutation network (SPN) block cipher for the AES development

process. Its block and key sizes range from 128 to 256 bits in steps of 32 bits, which can be denoted by

Rijndael-b-k, where b and k are the block and key sizes, respectively. Among them, Rijndael-128-128/192/256,

that is, AES, has been studied by many researchers, and the security of other large-block versions of Rijndael

has been exploited less frequently. However, more attention has been paid to large-block versions of block

ciphers with the fast development of quantum computers. In this paper, we propose improved impossible

differential attacks on 10-round Rijndael-256-256, 10-round Rijndael-224-256, and 9-round Rijndael-224-224

using precomputation tables, redundancies of key schedules, and multiple impossible differentials. For 10-

round Rijndael-256-256, the data, time, and memory complexities of our attack were approximately 2244.4

chosen plaintexts, 2240.1 encryptions, and 2181.4 blocks, respectively. For 10-round Rijndael-224-256, the

data, time, and memory complexities of our attack were approximately 2214.4 chosen plaintexts, 2241.3

encryptions, and 2183.4 blocks, respectively. For 9-round Rijndael-224-224, the data, time, and memory

complexities of our attack are approximately 2214.4 chosen plaintexts, 2113.4 encryptions, and 287.4 blocks,

respectively, or 2206.6 chosen plaintexts, 2153.6 encryptions, and 2111.6 blocks, respectively. To the best of

our knowledge, our results are currently the best on Rijndael-256-256 and Rijndael-224-224/256.
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1 Introduction

In 1997, Daemen and Rijmen [1] designed a substitution-permutation network (SPN) block cipher, Ri-

jndael, for the Advanced Encryption Standard (AES) development process. It has variable block and

key sizes that range from 128 to 256 bits in steps of 32 bits. It is well known that the 128-bit block

version of Rijndael with key sizes of 128, 192, and 256 bits was selected as the AES by National Institute
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of Standards and Technology (NIST) in 2002. The other large-block versions of Rijndael are denoted

by Rijndael-b-k with block size b ∈ {160, 192, 224, 256} and key size k ∈ {128, 160, 192, 224, 256}. In all

versions, the number of rounds depends on the block and key sizes, which vary from 10 to 14. To date,

there have been many attacks that estimate the security of the AES, such as square attacks, impossible

differential attacks, boomerang attacks, rectangle attacks, and meet-in-the-middle attacks [2–13]. With

respect to the AES, there have been fewer attacks used to exploit the security of large-block versions of

Rijndael, including multiset, integral attacks, and impossible differential attacks [14–16]. However, the

fast development of quantum computers has greatly challenged the security of block ciphers with small

key sizes because Grover’s quantum algorithm [17] can provide a quadratic speedup for the exhaustive

search. Considering a high level of safety, more attention has been paid to large-block versions of block

ciphers in the industrial community. Therefore, it is very important to study the security of large-block

versions of Rijndael.

Impossible differential cryptanalysis was independently proposed by Knudsen [18] and Biham in 1999

[14]. Its fundamental concept is to construct a differential path with probability zero (called impossible

differentials) to eliminate all wrong candidate keys until the correct key is retrieved. Specifically, the

adversaries first construct two truncated differentials with probability one from the plaintext direction and

ciphertext direction. These two differentials contradict each other in the middle and then are combined

into an impossible differential. By adding rounds before and/or after this distinguisher, the attackers

construct an attacking path. Next, plaintext-ciphertexts are selected and the round subkeys are guessed.

If there is a plaintext-ciphertext that satisfies the input and output differences of the impossible differential

under some guessed round subkey, this round subkey is wrong. Given a sufficient number of plaintext-

ciphertexts, all wrong subkeys can be removed from the key space and the right subkey can be retrieved.

To date, many new results have been presented to improve its efficiency, such as the early abort technique

[19], state-test technique [20], pre-computation tables [21], and automated algorithms for impossible

differentials [22–26]. As one of the most powerful attacks, impossible cryptanalysis can be used to estimate

the security of large-block Rijndael and obtain its previous best results. Specifically, in 2007, Nakahara

and Pavao [27] proposed impossible differential attacks on seven rounds of Rijndael-224-224 and seven

rounds of Rijndael-256-256. In 2008, Zhang et al. [28] presented the impossible differential cryptanalysis

of 9-round Rijndael-224-224 and 9-round Rijndael-256-256. In 2012, Wang et al. [29] improved previous

results and mounted impossible differential attacks on 9-round Rijndael-224-224 and 10-round Rijndael-

256-256. Recently, Minier [30] proposed two new impossible differential attacks on 8-round Rijndael-160-

192 and 10-round Rijndael-224-256. However, he used the general formulas in [20, 31] to estimate the

complexities of the attack. Unfortunately, researchers [32] have indicated that the complexities that are

calculated by applying these formulas are smaller than the real values.

In this paper, we improve previous results and propose multiple impossible differential attacks on 10-

round Rijndael-256-256, 10-round Rijndael-224-256, and 9-round Rijndael-224-224. In the key recovery

phase, we build precomputation tables to extract the related round keys involved in the analysis rounds

to reduce the time complexity. For Rijndael-256-256, we apply eight 6-round impossible differentials to

attack 10-round Rijndael-256-256 with 2244.4 chosen plaintexts, 2240.1 encryptions, and 2181.4 blocks. For

Rijndael-224-256, we use four 6-round impossible differentials to attack 10-round Rijndael-224-256 with

2214.4 chosen plaintexts, 2241.3 encryptions, and 2183.4 blocks, and 9-round Rijndael-224-224 with 2206.6

chosen plaintexts, 2153.6 encryptions, and 2111.6 blocks or 2214.4 chosen plaintexts, 2113.4 encryptions,

and 287.4 blocks. Compared with the previously best attacks [29], the time and memory complexities

of our attack on 10-round Rijndael-256-256 are reduced by 213.8 times and 25.4 times, respectively, the

data, time and memory complexities of our attacks on 9-round Rijndael-224-224 are reduced by 21.4

times, 28.4 times and 25.4 times, respectively, or 21.6 times, 216.6 times and 26.2 times, respectively.

Meanwhile, we propose an attack on 10-round Rijndael-224-256 for the first time. In Table 1, our results

and previous results for Rijndael-224-224/256 and Rijndael-256-256 are listed, except for paper [30]. NR,

IDA, IA, CP, and Enc denote the number of rounds, impossible differential attacks, integral attacks,

chosen plaintexts, and encryptions, respectively. To the best of our knowledge, these results are the best

attacks on Rijndael-224-224/256 and Rijndael-256-256.
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Table 1 Summary of attacks on Rijndael-256-256 and Rijndael-224-256

Cipher NR Data (CP) Time (Enc) Memory (Blocks) Attack type Source

7 2153 2182 2117 IDA [27]

9 2244.3 2208.8 2192 IDA [28]

9 2132.5 2174.5 – IA [33]

Rijndael-256-256 9 2237.3 2159.1 2115.3 IDA [29]

9 2245.3 2127.1 290.9 IDA [29]

10 2244.2 2253.9 2186.8 IDA [29]

10 2244.4 2240.1 2181.4 IDA Subsection 3.2

Rijndael-224-256 10 2214.4 2241.3 2183.4 IDA Subsection 4.2

7 2138 2167 2104 IDA [27]

9 2212.3 2209 2192 IDA [28]

9 2196.5 2196.5 – IA [33]

Rijndael-224-224 9 2208 2162 2117 IDA [29]

9 2216 2130 293.6 IDA [29]

9 2214.4 2113.4 287.4 IDA Subsection 4.3

9 2206.6 2153.6 2111.6 IDA Subsection 4.3

The remainder of this paper is organized as follows. In Section 2, we introduce the preliminaries. In

Section 3, we propose an impossible differential attack on 10-round Rijndael-256-256. In Section 4, we

propose impossible differential attacks on 10-round Rijndael-224-256 and 9-round Rijndael-224-224. In

Section 5, we summarize this paper.

2 Description of Rijndael

2.1 Notations

• P,C,K: plaintext, ciphertext, and master key.

• ∆P,∆C: plaintext and ciphertext differences.

• Xi, Yi, Zi,Wi: intermediate states after the MixColumn (MC), SubByte (SB), ShiftRow (SR), Ad-

dRoundKey (ARK) operations in the i-th round, respectively.

• Xi[j], Yi[j], Zi[j],Wi[j]: the j-th byte of Xi, Yi, Zi,Wi, where 0 6 j < 16.

• ∆Xi,∆Yi,∆Zi,∆Wi: differences of Xi, Yi, Zi,Wi, respectively.

• 0(n): n bits of zero in parallel.

• ARKi: subkey bits in the i-th round.

• ARK∗
i
: equivalent round subkeys when the order of MixColumn and AddRoundKey is exchanged,

that is, ARK∗
i = MC−1(ARKi).

• ARKi[j],ARK
∗
i [j]: j-th byte of ARKi and ARK∗

i with 0 6 j < 16.

• W ∗
i
: intermediate states after the ARK∗ operations when the order of MixColumn and AddRound-

Key is exchanged in the i-th round.

• W ∗
i
[j]: j-th byte of W ∗

i
, where 0 6 j < 16.

• ∆W ∗
i
: difference of W ∗

i
.

• A ‖ B: concatenation of A and B.

2.2 Rijndael

Rijndael is an SPN block cipher. It supports variable block and key sizes, which can range from 128 to

256 bits in steps of 32 bits. The number of rounds is 10, 12, or 14 depending on the text and key lengths.

All versions can be denoted as Rijndael-b-k, where b and k are the block size and key size, respectively.

Additionally, the states include plaintext, ciphertext, and round subkeys, and all intermediate states

can be described as a 4 × Nb matrix with four rows and Nb (= b/32) columns. The master key is

similarly represented as a matrix with four rows and Nk (= k/32) columns. The round function consists
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of SubByte (SB), ShiftRow (SR), MixColumn (MC), and AddRoundKey (ARK). Before the first round,

an extra ARK is added. In the final round, MC is discarded.

• SB: Nonlinear transformation applies 8× 8 S-boxes in parallel.

• SR: Each row shifts to the left over the different offsets, and shift offset Ci of row i depends onNb. For

Rijndael-224-224/256, (C0, C1, C2, C3) = (0, 1, 2, 4). For Rijndael-256-256, (C0, C1, C2, C3) = (0, 1, 3, 4).

• MC: Each column of internal data is updated by matrix M , whose branch number is five.

• ARK: All the round keys are XORed to the internal dates.

Key schedule. If Rijndael has Nr rounds, it requires Nr + 1 round subkeys that are made from

the master key, that is, the master key is assigned to the first Nk words W [0] ‖ W [1] ‖ · · · ‖ W [Nk − 1]

directly, whereas the remaining round subkey wordsW [i] for i ∈ {Nk, . . . , Nk×(Nr+1)−1} are generated

by Algorithm 1. Among them, f and g are nonlinear permutations and rcon[i/Nk] denotes fixed round

constants. We have only described Rijndael briefly. More details can be found in [1, 2].

Algorithm 1 Key schedule

if i mod Nk = 0 then

W [i] = W [i−Nk]⊕ f(W [i− 1])⊕ rcon[i/Nk]

else

if ((Nk > 6) and (i mod Nk = 4)) then

W [i] = W [i−Nk]⊕ g(W [i− 1])

else

W [i] = W [i−Nk]⊕W [i− 1]

end if

end if

3 Improved impossible differential attacks on Rijndael-256-256

3.1 6-Round impossible differentials of Rijndael-256-256

In this section, we present 64 6-round impossible differentials in Proposition 1. In our attacks, we exchange

the MC and ARK operations to reduce the number of guessed round keys. The new encryption algorithm

is equivalent to the previous algorithm.

Proposition 1 ([29]). In Rijndael-256-256, there are 64 impossible differentials. The input difference

of the impossible differentials has 32 scenarios, that is, one non-zero (active) byte can be set in any cell,

and the other bytes are inactive. The output difference of the impossible differentials has two options:

three active bytes at (0, 1, 3) or (0, 2, 3) and the remaining bytes are inactive. In our attack on 10-round

Rijndael-256-256, we apply eight impossible differentials as follows:

∆1 : (α, 0(8), 0(8), 0(8), 0(224)) 9 (β, γ, 0(8), δ, 0(224)), ∆2 : (α, 0(8), 0(8), 0(8), 0(224)) 9 (β, 0(8), γ, δ, 0(224)),

∆3 : (0(8), α, 0(8), 0(8), 0(224)) 9 (β, γ, 0(8), δ, 0(224)), ∆4 : (0(8), α, 0(8), 0(8), 0(224)) 9 (β, 0(8), γ, δ, 0(224)),

∆5 : (0(8), 0(8), α, 0(8), 0(224)) 9 (β, γ, 0(8), δ, 0(224)), ∆6 : (0(8), 0(8), α, 0(8), 0(224)) 9 (β, 0(8), γ, δ, 0(224)),

∆7 : (0(8), 0(8), 0(8), α, 0(224)) 9 (β, γ, 0(8), δ, 0(224)), ∆8 : (0(8), 0(8), 0(8), α, 0(224)) 9 (β, 0(8), γ, δ, 0(224)),

where α, β, γ, and δ are non-zero bytes. We show ∆1 in Figure 1.

3.2 Impossible differential attacks on 10-round Rijndael-256-256

Proposition 2 ([34]). Given the input and output differences ∆i ∈ F ∗
256 and ∆o ∈ F ∗

256, respectively,

the equation S(x)⊕ S(x⊕∆i) = ∆o has one solution, on average.
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Figure 1 A 6-round impossible differential path of Rijndael-256-256.

Proposition 3 ([35]). If the values (or differences) in any four out of the eight input/output bytes of

the MixColumn operation are known, then the values (or differences) in the other four bytes are uniquely

determined and can be computed efficiently.

Based on 6-round impossible differentials, we add two rounds both at the top and bottom to attack 10-

round Rijndael-256-256, as shown in Figure 2. The attack procedure contains two phases: data collection

and key recovery. In the data collection phase, we select plaintext-ciphertext pairs that satisfy the input

and output differences. In the key recovery phase, we build precomputation tables to remove the wrong

subkeys. The detailed attack procedure is provided in the following.

Data collection. We choose 2n structures of plaintexts, each of which takes all the possible values at

(0, 3, 4, 5, 9, 12, 14, 16, 17, 18, 19, 21, 23, 26, 30, 31) bytes, and the other bytes are fixed. Thus, a structure

contains 2128 plaintexts that can form approximately 2255 pairs of plaintexts. We encrypt these plaintexts

and build a hash table. In this table, we store those plaintext-ciphertext pairs whose ciphertext differences

are non-zero at (0, 15, 18, 19, 22, 25, 28, 29) bytes. Finally, 2−8×24 × 2n+255 = 2n+63 pairs remain.

Key recovery. Before presenting key recovery, we build precomputation tables to extract the related

round subkeys so that the time complexity is reduced.

• H1: Guess the values of ∆W ∗
9 [0] ‖ W ∗

9 [0, 1, 2, 3]. Compute the values of Z10[0, 29, 22, 19] ‖ ∆Z10[0, 29,

22, 19]. Store Z10[0, 29, 22, 19] ‖ W ∗
9 [0] ‖ ∆W ∗

9 [0] inH1 indexed by ∆C[0, 29, 22, 19], where ∆C[0, 29, 22, 19]

= ∆Z10[0, 29, 22, 19]. Thus, H1 has 232 rows, each of which has 28 values, on average.

• H2: Guess the values of ∆W ∗
9 [29] ‖ W ∗

9 [28, 29, 30, 31]. Compute the values of Z10[28, 25, 18, 15] ‖

∆Z10[28, 25, 18, 15]. Store Z10[28, 25, 18, 15] ‖ ∆W ∗
9 [29] ‖ W ∗

9 [29] in H2 indexed by ∆C[28, 25, 18, 15],

where ∆C[28, 25, 18, 15] = ∆Z10[28, 25, 18, 15]. Thus, H2 has 232 rows, each of which has 28 values, on

average.

• Ha
3 (for the active bytes of the output difference of the impossible differentials at (0,1,3)): Guess the
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Figure 2 Impossible differential attacks on 10-round Rijndael-256-256.

values of ∆X8[0]. Because ∆X8[i] = 0(i = 2, 3) and ∆W ∗
8 [2] = 0, the value of ∆X8[1] can be computed.

Next, guess 216 values of X8[0, 1] to deduce the values of Z9[0, 29] ‖ ∆Z9[0, 29]. Store the values of

Z9[0, 29] in Ha
3 indexed by ∆W ∗

9 [0, 29]. Thus, H
a
3 has 216 rows, each of which has 28 values, on average.

• Hb
3 (for the active bytes of the output difference of the impossible differentials at (0,2,3)): Guess the

values of ∆X8[0]. Because ∆X8[i] = 0(i = 2, 3) and ∆W ∗
8 [1] = 0, the value of ∆X8[1] can be computed.

Next, guess 216 values of X8[0, 1] to deduce the values of Z9[0, 29] ‖ ∆Z9[0, 29]. Store the values of

Z9[0, 29] in Hb
3 indexed by ∆W ∗

9 [0, 29]. Thus, H
b
3 has 216 rows, each of which has 28 values, on average.

• H4: Guess the values of ∆X1[0] ‖ X1[0, 1, 2, 3]. Compute the values of W0[0, 5, 14, 19] ‖ ∆W0[0, 5,

14, 19]. Store W0[0, 5, 14, 19] ‖ ∆X1[0] ‖ X1[0] in H4 indexed by ∆P [0, 5, 14, 19]. Thus, H4 has 232 rows,

each of which has 28 values, on average.

• H5: Guess the values of ∆X1[5] ‖ X1[4, 5, 6, 7], and compute the values ofW0[4, 9, 18, 23] ‖ ∆W0[4, 9,

18, 23]. Store W0[4, 9, 18, 23] ‖ ∆X1[5] ‖ X1[5] in H5 indexed by ∆P [4, 9, 18, 23]. Thus, H5 has 232 rows,

each of which has 28 values, on average.

• H6: Guess the values of ∆X1[14] ‖ X1[12, 13, 14, 15]. Compute the values of W0[12, 17, 26, 31] ‖

∆W0[12, 17, 26, 31]. Store W0[12, 17, 26, 31] ‖ ∆X1[14] ‖ X1[14] in H6 indexed by ∆P [12, 17, 26, 31].

Thus, H6 has 232 rows, each of which has 28 values, on average.

• H7: Guess the values of ∆X1[19] ‖ X1[16, 17, 18, 19]. Compute the values of W0[16, 21, 30, 3] ‖

∆W0[16, 21, 30, 3]. Store W0[16, 21, 30, 3] ‖ ∆X1[19] ‖ X1[19] in H7 indexed by ∆P [16, 21, 30, 3]. Thus,

H7 has 232 rows, each of which has 28 values, on average.

• Ha
8 (for the active bytes of the input difference of the impossible differentials at 0): Guess the values

of ∆X2[0] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 14, 19] ‖ ∆W1[0, 5, 14, 19]. Store W1[0, 5, 14, 19]

in Ha
8 indexed by ∆W1[0, 5, 14, 19]. Thus, H

a
8 has 232 rows, each of which has 28 values, on average.
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• Hb
8 (for the active bytes of the input difference of the impossible differentials at 1): Guess the values

of ∆X2[1] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 14, 19] ‖ ∆W1[0, 5, 14, 19]. Store W1[0, 5, 14, 19]

in Hb
8 indexed by ∆W1[0, 5, 14, 19]. Thus, H

b
8 has 232 rows, each of which has 28 values, on average.

• Hc
8 (for the active bytes of the input difference of the impossible differentials at 2): Guess the values

of ∆X2[2] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 14, 19] ‖ ∆W1[0, 5, 14, 19]. Store W1[0, 5, 14, 19]

in Hc
8 indexed by ∆W1[0, 5, 14, 19]. Thus, H

c
8 has 232 rows, each of which has 28 values, on average.

• Hd
8 (for the active bytes of input difference of impossible differentials at 3): Guess the values of

∆X2[3] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 14, 19] ‖ ∆W1[0, 5, 14, 19]. Store W1[0, 5, 14, 19] in

Hd
8 indexed by ∆W1[0, 5, 14, 19]. Thus, H

d
8 has 232 rows, each of which has 28 values, on average.

The round subkeys can be retrieved as follows.

(1) Access H1 to compute ARK10[0, 29, 22, 19]. Because ARK10[0, 29, 22, 19] = Z10[0, 29, 22, 19] ⊕

C[0, 29, 22, 19]. Thus, we obtain 28 values of ARK10[0, 29, 22, 19].

(2) Access H2 to compute ARK10[28, 25, 18, 15]. Because ARK10[28, 25, 18, 15] = Z10[28, 25, 18, 15]⊕

C[28, 25, 18, 15]. Thus, there are 28+8 = 216 values of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15].

(3) Access Ha
3 and Hb

3 to compute ARK∗
9[0, 29]. Because ARK∗

9[0, 29] = Z9[0, 29] ⊕ W ∗
9 [0, 29], there

are 28 + 28 = 29 possible values for ARK∗
9[0, 29]. Thus, there are 216+9 = 225 values of ARK10[0, 29, 22,

19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29].

(4) Access H4 to compute ARK0[0, 5, 14, 19]. Because ARK0[0, 5, 14, 19] = X0[0, 5, 14, 19]⊕ P [0, 5, 14,

19], we obtain 225+8 = 233 values of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29] ‖ ARK0[0,

5, 14, 19].

(5) Access H5 to compute ARK0[4, 9, 18, 23]. Because ARK0[4, 9, 18, 23] = X0[4, 9, 18, 23]⊕ P [4, 9, 18,

23], we obtain 233+8 = 241 values of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29] ‖ ARK0[0,

5, 14, 19] ‖ ARK0[4, 9, 18, 23].

(6) Access H6 to compute ARK0[12, 17, 26, 31]. Because ARK0[12, 17, 26, 31] = X0[12, 17, 26, 31] ⊕

P [12, 17, 26, 31], we obtain 241+8 = 249 values of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29]

‖ ARK0[0, 5, 14, 19] ‖ ARK0[4, 9, 18, 23] ‖ ARK0[12, 17, 26, 31].

(7) AccessH7 to compute ARK0[16, 21, 30, 3]. Because ARK0[16, 21, 30, 3] = X0[16, 21, 30, 3]⊕P [16, 21,

30, 3], we get 249+8 = 257 values of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29] ‖ ARK0[0, 5,

14, 19] ‖ ARK0[4, 9, 18, 23] ‖ ARK0[12, 17, 26, 31] ‖ ARK0[16, 21, 30, 3].

(8) Access Ha
8 , H

b
8 , H

c
8 and Hd

8 to compute ARK1[0, 5, 14, 19]. Because ARK1[0, 5, 14, 19] = W1[0, 5, 14,

19]⊕X1[0, 5, 14, 19], there are 2
10 possible values of ARK1[0, 5, 14, 19]. Finally, we obtain 257+10 = 267 val-

ues of ARK10[0, 29, 22, 19] ‖ ARK10[28, 25, 18, 15] ‖ ARK∗
9[0, 29] ‖ ARK0[0, 5, 14, 19] ‖ ARK0[4, 9, 18, 23] ‖

ARK0[12, 17, 26, 31] ‖ ARK0[16, 21, 30, 3] ‖ ARK1[0, 5, 14, 19].

There are 30 bytes of round subkeys involved in our attack. For each plaintext-ciphertext pair, approx-

imately 267 possible round subkeys are removed. Thus, the probability that a wrong key is not discarded

for one plaintext-ciphertext pair is 1− 267−240 = 1− 2−173. After filtering through 2n+63 pairs, there are

approximately 2240 × (1 − 2−173)2
n+63

= 2120 remaining candidates for 128 bits of the master key when

n = 116.4. Because of the key schedule, ARK0[1, 29] is calculated by ARK0[29] = ARK0[0] ⊕ ARK1[0]

and ARK0[1] = ARK0[30]⊕ARK1[1], ARK1[1] can be deduced by ARK1[1] = ARK0[5]⊕ARK1[5]. The

remaining 14 bytes of the master keys are guessed exhaustively. The time complexity of this step is

approximately 2× 2120 × 2112 ≈ 2233. The time complexity to access the precomputation tables is domi-

nated by the last step, that is, approximately 2116.4+63+67 ÷ (8× 10) ≈ 2240.1. Therefore, the entire time

complexity is approximately 2240.1 encryptions, the data complexity is approximately 2116.4+128 = 2244.4

chosen plaintexts, and the memory complexity is approximately 2116.4+63 × 4 = 2181.4 256-bit blocks.

4 Improved impossible differential attacks on Rijndael-224-224/256

In this section, we attack 10-round Rijndael-224-256 and 9-round Rijndael-224-224 based on 6-round

impossible differential paths.
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Figure 3 A 6-round impossible differential path of Rijndael-224-224/256.

4.1 6-Round impossible differentials of Rijndael-224-224/256

Similarly, we construct four 6-round impossible differentials of Rijndael-224-224/256 in Proposition 4.

Proposition 4 ([29]). In our attacks on Rijndael-224-224/256, we use four impossible differentials as

follows:

∆′
1 : (α, 0(8), 0(8), 0(8), 0(192)) 9 (0(8), β, γ, δ, 0(192)),∆

′
2 : (0(8), α, 0(8), 0(8), 0(192)) 9 (0(8), β, γ, δ, 0(192)),

∆′
3 : (0(8), 0(8), α, 0(8), 0(192)) 9 (0(8), β, γ, δ, 0(192)),∆

′
4 : (0(8), 0(8), 0(8), α, 0(192)) 9 (0(8), β, γ, δ, 0(192)),

where α, β, γ, and δ are non-zero bytes. In Figure 3, we show the structure of ∆′
1.

4.2 Impossible differential attacks on 10-round Rijndael-224-256

Based on the 6-round impossible differentials of Rijndael-224-224/256 in Subsection 4.1, we add two

rounds at the top and two rounds at the bottom to attack 10-round Rijndael-224-256, as shown in

Figure 4. The attack procedure is provided in the following.

Data collection. We choose 2n structures of plaintexts, each of which takes all the possible values

at (0, 4, 5, 7, 8, 9, 10, 13, 14, 16, 18, 19, 21, 23, 26, 27) bytes and the other bytes are fixed. Thus, a structure

contains 2128 plaintexts that form approximately 2255 pairs of plaintexts. We encrypt these plaintexts

and build a hash table to store the plaintext-ciphertext pairs whose ciphertext differences are non-zero

at (0, 11, 15, 18, 21, 22, 24, 25) bytes. Finally, 2−8×20 × 2n+255 = 2n+95 pairs remain.

Key recovery. Before describing key recovery, we build precomputation tables to extract the related

round subkeys.
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Figure 4 Impossible differential attacks on 10-round Rijndael-224-256.

• H1: Guess the values of ∆W ∗
9 [0] ‖ W ∗

9 [0, 1, 2, 3]. Compute the value of Z10[0, 15, 22, 25] ‖ ∆Z10[0, 15,

22, 25]. Store Z10[0, 15, 22, 25] ‖ W ∗
9 [0] ‖ ∆W ∗

9 [0] inH1 indexed by ∆C[0, 15, 22, 25], where ∆C[0, 15, 22, 25]

= ∆Z10[0, 15, 22, 25]. Thus, H1 has 232 rows, each of which has 28 values, on average.

• H2: Guess the values of ∆W ∗
9 [25] ‖ W ∗

9 [24, 25, 26, 27]. Compute the value of Z10[11, 18, 21, 24] ‖

∆Z10[11, 18, 21, 24]. Store Z10[11, 18, 21, 24] ‖ ∆W ∗
9 [25] ‖ W ∗

9 [25] in H2 indexed by ∆C[11, 18, 21, 24],

where ∆C[11, 18, 21, 24] = ∆Z10[11, 18, 21, 24]. Thus, H2 has 232 rows, each of which has 28 values, on

average.

• H3 : Guess the values of ∆X8[0]. Because ∆X8[i] = 0(i = 2, 3) and ∆W ∗
8 [0] = 0, the value of ∆X8[1]

can be computed. Next, guess 216 values of X8[0, 1] to deduce the values of Z9[0, 25] ‖ ∆Z9[0, 25]. Store

the values of Z9[0, 25] in Ha
3 indexed by ∆W9[0, 25]. Thus, H

a
3 has 216 rows, each of which has 28 values,

on average.

• H4: Guess the values of ∆X1[0] ‖ X1[0, 1, 2, 3]. Compute the value of W0[0, 5, 10, 19] ‖ ∆W0[0, 5, 10,

19]. Store W0[0, 5, 10, 19] ‖ ∆X1[0] ‖ X1[0] in H4 indexed by ∆P [0, 5, 10, 19]. Thus, H4 has 232 rows,

each of which has 28 values, on average.

• H5: Guess the values of ∆X1[5] ‖ X1[4, 5, 6, 7]. Compute the value of W0[4, 9, 14, 23] ‖ ∆W0[4, 9, 14,

23]. Store W0[4, 9, 14, 23] ‖ ∆X1[5] ‖ X1[5] in H5 indexed by ∆P [4, 9, 14, 23]. Thus, H5 has 232 rows,

each of which has 28 values, on average.

• H6: Guess the values of ∆X1[10] ‖ X1[8, 9, 10, 11]. Compute the values of W0[8, 13, 17, 23] ‖

∆W0[8, 13, 17, 23]. Store W0[8, 13, 17, 23] ‖ ∆X1[10] ‖ X1[10] in H6 indexed by ∆P [8, 13, 17, 23]. Thus,

H6 has 232 rows, each of which has 28 values, on average.
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• H7: Guess the values of ∆X1[19] ‖ X1[16, 17, 18, 19]. Compute the values of W0[16, 21, 26, 7] ‖

∆W0[16, 21, 26, 7]. Store W0[16, 21, 26, 7] ‖ ∆X1[19] ‖ X1[19] in H7 indexed by ∆P [16, 21, 26, 7]. Thus,

H7 has 232 rows, each of which has 28 values, on average.

• Ha
8 : Guess the values of ∆X2[0] ‖ X2[0, 1, 2, 3]. Compute the values ofW1[0, 5, 10, 19] ‖ ∆W1[0, 5, 10,

19]. Store W1[0, 5, 10, 19] in Ha
8 indexed by ∆W1[0, 5, 10, 19]. Thus, H

a
8 has 232 rows, each of which has

28 values, on average.

• Hb
8 : Guess the values of ∆X2[1] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 10, 19] ‖ ∆W1[0, 5, 10,

19]. Store W1[0, 5, 10, 19] in Hb
8 indexed by ∆W1[0, 5, 10, 19]. Thus, H

b
8 has 232 rows, each of which has

28 values, on average.

• Hc
8 : Guess the values of ∆X2[2] ‖ X2[0, 1, 2, 3]. Compute the values of W1[0, 5, 10, 19] ‖ ∆W1[0, 5, 10,

19]. Store W1[0, 5, 10, 19] in Hc
8 indexed by ∆W1[0, 5, 10, 19]. Thus, H

c
8 has 232 rows, each of which has

28 values, on average.

• Hd
8 : Guess the values of ∆X2[3] ‖ X2[0, 1, 2, 3]. Compute the values ofW1[0, 5, 10, 19] ‖ ∆W1[0, 5, 10,

19]. Store W1[0, 5, 10, 19] in Hd
8 indexed by ∆W1[0, 5, 10, 19]. Thus, H

d
8 has 232 rows, each of which has

28 values, on average.

The round subkeys can be retrieved as follows.

(1) Access H1 to compute ARK10[0, 15, 22, 25]. Because ARK10[0, 15, 22, 25] = Z10[0, 15, 22, 25] ⊕

C[0, 15, 22, 25]. Thus, we obtain 28 values of ARK10[0, 15, 22, 25].

(2) Access H2 to compute ARK10[11, 18, 21, 24]. Because ARK10[11, 18, 21, 24] = Z10[11, 18, 21, 24]⊕

C[11, 18, 21, 24]. Thus, there are 28+8 = 216 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24].

(3) Access H3 to compute ARK∗
9[0, 25]. Because ARK∗

9[0, 25] = Z9[0, 25] ⊕ W ∗
9 [0, 25], we obtain

216+8 = 224 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25].

(4) Access H4 to compute ARK0[0, 5, 10, 19]. Because ARK0[0, 5, 10, 19] = W0[0, 5, 10, 19]⊕ P [0, 5, 10,

19], we obtain 224+8 = 232 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25] ‖ ARK0[0,

5, 10, 19].

(5) Access H5 to compute ARK0[4, 9, 14, 23]. Because ARK0[4, 9, 14, 23] = W0[4, 9, 14, 23]⊕ P [4, 9, 14,

23], we obtain 232+8 = 240 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25] ‖ ARK0[0,

5, 10, 19] ‖ ARK0[4, 9, 14, 23].

(6) Access H6 to compute ARK0[8, 13, 17, 27]. Because ARK0[8, 13, 17, 27] = W0[8, 13, 17, 27]⊕P [8, 13,

17, 27], we obtain 240+8 = 248 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25] ‖

ARK0[0, 5, 10, 19] ‖ ARK0[4, 9, 14, 23] ‖ ARK0[8, 13, 17, 27].

(7) AccessH7 to compute ARK0[16, 21, 26, 7]. Because ARK0[16, 21, 26, 7] = W0[16, 21, 26, 7]⊕P [16, 21,

26, 7], we obtain 248+8 = 256 values of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25] ‖

ARK0[0, 5, 10, 19] ‖ ARK0[4, 9, 14, 23] ‖ ARK0[8, 13, 17, 27] ‖ ARK0[16, 21, 26, 7].

(8) AccessHa
8 , H

b
8 , H

c
8 , andHd

8 to compute ARK1[0, 5, 10, 19]. Because ARK1[0, 5, 10, 19] = W1[0, 5, 10,

19]⊕X1[0, 5, 10, 19], there are 2
10 possible values of ARK1[0, 5, 10, 19]. Finally, we obtain 256+10 = 266 val-

ues of ARK10[0, 15, 22, 25] ‖ ARK10[11, 18, 21, 24] ‖ ARK∗
9[0, 25] ‖ ARK0[0, 5, 10, 19] ‖ ARK0[4, 9, 14, 23] ‖

ARK0[8, 13, 17, 27] ‖ ARK0[16, 21, 26, 7] ‖ ARK1[0, 5, 10, 19].

Thirty bytes of round subkeys are involved in our attack. For each plaintext-ciphertext pair, approxi-

mately 266 possible round subkeys are removed. Thus, the probability that a wrong key is not discarded

for one plaintext-ciphertext pair is approximately 1− 266−240 = 1− 2−174. After filtering through 2n+95

pairs, there are approximately 2240× (1−2−174)2
n+95

= 1 remaining candidates for 128 bits of the master

key when n = 86.4. Therefore, the entire time complexity is approximately 286.4+95+66÷ (7×10) ≈ 2241.3

encryptions, the data complexity is approximately 286.4+128 = 2214.4 chosen plaintexts, and the memory

complexity is approximately 286.4+95 × 4 = 2183.4 256-bit blocks.

4.3 Impossible differential attacks on 9-round Rijndael-224-224

By appending one round at the top and two rounds at the bottom of the impossible differentials in

Subsection 4.1, we mount two attacks on 9-round Rijndael-224-224. In one attack, the intermediate

state X7 by applying the MC operation on the output differences of the impossible differentials has two
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Figure 5 The first impossible differential attack on 9-round Rijndael-224-224.

non-zero bytes, as shown in Figure 5. In the other attack, the intermediate state X7 after using the MC

operation on the output differences of the impossible differentials has three non-zero bytes, as shown in

Figure 6.

For the first attack, we choose 2n structures of plaintexts. Each structure takes approximately 263

pairs of plaintexts. After filtering according to the ciphertext differences, 2−8×20 × 2n+63 = 2n−97 pairs

remain. In the key recovery phase, 14 round subkeys are involved in the analysis, which take 2112

possible values. Similarly, we build pre-computation tables to retrieve the round subkeys. For each

plaintext-ciphertext pair, we remove 234 possible round subkeys. Thus, the probability that a wrong key

remains with one pair is approximately 1 − 234−112 = 1 − 2−78. After filtering by 2n−97 pairs, we have

2112× (1− 2−78)2
n−97

= 2−128 remaining candidates for n = 182.4. Therefore, the entire time complexity

is approximately 2182.4−97+34 ÷ (7 × 9) ≈ 2113.4 encryptions. The data complexity is approximately

2182.4+32 = 2214.4 chosen plaintexts. The memory complexity is approximately 2182.4−97 × 4 = 287.4

224-bit blocks.

For the second attack, we choose 2n structures of plaintexts. Each structure takes approximately 263

pairs of plaintexts. We encrypt them and store the pairs that satisfy the ciphertext differences. Thus,

2−8×16 × 2n+63 = 2n−65 pairs remain. In the key recovery phase, 19 round-keys are involved in the

analysis, which take 2152 possible values. For each pair, we remove approximately 250 possible values by

constructing precomputation tables. Thus, the probability that a wrong key is not discarded with one

pair is 1 − 250−152 = 1 − 2−102. After filtering 2n−65 pairs, we have 2152 × (1 − 2−102)2
n−65

= 2−128
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Figure 6 The second impossible differential attack on 9-round Rijndael-224-224.

remaining candidates for 32 bits of the master key when n = 174.6. Therefore, the entire time complexity

is approximately 2174.6−65+50 ÷ (7 × 9) ≈ 2153.6 encryptions. The data complexity is approximately

2174.6+32 = 2206.6 chosen plaintexts. The memory complexity of the attack is approximately 2174.6−65 ×

4 = 2111.6 224-bit blocks.

5 Conclusion

In this paper, we presented multiple impossible differential cryptanalyses of 10-round Rijndael-256-256,

9-round Rijndael-224-224, and 10-round Rijndael-224-256. In all attacks, we constructed precomputation

tables to search the related round subkeys so that the time complexities could be reduced. For 10-

round Rijndael-256-256, our attack required approximately 2244.4 chosen plaintexts, 2240.1 encryptions,

and 2181.4 256-bit blocks. For 10-round Rijndael-224-256, our attack required approximately 2214.4 chosen

plaintexts, 2241.3 encryptions, and 2183.4 224-bit blocks. For 9-round Rijndael-224-224, our attack required

approximately 2214.4 chosen plaintexts, 2113.4 encryptions, and 287.4 224-bit blocks, or 2206.6 chosen

plaintexts, 2153.6 encryptions, and 2111.6 224-bit blocks.
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