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Dear editor,
Sparse signal processing offers a framework for
synthetic aperture radar (SAR) imaging [1, 2]. As
an efficient tool in sparse signal processing, L1

minimization is often used in the reconstruction of
SAR images. When implemented in SAR imag-
ing [3–5], L1 minimization offers significant im-
provement in the properties by suppressing the
sidelobes and clutter. However, L1 minimization
is known to be a biased estimator. The L1 min-
imization based algorithms such as the iterative
soft thresholding algorithm (IST) and complex ap-
proximate message passing (CAMP) often under-
estimate the amplitude of the signal [6,7]. In SAR
imaging, the estimated radar cross section (RCS)
is related to the image pixel intensity. The es-
timated RCS is essential for the quantitative use
of the SAR data. It can be used as input data
in numerous inverse problems to derive physical
quantities such as soil moisture level, biomass and
salinity. The underestimation of the L1 minimiza-
tion can cause radiometric errors and negatively
affects the quantitative use of the SAR data.

In [7], a generalized minimax-concave (GMC)
penalty is proposed. As a generalization of the
L1 norm, the GMC is a non-convex penalty that
does not underestimate the intensity of a sparse
solution to the extent that L1 penalty does. Con-
currently, the cost function with GMC is convex,

and its solution has no suboptimal local minima.
In this study, we present a GMC based SAR

imaging method to avoid the underestimation of
L1 regularization. The GMC problem can be re-
constructed via a forward-backward (FB) algo-
rithm. The proposed method can avoid the under-
estimation of L1 regularization in the noisy case as
well. The simulation and real data results demon-
strate the validity of the proposed method.
L1 regularization based SAR imaging. The SAR

system model is expressed as

s = Φσ + n, (1)

where s is the vector form of the echo data, σ is the
vector form of the SAR image, n is the additive
noise, and Φ is the corresponding measurement
matrix between s and σ.

The usual technique to solve (1) is to minimize
the regularized linear least square cost function

min
1

2
‖s−Φσ‖22 + λψ(σ), (2)

where λ is the regularization parameter, and ψ is
the regularizer. The L1 norm is classically used as
a regularizer in such cases because it reduces spar-
sity most effectively among convex regularizers.

When the penalty is L1 norm, we can solve (2)
with IST. The iteration formula is

σi+1 = fλζ(σ
i − ζΦH(s−Φσi)), (3)
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where 0 < ζ < ‖Φ‖−2
2 and the soft thresholding

function is

fλζ(x) =

{

sgn(x)(x− λζ), |x| > λζ,

0, |x| < λζ.
(4)

Generalized minimal concave based SAR imag-

ing. In SAR imaging, the estimated RCS is related
to the pixel intensity of the SAR images. The un-
derestimation of the SAR pixel intensity based on
L1 minimization can cause SAR radiometric er-
rors. In this section, we propose a GMC penalty
based SAR imaging method without the underes-
timation of the image pixel intensity.

The GMC can be regarded as a multivariate
generation of minimax-convex (MC) penalty. The
MC penalty is utilized to show how the GMC can
systematically avoid underestimation.

Consider the following function:

f(x) =
1

2
(y − ax)2 + λψb(x), (5)

where λ > 0, a ∈ R and b ∈ R. The scaled MC
pealty ψ is

ψb(x) =

{

|x| − 1
2b

2x2, |x| 6 1/b2,
1

2b2 , |x| > 1/b2.
(6)

If
b2 6 a2/λ, (7)

then f is convex [7].
When f is convex, the minimizer of f is given

by firm thresholding:

firm(y;µ1, µ2)=











0, |y| < µ1,

µ2
|y|−µ1

µ2−µ1

sign(y), µ1 6 |y| 6 µ2,

y, |y| > µ2,

(8)
where µ1 and µ2 are the respective lower and up-
per bounds of the firm function. As µ2 → µ1

or µ2 → ∞, the firm thresholding function ap-
proaches the hard or soft thresholding functions,
respectively. Figure A1 shows the comparison of
soft and firm thresholding function. Since the firm
function equals the identity for large values of its
argument, it does not underestimate large ampli-
tude values.

The MC penalty can be generalized into a mul-
tivariate form known as GMC. We define the GMC
penalty function as

ψB(x) = ‖x‖ − SB(x), (9)

where SB(x) is

SB(x) = inf
v

{

‖v‖1 +
1

2
‖B(x− v)‖22

}

. (10)

For a function

F (x) =
1

2
‖y−Ax‖22 + λψB(x) (11)

to maintain the convexity of the regularized least
square cost function, the matrix B should satisfy

BHB �
1

λ
AHA. (12)

Given A, we simply set

B =
√

γ/λA, 0 6 γ 6 1. (13)

In practice, we use a nominal range of 0.5 6 γ 6

0.8.
The solution of (11) can be obtained using the

FB algorithm [8]. The FB algorithm involves only
simple computational steps and is summarized in
Algorithm 1.

Algorithm 1 Forward-backward algorithm for GMC based
SAR imaging

1: Input: Echo data y ∈ CN , measurement matrix
Φ ∈ CM×N , and number of the targets K;

2: Initialization: 0.5 6 γ 6 0.8, ρ = max{1, γ/(1 −
γ)}‖ΦHΦ‖, ζ: 0 < ζ < 2/ρ.

3: Iteration:

4: for i = 1 : I do

5: w
i = x

i − ζΦH(Φ(xi + γ(vi − x
i)) − y);

6: µ
i = vi − ζγΦH(Φ(vi − x

i));
7: λ = |wi|K+1/ζ;
8: x

i = fλζ(w
i);

9: v
i = fλζ(µ

i);
10: end for

11: Output: x = x
i.

Simulation and analysis. In this section, the
simulated and real data are used to validate the
proposed method.

In the simulation, only the one-dimensional case
is considered; the measurement matrix is a chirp
matrix, and the bandwidth of the chirp signal is
600 MHz. The scatterings of the targets are set
with different amplitudes.

In the first simulation, Gaussian white noise is
added to the simulated data, and the signal-to-
noise ratio (SNR) is 5 dB. Subsequently, we con-
struct the scene with IST, CAMP, and GMC. Fig-
ure B1 shows the reconstructed result. It is shown
that GMC matches the true scattering intensities
better than IST and CAMP. IST and CAMP un-
derestimate the intensities of the targets. This
phenomenon is more obvious for weak scattering
targets. Moreover, it is shown that the underesti-
mation is avoided in the result of GMC.

In the second simulation, the reconstruction
performances of IST, CAMP, and GMC under dif-
ferent levels of Gaussian white noise are tested. We
repeated the Monte Carlo simulation 100 times.
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The performance is evaluated by the average rel-
ative mean square error (RMSE) which is formu-
lated as

RMSE = ‖x− x0‖2/‖x0‖2, (14)

where x is the reconstructed result and x0 is the
ground truth.

Figure B2 shows the RMSE of the methods as a
function of SNR. It is indicated that GMC can re-
cover the signal with less error and is more robust
to the noise compared with IST and CAMP.

Finally, the backhoe data set [9] is used to
demonstrate the effectiveness of the proposed
method. The carrier frequency is 10 GHz. The
bandwidth of the signal is 0.5 GHz. The synthetic
aperture angle is 5◦. In the reconstruction of the
GMC, γ = 0.8.

The results of the different methods are illus-
trated in Figure C1. Figure C1(a)–(f) show the
results of IST, CAMP and GMC with the noiseless
and noisy data. The noisy data is the correspond-
ing form of the noiseless data that is corrupted by
Gaussian white noise. The SNR is 15 dB.

To analyze the imagery details, the azimuth
slice of the results is shown in Figure C2. It is
demonstrated that in the noiseless case, the scat-
terings of IST, CAMP, and GMC are highly over-
lapped. In the noisy case, GMC matches the scat-
tering of the noiseless case better than IST and
CAMP. Therefore, the GMC based method can
avoid the underestimation of the SAR image pixel
intensities and is more robust to noise compared
with the L1 based method.

Conclusion. In this study, a SAR imaging
method based on GMC is proposed. GMC is a
nonconvex penalty, which can avoid bias. The cost
function with GMC is convex, and convex opti-
mization methods such as the forward-backward
algorithm can be implemented to solve it. It is
shown that the proposed method can reconstruct

the SAR pixel intensity accurately and avoid un-
derestimation to the extent that L1 does. In addi-
tion, the proposed method is more robust to noise.
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