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Appendix A Feasibility check of the problem (P1) with a given τ0

In order to check the feasibility of the problem (P1) with a given τ0, we obtain the maximum PU rate by assuming that all

the subcarriers are allocated to the PU in the WIT phase as given by
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It is easy to see that the objective function in (A1) is maximized when the constraint in (A3) is satisfied with equality,

and a higher value of
∑N

i=1
pich

i
sp can achieve a higher objective function value in (A1). In order to maximize

∑N
i=1

pich
i
sp,

it is apparent that assigning all the available power to the subcarrier with the maximum hi
sp is optimal, i.e., pjc = P,j =

argmaxi hi
sp, and pic = 0, i 6= j. Now, the problem in (A1) is simplified as

max
{pip>0}

1− τ0

N

N
∑

i=1

ln

(

1 +
piph

i
p

σ2

)

(A4)

s.t.
N
∑

i=1

pip(1− τ0) = ζPhj
spτ0. (A5)

The above problem is convex and thus can be easily solved by the Lagrange multiplier method as pip =

(
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p
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,

where (.)+ = max(., 0) and λ is numerically obtained from (A5). The problem (P1) with a given τ0 is feasible only if the

obtained maximum objective function value in (A4) is larger than or equal to Rmin, otherwise the problem is infeasible.

Appendix B Proof of Proposition 1

The partial Lagrangian of the problem (P1) with a given τ0 is given as
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where µ1 and µ2 are the non-negative dual variables. We can rewrite the Lagrangian as
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The dual function G(µ1, µ2) is then obtained as the maximum objective function value of the following problem as given

by

max
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Rp > Rmin. (B8)

It is observed that {pic} is not coupled with {pis} and {pip} in the above problem. Thus, we can decouple the above problem

into two problems as given by

max
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and
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The problem in (B9) is shown to belong to linear programming and the optimal solution can be easily obtained as pkc =

P,k = argmaxi µ1h
i
s + µ2h

i
sp, and pic = 0, i 6= k. According to [1], the duality gap of the problem in (B10) is negligible

for a large number of subcarriers and thus we can solve the problem in (B10) in the dual domain. The Lagrangian of the

problem in (B10) is given by

L
′

({pis}, {p
i
p}, ν) = (1− τ0)

N
∑

i=1

L2(p
i
s, p

i
p, µ1, µ2) + ν

(

1− τ0

N

N
∑

i=1

ln

(

1 +
piph

i
p

σ2

)

− Rmin

)

, (B11)

where ν is the non-negative dual variable associated with the constraint in (B8). Then, the dual function G
′

(ν) of the

problem in (B10) is given by

G
′

(ν) = max
{pis>0},{pip>0}

L
′
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i
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s.t. constraint (B7).

It is observed that the optimization variables pis and pip for different subcarriers are decoupled in the above problem. Thus,

the above problem is decoupled into subproblems, one for each subcarrier as given by
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s.t. pisp
i
p = 0, (B14)

for i = 1, . . . , N. According to the constraint (B14), either the SU or the PU occupies the subcarrier in the WIT phase.

Thus, we can solve the above problem by first deriving the optimal pis assuming that the SU occupies the subcarrier i and

the optimal pip assuming that the PU occupies the subcarrier i, and then selecting the one with a higher objective function

value. It is easy to verify that the objective function in (B13) is convex with respect to pis and pip. Thus, by assuming that

subcarrier i is allocated to the SU or the PU, the optimal pis and pip can be obtained as
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respectively. Then, the solution to the problem in (B13) is pis = p̂is, p
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. The dual variable ν can

be obtained by solving the dual problem as given by

min
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The above problem can be solved efficiently by the subgradient method [2]. Finally, the dual variables µ1 and µ2 can be

obtained by solving the dual problem as given by

min
µ1>0,µ2>0

G(µ1, µ2). (B18)

The above problem can be also solved efficiently via the subgradient method.

Appendix C The heuristic design

In this appendix, we propose the heuristic design. In order to let the PU harvest more energy to satisfy its minimum rate

constraint, the value of pic is optimized to maximize the energy harvested by the PU as given by

max
{pic>0}

ζ

N
∑

i=1

pich
i
spτ0 (C1)

s.t.
N
∑

i=1

pic 6 P. (C2)

It can be verified easily that the optimal solution to the above problem is p
j
c = P,j = argmaxi hi

sp, and pic = 0, i 6= j.

Then, we assign subcarriers to the PU with high priority in the WIT phase for satisfying the minimum rate constraint.

Let Np and Ns denote the sets of subcarriers allocated to the PU and the SU in the WIT phase, respectively. We initialize

Np as Np = {i : i = 1, . . . , N} and optimize {pip > 0, i ∈ Np} as
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The above problem is convex and the optimal solution is pip =
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is larger than Rmin, then we exclude the subcarrier with the minimum hi
p from

the set Np and solve the problem in (C3)-(C4) with the new set Np. The above procedure terminates until the achieved PU

rate is no larger than Rmin and the last subcarrier excluded from the set Np shall be included in the set Np if the achieved

PU rate is smaller than Rmin. Then, the set Ns is obtained as Ns = {i : i = 1, . . . , N}\Np and the value of {pis, i ∈ Ns} is

optimized as
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The above problem has similar structure as the problem in (C3)-(C4) and the optimal solution is pis =
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where β is obtained numerically from
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