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Dear editor,
Piecewise planar stereo methods can approxi-
mately reconstruct the complete structures of a
scene by overcoming challenging difficulties (e.g.,
poorly textured regions) that pixel-level stereos
appear powerless. In general, these methods have
three basic steps: (1) over-segmenting the image
into several regions (superpixels) without overlap-
ping; (2) generating candidate planes from ini-
tial 3D points; (3) assigning the optimal plane for
each superpixel using a global method. However,
such methods can be unreliable and inefficient be-
cause of three reasons: (1) inaccurate image over-
segmentation (generating superpixels based only
on low-level image features); (2) incomplete can-
didate planes (failing to generate complete candi-
date planes from sparse 3D points); (3) unreliable
regularization terms (forcing two neighboring su-
perpixels with similar appearances to be assigned
the same plane).

To solve these problems, in this study, a novel
plane assignment cost is first constructed by in-
corporating structure priors and high-level image
features obtained by Convolutional Neural Net-
work (CNN). Then, the scene structures are recon-
structed in a progressive manner that jointly op-
timizes image regions and their associated planes,
followed by a global plane assignment optimization
under a Markov random field (MRF) framework.

Methodology. Given the current image Ir and its
left and right neighboring images {Ni} (i = 1, 2),

we define the following cost of assigning a plane
Hs to a superpixel s ∈ Ir.

E (s,Hs) = E1 (s,Hs)+γ
∑

t∈M(s)

E2 (Hs, Ht) , (1)

where E1 (s,Hs) and E2 (Hs, Ht) denote the data
and regularization terms, respectively, and M (s)
denotes the set of reliable superpixels (i.e., they
have been assigned reliable planes); the constant
γ is the weight of the regularization term.

In (1), E1 (s,Hs) is defined by incorporating
low-level and high-level image features based on
the weight ρ:

E1 (s,Hs) = Epho (s,Hs) + ρEcnn (s,Hs) . (2)

In (2), Epho (s,Hs) is defined based on low-level
image features and 3D point visibility constraints.

Epho (s,Hs) =
1

2 |s|

2
∑

i=1

∑

p∈s

Cs (H
p
s , Ni) , (3)

where |s| denotes the total number of pixels in su-
perpixel s and Cs (H

p
s , Ni) is defined as

Cs(H
p
s , Ni)

=











L(Hp
s , Ni), D(Hs(p)) = NULL,

λocc, d(Hs(p)) > D(Hs(p)),

λerr, d(Hs(p)) 6 D(Hs(p)),

(4)

where L (Hp
s , Ni) = min (‖Ir (p)−Ni (Hs (p))‖ , δ)

denotes the absolute difference of the normalized
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color (i.e., the value is between 0 and 1), Hs (p) ∈
Ni denotes the corresponding point in the image
Ni induced by the plane Hs with respect to the
pixel p ∈ s, the parameter δ is a truncation thresh-
old to address the robustness concern related to oc-
clusion regions, the constants λocc and λerr are the
occlusion penalty and free-space violation penalty,
respectively, and d(x) and D(x) denote the esti-
mated depth value from the current plane and re-
liable depth value from the initial 3D points, re-
spectively.

Using high-level image features, we first extract
three image patches that appropriately contain su-
perpixel s ∈ Ir and the corresponding projected re-
gions {si} (i = 1, 2) in the images {Ni} (i = 1, 2),
and resize them to 224×224. Then, we simply con-
sider these three image patches as a 3-channel im-
age and adopt the VGG-M architecture proposed
in [1] to extract the features of the 3-channel im-
age. Finally, we directly feed the features to a
fully connected linear regression layer and use the
output as the plane assignment cost Ecnn (s,Hs)
based on the high-level image features.

In this study, the regularization term incorpo-
rates the angle prior and is defined as

E2 (Hs, Ht) =











Csim,

µCsim,

λdis,

Hs = Ht,

A (Hs, Ht) ∈ Ap,

otherwise,

(5)

where A (Hs, Ht) denotes the intersection angle
between plane Hs and Ht corresponding to super-
pixels s and t, respectively, Ap is the angel prior
and set to [30o, 45o, 60o, 90o,−60o,−45o,−30o].
The constants λdis and µ are the plane disconti-
nuity penalty and the relaxation parameter, re-
spectively.

In (5), Csim measures the color dissimilarity
of the superpixels and is defined as Csim =
1/

(

1 + e−‖c(s)−c(t)‖
)

, where ‖c (s)− c (t)‖ denotes
the difference between the mean colors (normal-
ized to a range of 0 to 1) corresponding to super-
pixels s and t, respectively.

According to the definition of the plane assign-
ment cost, superpixels and their associated planes
are jointly optimized through the following steps.

Step 1. Pre-processing. (1) Image Ir is first
oversegmented as a set of superpixels (R0) using
any of image oversegmentationmethods; (2) Initial
candidate planes (H0) are generated from initial
3D points using the multi-model fitting method [2];
(3) The scene vertical direction and the ground are
estimated according to the detected vanish points
and the location of the current camera.

Step 2. Jointly optimizing superpixels and their
associated planes. (1) For the superpixel s con-

taining initial 3D points, we select plane Hs from
H0 as its reliable plane according to the following
condition:

Ts =
(

E1 (s,Hs) < E
)

∧
(

N (Ps, Hs) < N
)

, (6)

where Ps denotes the 3D points that are projected
in superpixel s and N (Ps, Hs) denotes the aver-
age orthogonal distance between 3D points Ps and
plane Hs; E and N are the average values of the
minimal E1 (s,Hs) values and minimal N (Ps, Hs)
values of all superpixels containing 3D points, re-
spectively. (2) Let H and R denote the current
reliable planes and associated superpixels (other
superpixels are denoted by R). For each super-
pixel s ∈ R, we first detect the set Π of its neigh-
boring superpixels that have been assigned reliable
planes, and then rotate the plane with the axis by
the vertical direction and a point at the bound-
ary between superpixels s and t ∈ Π. Finally, we
consider all the planes with the angle prior Ap as
candidate planes of superpixel s. (3) We compute
the minimal E (s,Hs) value from these candidate
planes, and compare it with E. If E (s,Hs) < E,
we assign plane Hs (reliable plane) to superpixel
s, and save them to H and R, respectively. Other-
wise, we further resegment superpixel s and save
the resulting sub-superpixels to R. For the super-
pixels with E (s,Hs) values larger than a prede-
fiend threshold (i.e., 5E), we filter out them as un-
related regions (e.g., sky, ground) and avoid unnec-
essary plane assignments. (4) To enhance the relia-
bility, we select each superpixel s fromR according
to the plane assignment priority ρs = N(s) ·B(s),
where N(s) is the number of neighboring superpix-
els with reliable planes of superpixels s and B(s)
is the total length of the boundaries between su-
perpixel s and all superpixels in N(s).

Step 3. Globally optimizing plane assignments:
the plane assignments obtained in Step 2 are opti-
mized under the MRF framework [3]. The energy
function is defined as

E (H)

=
∑

s∈R



Epho (s,Hs) + ω
∑

t∈N (s)

E2 (Hs, Ht)



 ,

(7)

where R and H are respectively the set of su-
perpixels and their associated planes obtained in
Step 2, N (s) is the set of all neighboring super-
pixels of superpixel s, and the constant ω is the
weight of the regularization term.

Results and discussion. To evaluate the perfor-
mance of our method, we conducted experiments
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Figure 1 (Color online) Piecewise planar reconstruction. (a) Image Ir and 2D projected points from initial 3D points
(white points); (b) initial superpixels; (c) sample of resegmenting superpixels; (d) initial reliable planes; (e) initial plane
assignments; (f) final plane assignments; (g) top-view; (h) superpixels corresponding to final plane assignments.

on the life science building dataset1) (more experi-
mental results are shown in supporting informa-
tion). As indicated in Figure 1(b) and (d), at
first, only a small number of reliable planes as-
sociated with the superpixels could be determined
from initial sparse 3D points (Figure 1(a)) because
the majority of the superpixels (i.e., inaccurate su-
perpixels) straddled two or more planes and could
not be modeled as single planes.

Based on these initial reliable planes, as indi-
cated in Figure 1(e), our method resegmented in-
accurate superpixels (Figure 1(c)) according to the
plane assignment cost and simultaneously opti-
mized their associated planes. In the meantime,
unrelated regions (e.g., sky, ground) were reliably
filtered out, which significantly improved the over-
all efficiency and visualization effects. Clearly, be-
cause the initial plane assignments are basically
reliable, the global plane assignment optimization
could produce superior results as indicated in Fig-
ure 1(f) and (g). Figure 1(h) displays the super-
pixels corresponding to the optimized planes; it
can be observed that our method performs well
in reconstructing the boundaries between different
planes.

Moreover, our method performed quickly be-
cause of the guidance of the angle priors. It only
needs about 77 s in the sample shown in Figure 1.

Conclusion. Given initial sparse 3D points of
a scene, the study constructed an effective plane
assignment cost based on scene structure priors
and high-level image features obtained by CNN.
It then jointly optimized the superpixels and their
associated planes, followed by globally optimizing

initial scene structures under the MRF framework.
Experimental results confirm that our method can
effectively and efficiently reconstruct the complete
structures of the scene with high accuracy and ef-
ficiency.
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