• Supplementary File •

Pre-course student performance prediction with multi-instance multi-label learning

Yuling MA^{1,2}, Chaoran CUI³, Xiushan NIE^{3,1}, Gongping YANG¹, Kashif Shaheed¹ & Yilong YIN^{1*}

¹School of Computer Science and Technology, Shandong University, Jinan 250100, China; ²School of Information Engineering, Shandong Yingcai College, Jinan 250104, China; ³School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China

Appendix A Notations and algorithm

In this study, we use capital letters (e.g., X), bold lowercase letters (e.g., \mathbf{x}), and non-bold lowercase letters (e.g., \mathbf{x}) to denote sets, vectors, and scalars, respectively. We use \mathcal{X} and \mathcal{Y} to represent the input space (i.e., the set of all possible instances) and the output space (i.e., the class label set), respectively. If not otherwise clarified, all vectors are in column form. Table A1 shows notations used in this study, and Table A2 gives the proposed method.

Variable	Description
p	the target semester for which courses will be predicted
t	the number of semesters
k_i	the number of courses offered in the i^{th} semester
\mathbf{c}_{ij}	the description vector of the j^{th} course in the i^{th} semester
S	the student dataset for training
P	an unseen student sample
r	the number of the neighboring examples in S
с	the number of the citers in S
R_P^r	the set of P 's r nearest neighbors identified in S
C_P^c	the set of P 's c citers identified in S
$\vec{\delta}_{X_i}$	$ \mathcal{Y} $ -dimension vector about the sample X_i , which can be calculated using Eq.(A1)
W	weight matrix to be learned
$Y_i(l)$	the ground truth of X_i on the l^{th} class

 $\vec{\delta}_{X_i}$ in Table A1 can be obtained according to Eq.(A1):

$$\vec{\delta}_{X_{i}}(l) = \sum_{Z \in (R_{X_{i}}^{r} \cup C_{X_{i}}^{c})} [\![\vec{L}_{Z}(l) = = 1]\!], \quad l \in \mathcal{Y}.$$
(A1)

Here, for any predictor π , $[\pi]$ takes the value of 1 if π holds and 0 otherwise. $\vec{L}_Z(l)$ is the label of the sample Z on the l^{th} class.

^{*} Corresponding author (email: ylyin@sdu.edu.cn)

 Table A2
 The student performance prediction algorithm based on MIML-kNN

Inputs:
training set $S = \{(X_i, Y_i) \mid 1 \leq i \leq m\}, r, c, and an unseen student sample P$
Output:
L_P : label set for P
Begin
% training $%$
1. for each student sample $X_i \in S$
(1) Calculate $R_{X_i}^r$ and $C_{X_i}^c$ for X_i according to the similarity metric defined as Eq.(1) in the letter
(2) Calculate $\vec{\delta}_{X_i}$ according to Eq.(A1)
end for
2. Obtain weight matrix W through minimizing sum-of-squares error function defined as Eq.(2) in the letter
% testing $%$
3. Calculate R_P^r and C_P^c for P according to the similarity metric defined as Eq.(1) in the letter
4. Calculate $\vec{\delta}_P$ for P according to Eq.(A1)
5. for each target course (i.e., label) $l \in \mathcal{Y}$ do
(1) Calculate $f(P, l)$ according to Eq.(3) in the letter
(2) Set the final output $L_P(l)$ for the course l to be 1 if $f(P,l) > 0$ holds, otherwise -1.
end for
6. Output $L_P = \{l \mid L_P(l) = 1, l \in \mathcal{Y}\}$
End

Appendix B Datasets and Experimental results

After data preprocessing and integration, we obtain three MIML datasets, namely "BCS08_11", "BET08_11", and "GIM08_11", as shown in Table B1. The datasets "BCS08_11", "BET08_11", and "GIM08_11" correspond to three specialized subjects "electronic technology", "computer science and technology", and "computer information management", respectively. Table B2, Table B3, and Table B4 show the performance of each algorithm on the three datasets after balanced using "over sampling" technology. In order to understand the performance of each algorithm in detail, we also give their macro- $F_{1.5}$ values for each semester, which are shown as Figure B1, Figure B2 and Figure B3. Drawing from the experience in [1], we set the value of β to 1.5 in this study, in order to impose its preference over macro-R.

 Table B1
 Datasets for three different computer specialties

Collective Name	Size	Courses Number	Semesters Number	Positive/Negative samples number
BCS08_11	68	24	8	10 / 58
BET08_11	97	24	8	15 / 82
GIM08_11	228	15	5	34 / 194

Table B2 Results of each algorithm on BCS)8_1	1
--	------	---

Methods	a ve-acc \pm std.	macro-P \pm std.	macro-R \pm std.	macro- $F_{1.5}$
NB	0.7138 ± 0.1012	0.5008 ± 0.1402	$0.6611 {\pm}~ 0.1251$	0.6018
ANN	$0.7169 {\pm} 0.0658$	$0.4453 {\pm} 0.1269$	$0.5654{\pm}0.1575$	0.5221
LR	$0.6845 {\pm} 0.0761$	$0.4424{\pm}0.1192$	$0.6185 {\pm} 0.1294$	0.5510
SVM	$0.7010 {\pm} 0.1251$	$0.5145 {\pm} 0.1283$	$0.7614{\pm}0.1023$	0.6634
DT	$0.7475 {\pm} 0.0657$	$0.4543{\pm}0.1906$	$0.3490{\pm}0.1501$	0.3758
KNN	$0.6833 {\pm} 0.1185$	$0.4744{\pm}0.1325$	$0.7463 {\pm} 0.1320$	0.6344
Citation-KNN	$0.7014{\pm}0.0920$	$0.7144{\pm}0.0841$	$0.7347{\pm}0.1137$	0.7283
Our method	$0.7819 {\pm} 0.1151$	$0.6470 {\pm} 0.1524$	$0.9045{\pm}0.0886$	0.8058

References

1 Hu Y H, Lo C L, Shih S P. Developing early warning systems to predict students' online learning performance. Computers in Human Behavior, 2014, 36:469-478

		, , , , , , , , , , , , , , , , , , ,		
Methods	a ve-acc \pm std.	macro-P \pm std.	macro-R \pm std.	macro- $F_{1.5}$
NB	$0.7409 {\pm} 0.0450$	$0.4582{\pm}0.0836$	$0.7210{\pm}0.1142$	0.6129
ANN	$0.7311 {\pm} 0.0668$	$0.4346{\pm}0.1473$	$0.5545 {\pm} 0.1121$	0.5112
LR	$0.7165 {\pm} 0.0764$	$0.4171 {\pm} 0.1346$	$0.6365 {\pm} 0.1589$	0.5478
SVM	$0.7113 {\pm} 0.0570$	$0.4483 {\pm} 0.0872$	$0.7815 {\pm} 0.1145$	0.6361
DT	$0.7398 {\pm} 0.0554$	$0.3890{\pm}0.1467$	$0.3941{\pm}0.1565$	0.3926
KNN	$0.7017 {\pm} 0.0822$	$0.4329 {\pm} 0.0964$	$0.7359{\pm}0.1029$	0.6055
Citation-KNN	$0.6890{\pm}0.1003$	$0.6871 {\pm} 0.0848$	$0.7118 {\pm} 0.1412$	0.7040
Our method	$0.7978 {\pm} 0.0798$	$0.6134{\pm}0.0948$	0.9667 ± 0.0550	0.8212

 Table B3
 Results of each algorithm on BET08_11

 Table B4
 Results of each algorithm on GIM08_11

Methods	a ve-acc \pm std.	macro-P \pm std.	macro-R \pm std.	macro- $F_{1.5}$
NB	$0.7274{\pm}0.0436$	$0.3667 {\pm} 0.0568$	$0.6816{\pm}0.0634$	0.5392
ANN	$0.6989 {\pm} 0.0578$	$0.3104{\pm}0.0703$	$0.5495{\pm}0.0889$	0.4443
LR	$0.7157{\pm}0.0501$	$0.3494{\pm}0.0582$	$0.6482{\pm}0.0843$	0.5131
$_{\rm SVM}$	$0.7043{\pm}0.0702$	$0.3540{\pm}0.0650$	$0.7115 {\pm} 0.1060$	0.5428
DT	$0.7665 {\pm} 0.0317$	$0.3548 {\pm} 0.0747$	$0.3720{\pm}0.0823$	0.3665
KNN	$0.6579 {\pm} 0.0868$	$0.3084{\pm}0.0571$	$0.6898 {\pm} 0.0655$	0.4997
Citation-KNN	$0.6485 {\pm} 0.0570$	$0.6571 {\pm} 0.0607$	$0.6268 {\pm} 0.0825$	0.6358
Our method	$0.8612 {\pm} 0.0464$	$0.6964 {\pm} 0.0690$	$0.9776 {\pm} 0.0358$	0.8695

Figure B1 (color online) macro- $F_\beta~(\beta=1.5)$ on the class-balanced data set BCS08_11

Figure B2 (color online) macro- $F_\beta~(\beta=1.5)$ on the class-balanced data set BET08_11

Figure B3 (color online) macro- $F_\beta~(\beta=1.5)$ on the class-balanced data set GIM08_11