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With the maturity and popularity of UAV (un-
manned aerial vehicle) technology [1–3], UAV
video is becoming an effective supplement to the
fixed monitoring video [4, 5]. In the aspect of
traffic information acquisition, the advantages of
UAV are obvious. UAV can fly not only between
the buildings, but also on the freeway, and even
into the tunnel, showing the unique flexibility and
maneuverability. UAV can control its hovering
position artificially and has a high angle shot to
get more comprehensive and clearer video data.
In some emergent situation, such as evacuation
caused by typhoons and earthquakes, there are lots
of countryside areas without fixed road monitoring
cameras. UAV is undoubtedly the best choice to
fast deploy and get traffic information at the front.

The shooting angle of UAV is from top to bot-
tom, with the characteristics of large scene, differ-
ent background, containing dozens of vehicles with
different size and wide-range of speed. Although
there are plenty of existing vehicle tracking meth-
ods, for UAV video, getting high tracking accuracy
to support further traffic information analysis is
still a big challenge.

We introduce a tracking by detection method
for vehicles in UAV video with high accuracy and
robustness. We also made a dataset with 9 videos

which were shot from different fly altitudes and
captured varied traffic scenarios. Comparing with
YOLOv3 method [6], our method gets better pre-
cision and recall enough to support further traffic
information analysis.

Our tracking method has two stages. In the de-
tection stage, we select faster R-CNN [7] for the
reason of it does not depend on shifting scene and
is very suitable for traffic scene with dozens of ob-
jects, and more importantly, it has a high accu-
racy. In the tracking stage, there are several ob-
ject tracking algorithms here and abroad: vehicle
tracking method based on Kalman filtering [8], ve-
hicle tracking method based on mean shift, vehicle
tracking method based on feature, on-line boosting
tracking method. Our tracking method is devel-
oped partly on Kalman filtering method because
of its relatively small storage and computational
cost.

Detection algorithm. As a tracking by detec-
tion method, we firstly trained a faster R-CNN
(region-based convolutional neural network) [7] to
detect vehicles in an UAV Video. As shown in
Figure 1(a), the whole training process could be
divided into three steps:

(1) Extract feature maps from each UAV aerial
image using sharable convolutional layers.
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Figure 1 (a) Working flow of the faster R-CNN; (b) working flow of tracking by detection; (c) detection results;
(d) visualized tracking results of a test video; (e) tracking results.

(2) Generate thousands region proposals on
each feature map using the RPN (region proposal
network) module in the faster R-CNN by a sliding
window mechanism.

(3) Train the RPN module and the detector
module in fast R-CNN with shared features.

In the training process, region proposals are
generated by a sliding window mechanism, thus
each of them could be regarded as a candidate to
be considered. They could be marked for the pur-
pose of training via comparing with labeled sam-
ples.

After training, the faster R-CNN works in such
a way: the RPN module tells where to pay atten-
tion and the detector answers what’s that.

Tracking algorithm. To utilize Kalman filtering
as a tracking method, we construct a Kalman fil-
ter motion model including equations of state and
observation.

During the tracking process, the time between
the adjacent images is very short. So we could as-
sume that the motion of vehicle in a unit time is a
uniform motion. Then, the system state and the
observed value are linear. The equation of state is

S(t) = A(∆t)S(t−∆t) + ω(t−∆t), (1)

where S(t) represents the state of the system at
time t, A(∆t) expresses the state transform matrix
within ∆t, ω(t) indicates the estimation error. We
use four dimensional vectors, containing the vehi-
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cle’s position and velocity, to represent the system
state and the estimation error.

In the UAV images, only the position can be
observed for the state vector. So the equation of
observation is

O(t) = H(t)S(t) + e(t), (2)

where H(t) is the observation matrix, O(t) is the
observation vector, e(t) is the observation error.

After constructing the motion model with equa-
tions of state and observation, we could track ve-
hicles by the Kalman filtering algorithm based on
detection results as shown in Figure 1(b).

Experiments. We used a Dajiang “Mavic” UAV
to get videos for our experiments. It shot from
different fly altitudes, 76, 86, and 96 m, and got
videos of varied traffic scenarios including several
crossroads, a three-way intersection, a roundabout
and a high way exit. We used one of the videos,
which was shot from 76 m height on a crossroad
with totally 1314 UAV images, as training exam-
ples. The rest of 8 UAV videos, totally over 11
min, are also labeled as benchmarks data set.

In Figure 1(c) we compared the detection re-
sults of our method with YOLOv3 using the recall
(Re) and the precison (Pr) as the evaluation crite-
rions with IoU (intersection over union) threshold
being 0.7. Results show that although we use one
video for training, the recall rate and the detec-
tion precision of faster R-CNN are not affected by
altitude and scene changes, which proves the sta-
bility and robustness of it. And whether recall or
precision, faster R-CNN get more than 10% higher
than YOLOv3.

Figure 1(d) gives the visualized tracking results
of a video. And in Figure 1(e), we compared the
tracking results of our method with YOLOv3. The
GT means the number of groundtruth trajecto-
ries. The MT means percentage of GT trajecto-
ries which are covered by tracker output for more
than 80% in length. The ML means percentage of
GT trajectories which are covered by tracker out-
put for less than 20% in length. The PT means
GT-MT-ML. IDS means the total of number of
times that a groundtruth trajectory is interrupted
in tracking result. Multi-object tracking accu-
racy (MOTA): summary of overall tracking accu-
racy in terms of false positive, false negatives and
identity switches [9]. Multi-object tracking pre-

cision (MOTP): summary of overall tracking pre-
cision in terms of bounding box overlap between
ground-truth and reported location [9]. We could
see that, based on the accurate detection results,
our method gets better results than tracking based
on YOLOv3. More and dynamic results could be
found in our attached video.
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