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Abstract The purpose of this paper is to present a quantitative SNR analysis of quadratic frequency

modulated (QFM) signals. This analysis is located in the continuous-time local polynomial Fourier transform

(LPFT) domain using a Gaussian window function based on the definition of 3 dB signal-to-noise ratio (SNR).

First, the maximum value of the local polynomial periodogram (LPP), and the 3 dB bandwidth in the LPFT

domain for a QFM signal is derived, respectively. Then, based on these results, the 3 dB SNR of a QFM

signal with Gaussian window function is given in the LPFT domain with one novel idea highlighted: the

relationship among standard SNR, parameters of QFM signals and Gaussian window function is clear, and

the potential application is demonstrated in the parameter estimation of a QFM signal using the LPFT.

Moreover, the 3 dB SNR in the LPFT domain is compared with that in the linear canonical transform

(LCT) domain. The validity of theoretical derivations is confirmed via simulation results. It is shown that,

in terms of SNR, QFM signals in the LPFT domain can achieve a significantly better performance than those

in the LCT domain.
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1 Introduction

Time frequency representations (TFRs), which provide effective information about joint time and fre-

quency, have drawn much more attention in analyzing non-stationary signals in various areas including

image processing, radar signal analysis and communication systems [1–6]. One of the most important fea-

tures of these techniques is that they can concentrate signals in a relatively small region while spreading

noise in the whole transformed domain. It can be explained as an increase of the regional signal-to-noise

ratio (SNR) in the time-frequency (TF) domain compared with that in either the time domain or fre-

quency domain alone [7]. Since noise widely exists in the real world, various practical areas face the

problems of noise analysis [1,8]. The aforementioned feature makes TFRs to minimize the effect of noise

and offer a better performance in broad practical applications, especially for signal detection by using the

thresholding. Moreover, it is a key factor to evaluate the performance of different TF distributions [9].

Therefore, the quantitative SNR analysis of different TFRs has been an important issue [10, 11].
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Many aspects of noise analysis regarding TFRs have been well discussed [12–14]. To be specific,

extensive noise signal analysis and comparisons between the short-time Fourier transform (STFT), and

Wigner-Ville distribution (WVD) have been performed well [12,13]. The influence of noise to the STFT

and bilinear distributions of Cohen’s class have been presented in terms of output SNR [14]. Furthermore,

other studies on the SNR analysis are regarding the maximal peaks like peak signal-to-noise ratio (PSNR)

or the whole line integrations, i.e., the conventional SNR defined as a ratio of the mean power of the signal

over the mean power of the noise. However, the output SNR, PSNR and conventional SNR cannot work

fine for the non-stationary signals because the SNR definition should be transform-domain dependent

and closely relates to the bandwidth of a signal occupied in that domain [7]. Thus, researchers begin to

focus on a 3 dB SNR analysis of given signals, which is a different definition firstly proposed by Xia [7].

3 dB SNR is quite proper in the joint TF domain under different TFRs as well as in the time domain and

frequency domain alone. The quantitative SNR analyses using 3 dB SNR for the LFM signal, a valuable

kind of non-stationary signals in radar [15], based on different TFRs have been well investigated, such as

the STFT [7,11], the PWVD [16], the local polynomial Fourier transform (LPFT) [10,17] and the linear

canonical transform (LCT) [18].

Besides, a quadratic frequency modulated (QFM) signal is also an important kind of non-stationary

signals, which can be found in nature and engineering applications widely such as radar, sonar, speech [19,

20], and communication field, especially in radar systems. One of its most important applications is in

imaging of inverse synthetic aperture radar (ISAR) for moving targets [19, 21]. When the target has a

high maneuvering movement, the received signal of the target can be modeled as QFM signals [21, 22].

The cubic phase of the QFM signal provides crucial dynamic parameters of moving target in the radar

systems. In the real applications, the TFRs-based method of a QFM signal is often used and performances

of analysis results are strongly affected by the noise. So, it is interesting and worthwhile to investigate

the SNR analysis for QFM signals associated with different TFRs to further satisfy the requirement of

practical applications.

In this paper, a quantitative SNR analysis of a QFM signal in the LPFT domain with a Gaussian

window function based on 3 dB SNR has been presented in detail. The rest of the paper is organized

as follows. After briefly reviewing the basic definitions of the LPFT, LCT and 3 dB SNR in Section 2,

the quantitative SNR analysis for QFM signals in the LPFT domain is derived by using three separate

theorems in Section 3. To verify the derived results, a simulation comparison is performed on SNRs in

the LPFT and the LCT domain in Section 4. As a potential application of the aforementioned results,

the parameter estimation performance of QFM signal is provided in Section 5 using the LPFT and the

LCT, respectively. Finally, conclusion is provided in Section 6.

2 Preliminaries

Before deriving the quantitative SNR analysis for a QFM signal, some basic notions are introduced here.

2.1 Local polynomial Fourier transform

The local polynomial Fourier transform (LPFT), as a generalization of the STFT, has been a powerful

analysis tool in many different applications in recent years. The LPFT of a signal x(t) with a window

function h(t) is defined as [17, 23]

LPFTM
x (t, w̄) =

∫ ∞

−∞
x(t+ τ)h∗(τ)e−jθ(τ,w̄)dτ, (1)

where

θ(τ, w̄) = wτ + w1τ
2/2 + · · ·+ wM−1τ

M/M !,

w̄ = (w,w1, . . . , wM−1),
(2)
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the asterisk denotes a complex conjugate value, and M is the order of the LPFT. Here and in what

follows the integral are taken over (−∞,∞) if unspecified. The energy distribution of the LPFT, or the

local polynomial periodogram (LPP), is defined as [17]

LPPM
x (t, w̄) = |LPFTM

x (t, w̄)|2. (3)

Since the LPFT can significantly improve the resolution of the TF analysis compared with the STFT, and

is free from cross terms that exist in the WVD, it has been a significant tool to deal with non-stationary

signals whose frequency varies over time. Moreover, the LPFT has been widely used in ISAR imaging

to improve radar images of fast maneuvering targets [10, 24], and spread spectrum communications to

achieve improved performance compared with that obtained by the STFT [25]. Various other applications

of the LPFT can also be found in [17].

2.2 Linear canonical transform

The linear canonical transform (LCT) is a three free parameters class of linear integral transforms, which

is defined as [26, 27]

LCTA
x (u) =

∫

x(t)KA(t, u)dt, (4)

where the kernel function is

KA(t, u) =











1√
j2πb

ej(
du2

2b −ut
b
+ at2

2b ), b 6= 0,

√
dej

cdu2

2 δ(t− du), b = 0.

(5)

Herein, A = (a, b, c, d) is a real parameter matrix of the LCT satisfying ad − bc = 1. It includes the

classical Fourier transform (FT), the fractional Fourier transform (FRFT), the Fresnel transform, as well

as other transforms as its special cases [27–30]. Many important theories related to the LCT such as

convolution and correlation, sampling theorem and uncertainty principles have been well investigated

in [31–34]. With more degrees of freedom compared with FT and FRFT, the LCT is much more flexible

but with similar computation cost as the conventional FT does. It is widely applied in optics and

engineering under this advantage [26, 27]. Considering the local features of non-stationary signals, the

LCT is used with a window function and defined as follows [35]:

LCTA
x (t, u) =

∫

x(t+ τ)h∗(τ)KA(τ, u)dτ. (6)

Similar to that in [10], a Gaussian function as the window is used in this paper, which is defined as

h(τ) =
(α

π

)1/4

e(−
α
2 τ2), α > 0, (7)

where α is a parameter that controls the width of the window function. For more details about the

windowed LCT and its special cases, the readers can refer to [35–37].

2.3 3 dB signal-to-noise ratio

The conventional SNR is defined as the ratio of the mean power of the signal over the mean power of

the noise, where the mean is taken over the whole time domain. This definition is not suitable for the

non-stationary signals, especially for narrow bandwidth signals. Hence, a different definition of SNR

named as 3 dB SNR is adopted in this paper, which is firstly introduced by Xia [7]. Considering a signal

x(Ω) corrupted by an additive noise:

y(Ω) = x(Ω) + η(Ω), (8)
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where x(Ω) is an original signal, and η(Ω) is additive white Gaussian noise (AWGN) with zero mean and

variance σ2. Ω is a variable which can stand for time t, frequency w, or the joint time-frequency (t, w).

The 3 dB SNR is defined as [7]

SNR3 dB =

∫

χ |x(Ω)|2dΩ
|χ|σ2

. (9)

Here |χ| denotes the cardinality of the set χ and is called as 3 dB bandwidth. Besides, the set χ is

χ = {Ω : |x(Ω)|2 > 0.5max |x(Ω)|2}. (10)

Also the PSNR (defined by the ratio of the peak squared magnitude over the mean noise power) cannot

be valid if signals contain more than one peak value such as the curves in the TF domain [38]. Examples

shown in [7] have illustrated better indication of signal and noise levels in various domains.

3 SNR analysis for the QFM signal

In this section, a 3 dB SNR analysis of QFM signals in terms of the LPFT is provided. Different from the

method in [10] based on the relationship between the LPFT and the WVD, the proposed method in this

paper is mainly explored using some mathematical techniques. With the order increase of the LPFT, the

3 dB bandwidth with M = 3 is more complicated than that of the LPFT when M = 2 in [10]. Based on

the maximum of the LPP derived in Theorem 1, Theorem 2 provides an approximate expression of the

3 dB bandwidth for the QFM signal in the third LPFT domain. With the aforementioned results, 3 dB

SNR for a QFM signal is finally presented in Theorem 3. The specific results are as follows.

Theorem 1. The spectrum of the QFM signal x(t) = Aej(a0t+
a1
2 t2+

a2
3! t

3) in the LPFT domain of order

M = 3 reaches a constant finite maximum value for any time t and frequencies w,w1, w2, which is given

by

max
(t,w̄)

LPP3
x(t, w̄) = 2A2

√

π

α
, (11)

where w2 frequency is independent of time and has value w2 = a2.

Proof. Let the order of LPFT be M = 3. Then the LPFT of a QFM signal can be simplified as

LPFT3
x(t, w̄) = A

(α

π

)
1
4

ej(a0t+
a1
2 t2+

a2
3! t

3)

×
∫

ej(a0+a1t+
a2
2 t2−w)τ+j

(a1+a2t−w1)
2 τ2+j

(a2−w2)
3! τ3

e−
α
2 τ2

dτ. (12)

Let

ϕ(τ) =
(

a0 + a1t+
a2
2
t2 − w

)

τ +
(a1 + a2t− w1)

2
τ2 +

(a2 − w2)

3!
τ3, (13)

where ϕ(τ) is a real function about the variable τ . The maximum of the LPP of signal x(t) is obtained

as follows:

LPP3
x(t, w̄) 6 A2

(α

π

)
1
2

(∫

|e−α
2 τ2 · ejϕ(τ)|dτ

)2

= 2A2

√

π

α
. (14)

The above inequality becomes an equality and it is satisfied independently of the variable τ if and only

if

e−
α
2 τ2 · ejϕ(τ) = |e−α

2 τ2 · ejϕ(τ)| = e−
α
2 τ2

, (15)

i.e.,

ϕ(τ) = 0. (16)
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According to (13), that means



























a0 + a1t+
1

2
a2t

2 − w = 0,

1

2
(a1 + a2t− w1) = 0,

1

3!
(a2 − w2) = 0.

(17)

For any arbitrary value of the time variable, t, the frequency values that meet conditions (17) are



















w = a0 + a1t+
1

2
a2t

2,

w1 = a1 + a2t,

w2 = a2.

(18)

The peak of instantaneous energy in the LPFT domain can arrive at the maximum

max
(t,w̄)

LPP3
x(t, w̄) = 2A2

√

π

α
, (19)

when all three conditions in (17) are satisfied. However, the main target of attention is in condition w2 =

a2, because it is the only one that is independent of time and it will be greatly helpful for simplification

in the derivation of the quantitative SNR analysis. Such simplification will avoid the calculation of the

cubic exponential related with the M = 3 order in the LPFT integral, which leads to a transcendental

function related to Airy function [39].

Theorem 2. The 3 dB bandwidth for the QFM signal x(t) in the LPFT domain, bounded to w2 = a2,

is a surface whose base contour is delimited by a line f(w,w1) = A2
√

π/α inscribed in a rectangular

area whose limits are related to the window parameter α and the QFM phase ϕ(t) by the following

relationship:

{

χw = {w : ϕ̇(t)−
√
α ln 2 6 w 6 ϕ̇(t) +

√
α ln 2},

χw1 = {w1 : ϕ̈(t)−
√
3α 6 w1 6 ϕ̈(t) +

√
3α},

(20)

where ϕ̇ and ϕ̈ are the time derivatives of ϕ(t) = a0t+
a1

2 t2 + a2

3! t
3, the phase of the QFM signal.

Proof. Letting w2 = a2 in (12) and given that the function under the integral sign is continuous on

the domain of application, the continuity theorem for improper integrals [40] determines that the LPFT

of our interest becomes

LPFT3
x(t, w̄) |w2=a2 = A

(α

π

)
1
4

ej(a0t+
a1
2 t2+

a2
3! t

3)

∫

e[−
α+j(w1−a1−a2t)

2 τ2−j(w−a0−a1t− a2
2 t2)τ ]dτ

= A
(α

π

)
1
4

ej(a0t+
a1
2 t2+

a2
3! t

3) ·
√

2π

α+ j(w1 − a1 − a2t)
e
− (w−a0−a1t−

a2
2

t2)2

2[α+j(w1−a1−a2t)] , (21)

and

LPP3
x(t, w̄) |w2=a2=

2A2
√
π · |e−

(w−a0−a1t−
a2
2

t2)2

2[α+j(w1−a1−a2t)] |2
√

α+ 1
α (w1 − a1 − a2t)2

. (22)

Let










m = w1 − a1 − a2t,

n = − (w − a0 − a1t− a2

2 t2)2

2
,

(23)
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then

∣

∣

∣

∣

e
− (w−a0−a1t−

a2
2

t2)2

2[α+j(w1−a1−a2t)]

∣

∣

∣

∣

2

=
∣

∣

∣e
n

α+jm

∣

∣

∣

2

= e
− (w−a0−a1t−

a2
2

t2)2

α+ 1
α

(w1−a1−a2t)2 , (24)

and

LPP3
x(t, w̄) |w2=a2=

2A2
√
π · e

− (w−a0−a1t−
a2
2

t2)2

α+ 1
α

(w1−a1−a2t)2

√

α+ 1
α (w1 − a1 − a2t)2

. (25)

Also, we have the following relationships for the phase ϕ(t) of the QFM signal.



























ϕ(t) = a0t+
a1
2
t2 +

a2
3!
t3,

ϕ̇(t) =
dϕ

dt
= a0 + a1t+

a2
2
t2,

ϕ̈(t) =
d2ϕ

dϕ2
= a1 + a2t.

(26)

By means of which, we can rewrite (25) as

LPP3
x(t, w̄) |w2=a2=

2A2
√
π · e

− (w−ϕ̇)2

α+ 1
α

(w1−ϕ̈)2

√

α+ 1
α (w1 − ϕ̈)2

. (27)

We can denote by χ the concentrated domain for which the 3 dB bandwidth condition is fulfilled

χ = {(t, w̄) |w2=a2 : LPP
3
x(t, w̄) |3 dB

w2=a2
> 0.5 max LPP3

x(t, w̄)}

=

{

(t, w̄) |w2=a2 : LPP
3
x(t, w̄) |w2=a2> 0.5 · 2A2

√

π

α

}

. (28)

LPP3
x(t, w̄) |3 dB

w2=a2
in (28) represents a surface given by

LPP3
x(t, w̄) |3 dB

w2=a2
=

2A2
√
π · e

− (w−ϕ̇)2

α+ 1
α

(w1−ϕ̈)2

√

α+ 1
α (w1 − ϕ̈)2

>
1

2
2A2

√

π

α
, (29)

whose maximum is attained when w = ϕ̇ and w1 = ϕ̈. The equal sign in (29) determines the equation of

the boundary line C at the bottom of the surface (see Figure 1). By setting the coordinates for points

P1 and P2 in (29) we can straightforward determine the limits of δ and δ1 as

{

δ |P1=
√
α ln 2,

δ1 |P2=
√
3α,

(30)

and based on the symmetry of the surface contour we arrive to the following concentrated domain:
{

χw = {w : ϕ̇(t)−
√
α ln 2 6 w 6 ϕ̇(t) +

√
α ln 2},

χw1 = {w1 : ϕ̈(t)−
√
3α 6 w1 6 ϕ̈(t) +

√
3α}.

(31)

Note that the concentrated domain χ is not an exhaustive domain because we have constrained it to

be bounded to w2 = a2. That means that one supreme domain χsup(t, w̄) ⊃ χ exists

χsup = {(t, w̄) : LPP3
x(t, w̄) > 0.5 max LPP3

x(t, w̄)}, (32)

that fulfills the condition in (32) where w2 is a free variable.

We have found this way the boundaries of a region in the frequency domain w,w1, w2 = a2 inside the

3 dB bandwidth limits for any time t of the QFM signal. Eq. (31) defines these limits.
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P2

P1P0

w1

w

Figure 1 Geometry of the problem. Points P1 and P2 determine the limits of the rectangular area enclosing the baseline

of the 3 dB surface and P0 is the position of the maximum.
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Figure 2 (Color online) Examples of LPP 3 dB bandwidth for different input parameters of the QFM signal. (a) t = 0,

A = 1, a0 = 0.5, a1 = −2, a2 = −1, α = 1; (b) t = 2, A = 2, a0 = 1, a1 = 4, a2 = −2, α = 2; (c) t = 10, A = 4, a0 = 3.5, a1 =

1, a2 = −1.5, α = 1.5; (d) t = −100, A = 8, a0 = −1, a1 = 0.5, a2 = 2, α = 3.

Based on (31), Figure 2 presents four examples of the LPP3
x(t, w̄) |3 dB

w2=a2
using different values of the

optional parameters of the QFM signal.

Theorem 3. The 3 dB SNR in the LPFT domain for the QFM signal x(t) is determined by the
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parameter α when the SNRt is given. The relationship between SNR3 dB
LPFT and α is

SNR3 dB
LPFT = 1.32

√

π

α
SNRt. (33)

Proof. Eq. (18) establishes that the LPP3
x cannot vanished when t tends to infinity, because for any

value of −∞ < t < ∞ there are values of w,w1, w2 that satisfy the required conditions to reach the upper

limit. However, we can calculate the average power of the 3 dB LPP3
x for any time position t. In general,

the average value of an arbitrary continuous signal f(x) is given by f(x) = 1
b−a

∫ b

a
f(x)dx. Consequently,

the average power of the signal LPP3
x(t, w̄) |3 dB

w2=a2
at time t is by the following definition:

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

=
1

|χw1 |

∫ LL2

LL1

1

|χw|

∫ L2

L1

2A2
√
π · e

− (w−ϕ̇)2

α+ 1
α

(w1−ϕ̈)2

√

α+ 1
α (w1 − ϕ̈)2

dwdw1, (34)

and the limits of integrations are defined as per (31). That means, |χw| = 2
√
α ln 2, |χw1 | = 2

√
3α,

L1 = ϕ̇(t)−
√
α ln 2, L2 = ϕ̇(t) +

√
α ln 2, LL1 = ϕ̈(t)−

√
3α, LL2 = ϕ̈(t) +

√
3α, and leads to

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

=
1

|χw1 |

∫ LL2

LL1

1

|χw|

∫ L2

L1

2A2
√
π · e

− (w−ϕ̇)2

α+ 1
α

(w1−ϕ̈)2

√

α+ 1
α (w1 − ϕ̈)2

dwdw1. (35)

Let us consider first the integral I =
∫ L2

L1

1
m ·e−

(w−ϕ̇)2

m2 dw, where we have called m =
√

α+ 1
α (w1 − ϕ̈)2.

By making u = w−ϕ̇
m , then dw = m · du and I becomes I =

∫ 1
m

√
α ln 2

− 1
m

√
α ln 2

e−u2

du. This integral does not

have an algebraic representation and requires to be evaluated by means of the error function, defined as

erf(z) ≡ (1/
√
π)

∫ z

−z
e−x2

dx and then we write

I =

∫ 1
m

√
α ln 2

− 1
m

√
α ln 2

e−u2

du =
√
π



erf





√
α ln 2

√

α+ 1
α (w1 − ϕ̈)2







 . (36)

Substituting this result in (35) we get

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

=
A2

π

2α
√
3α ln 2

∫ ϕ̈+
√
3α

ϕ̈−
√
3α

erf





√
α ln 2

√

α+ 1
α (w1 − ϕ̈)2



dw1. (37)

By the change of variable, u = w1 − ϕ̈, the integral in (37) becomes

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

=
A2

π

2α
√
3α ln 2

∫

√
3α

−
√
3α

erf





√
α ln 2

√

α+ 1
αu

2



du. (38)

An approximated solution to integral (38) can be found by subdividing the span of integration in

sub-intervals ∆u and summing up the elemental results. That is

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

∼= A2
π

2α
√
3α ln 2

u=+
√
3α

∑

u=−
√
3α

erf





√
α ln 2

√

α+ 1
αu

2



∆u, (39)

where ∆u = 2
√
3α/N , for N + 1 subintervals of integration. Table 1 summarizes the results for the

examples in Figure 2.

One important experimental finding is that

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

= 0.66 ·max
(t,w)

LPP3
x(t, w̄) = 1.32A2

√

π

α
. (40)
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Table 1 Numerical results for LPP3
x
(t, w̄) |3 dB

w2=a2
examples in Figure 2

Example t A a0 a1 a2 α P0 P1 P2 Average Avg/P0

I 0 1 0.5 −2 −1 1 3.54 1.77 1.77 2.34 0.66

II 2 2 1 4 −2 2 10.03 5.01 5.01 6.63 0.66

III 10 4 3.5 1 −1.5 1.5 46.31 23.16 23.16 30.62 0.66

IV −100 8 −1 0.5 2 3 130.99 65.49 65.49 86.60 0.66

The mean power of noise η(t) in the LPFT domain is

LPP3
η

(t,w̄)∈χ

= E

∣

∣

∣

∣

∫

η(t+ τ)h∗(τ)e−j(wτ+
w1
2 τ2+

w2
3! τ3)dτ

∣

∣

∣

∣

2

= σ2.

By defining SNRt as the SNR in time domain, that is given by A2/σ2, then the SNR3 dB of a QFM signal

in the LPFT domain when w2 = a2 can be approximated as

SNR3 dB
LPFT =

LPP3
x

(t,w̄)∈χ

(t, w̄) |3 dB
w2=a2

LPP3
η

(t,w̄)∈χ

(t, w̄)
∼= 1.32

√

π

α
SNRt. (41)

It can be seen from (41) that the SNR of QFM signal x(t) in the LPFT domain is related to the window

function parameter α and is independent of the other variables. The SNR is inversely proportional to the

window function parameter, i.e., SNR will increase when α is smaller. Especially when α < (1.32)2π =

5.47, the SNR in the LPFT domain performs better than that in the time domain. When α limits to

0, SNR approaches toward infinity. However, the window function has to keep stationary feature in the

local domain, so it cannot achieve infinity. As a result, it has been found that the LPFT indeed improve

the SNR of the QFM signal.

4 Simulation results

In this section, simulation experiments are performed to verify above derived theorems, and analysis

results of 3 dB SNR in the LPFT domain are graphically compared with that in the LCT domain. To

illustrate the simulation process, the following example is considered.

A single QFM signal with parameters a0 = 3, a1 = −2, and a2 = 0.5 is given as follows:

x(t) = ej(3t−t2+ 1
12 t

3). (42)

The SNR in the time domain is given as SNRt = −3 dB. We know that the instantaneous energy of

x(t) arrives maximum varying with w1. But, the theoretical result in Theorem 3 shows that it has no

relationship with other parameters except for Gaussian window parameter α under a given SNRt. In

order to verify the above theorems, we use the 3rd order LPFT whose parameters are (w1, w2) to deal

with x(t).

Firstly, the influence of the LPFT parameters and window parameter to the SNR in the LPFT domain

is given in Figure 3. Figure 3(a) shows that the relationship between w1 and SNR3 dB
LPFT under w2 = a2,

where the sampling interval of t and w is 10 and 40, respectively. Five solid blue color lines means how

SNR3 dB
LPFT varies with w1 when α equals to 0.5, 0.75, 1, 1.25, and 1.5, respectively. The red lines represent

the theoretical value in Theorem 3, i.e., SNR3 dB
LPFT

∼= 1.32
√

π

αSNRt, under different α. It concludes that

the simulation results almost coincide with the theoretical values, which further states that SNR3 dB
LPFT has

no relationship with w1. Besides, from Figure 3(a), it is clearly to see that SNR3 dB
LPFT increases with the

decrease of α. This relationship between α and SNR3 dB
LPFT is then shown in Figure 3(b) and simulation

experiment fits the theoretical results well for α ∈ (0, 6). In other words, it is an inverse function between

α and SNR3 dB
LPFT. In addition, when α < 5.5, the line of SNR3 dB

LPFT is above of SNRt. That is to say,
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Figure 3 (Color online) (a) The relation between SNR3 dB
LPFT and LPFT parameter w1; (b) the relation between SNR3 dB

LPFT

and Gaussian window parameter α; (c) the relation between SNR3 dB
LPFT and w2 − a2.

under this condition, the performance of a QFM signal in the LPFT domain is much better than that in

the time domain. Next, the relationship between w2 and SNR3 dB
LPFT is demonstrated in Figure 3(c). Here,

three curve lines stand for SNR3 dB
LPFT varying with w2 when w1 equals to −4, −2, and 0, respectively.

From these results, we conclude that SNR3 dB
LPFT is increasing when w2 limits to a2 for different values of

w1, and it reaches maximum when w2 = a2, independent to w1. It satisfies with the constraint condition

in corresponding theorems well.

Besides, it is well-known that the LCT is a powerful tool to analyze non-stationary signals encountered

in many realistic situations. The 3 dB SNR analysis in the corresponding domain have verified quan-

titatively that the LCT can achieve a better level than time domain, STFT domain and WVD domain

for the same signal [18]. In order to verify the performance of a QFM signal corrupted with noise in the

LCT and LPFT domain, a ratio between SNR3 dB
LPFT and SNR3 dB

LCT is under consideration. According to

the definition of the LCT, the mean power has nothing to do with the parameter d [18], which states

that only (a, b) effects the SNR. For the sake of simplicity, we fixed d, for example, d = 1. By giving

different values a, b (Herein, let the ratio of a, b be a constant denoted as k), SNR3 dB
LCT can be obtained

in the same way as SNR3 dB
LPFT. The process is stated as follows. First of all, the LCT of a QFM signal is

obtained under some given parameters (a, b) and Gaussian window. Then, the 3 dB bandwidth of signal

is gained by the maximum of spectrum in the LCT domain under the definition in (9). Lastly, according

to 3 dB mean power of the signal and noise, the 3 dB LCT-typed SNR of a QFM signal is carried out

via numerical experiment. By using the same Gaussian window function with parameter α = 0.25, the
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Figure 4 (Color online) The ratio between SNR3 dB
LPFT and SNR3 dB

LCT versus a/b

ratio between SNR3 dB
LPFT and SNR3 dB

LCT is given by

Ratio =
SNR3 dB

LPFT

SNR3 dB
LCT

=

LPP3
x

(t,w̄)∈χ1

(t, w̄)

|LCTA
x |2

(t,u)∈χ2

(t, u)
. (43)

Figure 4 shows three different plots in which how Ratio varies with the LCT parameters (a, b). Even

though SNR3 dB
LCT is much different when the (a, b) is not the same, but Ratio is always larger than 1. That

is to say, SNR3 dB
LPFT is always greater than SNR3 dB

LCT , which quantitatively verifies that the QFM signal

x(t) has an improvement on time-frequency energy concentration ability in the LPFT domain than that

of the LCT domain.

5 Application

In this section, we give a parameter estimation application to show the performance of the LPFT and

the LCT for a QFM signal under noise environment. As mentioned in Theorem 1, for a QFM signal,

the LPFT arrives the maximum under the condition in (18). For the sake of simplicity, we consider the

LPFT when t = 0, then the principle of parameter estimation of a given QFM signal can be stated as

follows:

{â0, â1, â2} = arg max
w,w1,w2

LPP3
x(0, w̄). (44)

It means that by searching the peak of the LPP in the whole three-dimension space of w,w1, w2, param-

eters of a given QFM signal can be estimated in accordance to the position information of the its peak.

Herein, the global search method in the whole three-dimension space is used to locate the peak of the

LPP.

In this experiment, the model of a QFM signal are sampled as

x(n) = W
−(rn+ln2+mn3)
N , 0 6 n 6 N − 1, (45)

where r, l, m represent the constant frequency, first chirp rate and second chirp rate, respectively. N

means the length of signal x(n). A signal x(n) corrupted with noise is given as

y(n) = x(n) + η(n), 0 6 n 6 N − 1, (46)

where η(n) denotes the white Gaussian noise. It is noted that LPP varies over w, w1, w2. The simulation

results are then presented in the w − w1 plane, w − w2 plane, and w1 − w2 plane, respectively.
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Figure 5 (Color online) LPP of a QFM signal in the noise environment y(n) in (a) w−w1 plane under optimal w2 = 18,

(b) w −w2 plane under optimal w1 = 45, and (c) w1 −w2 plane under optimal w = 12.

Following the method in (44), we show the results of parameter estimation for signal y(n) in Figure 5.

The SNR in the time domain here is −10 dB. The parameters of the QFM signal are (r, l,m) = (12, 45, 18)

andN = 67. Based on the relationship between LPFT-related 3 dB SNR and Gaussian window parameter

in Figure 3(b), we choose α = 0.5 to achieve better local performance. As shown in Figures 5(a)–(c), a

peak can be detected clearly through a global search in the three-dimension space. Figure 5(a) shows

that under the optimal parameter w2 = 18, the peak of LPP is located in (w,w1) = (12, 45). Figure 5(b)

shows that under the optimal parameter w1 = 45, the peak of LPP is located in (w,w2) = (12, 18).

Figure 5(c) shows that under the optimal parameter w = 12, the peak of LPP is located in (w1, w2) =

(45, 18). It is indicated that the parameters of the signal x(n) can be estimated exactly based the LPFT.

In the following, we use the LCT to process the same noisy QFM signal y(n) used by the LPFT. In

Figure 6, the LCT spectrum is plotted in the LCT frequency u and parameter-ratio k = a/b plane. In

Figure 6, no peak can be detected from the LCT spectrum. To make it clearly, we project it into the u

axis in Figure 7(a) and parameter-ratio k axis in Figure 7(b), respectively. Compared with the results

related to the LPFT, it is hard to estimate the parameters of the given QFM signal by searching the

peak directly like the LPFT. Such observations are expected because the use of the LPFT can further

improve the SNR more effectively than those of the LCT, just indicated by our previous analysis.

Furthermore, another experiment is carried out to show the accuracy of the LPFT-based method via

the comparison between the estimated results in terms of mean square error (MSE) and the Cramer-Rao

lower bound (CRLB) through Monte-Carlo simulation. In this experiment, the parameters of the QFM

signal are a0 = 12.3, a1 = 45.2, a2 = 18.1. The length of discrete signal and window parameter are same

as above. The scope of the input SNR varies from −15 to 15 dB with a step of 2 dB. For each SNR

the Monte-Carlo runs 100 independent experiments. Figure 8 shows the final estimated consequences

compared with the CRLB, respectively. The overall trend of the MSEs of different parameters is to
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Figure 6 (Color online) LCT spectrum of a QFM signal in the noise environment y(n) in u− k plane.
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Figure 7 (Color online) LCT of a QFM signal in the noise environment y(n) projected in (a) LCT-frequency u axis, (b)

parameter-ratio k axis.

decrease with increasing SNR, whereas under some SNR environment, the MSEs tend to stable and are

above the CRLB, respectively.

It is noted that the computational burden of the LPFT-based method is increased through a global

search. It can be reduced by several approaches: on the one hand, fast algorithms of the LPFT can

be considered in the real applications [17]; one the other hand, optimization algorithms can be used to

replace the global research and further reduce the computational complexity of parameter estimation.

In summary, since the noise widely exists in most areas of real world, the quantitative SNR analysis is

an important research issue. It is not only a useful measure to evaluate the performance of different TF

distributions, but also offers a significant guidance purpose under real requirements.

6 Conclusion

In this paper, a quantitative SNR analysis of a QFM signal in the LPFT domain with Gaussian window

function has been carried out. Because the conventional SNR definition cannot explain the relationship

with bandwidth, 3 dB SNR given by Xia are utilized. In order to do so, three valuable theorems are

proposed and well proofed. Theorem 1 shows the peak value of instantaneous energy is maximum under

w2 = a2 when the QFM signal is transformed by 3rd order LPFT. Theorem 2 analyzes the 3 dB bandwidth

of QFM signal in the LPFT domain and some specific examples are given. The quantitative SNR analysis

is derived in Theorem 3. We ultimately show that the 3 dB SNR based on the LPFT with Gaussian
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Figure 8 (Color online) MSEs of the parameter estimations via LPFT-based method. (a) Constant frequency a0; (b)

first chirp rate a1; (c) second chirp rate a2.

window is closely related with window parameter under a given time-related SNR, independent with other

variables. And a comparison between the performance of the LPFT and LCT is given in simulations as

well. This work is significantly in practical application to show the TFRs’ characteristics in terms of

SNR. In the future, we will further focus on how to improve the accuracy of parameter estimation and

reduce the computation load via LPFT-based method.
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