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Abstract In this paper, the issue of disturbance observer based resilient control is addressed for Markovian

jump nonlinear systems with multiple disturbances and general uncertain transition rates. The disturbances

are divided into two parts: one has a bounded H2 norm, and the other is given by an exogenous system. The

general uncertain transition rate matrix is composed of unknown elements and uncertain ones. The uncertain

transition rate only has a known approximate range. First, the disturbance described by the exogenous

system is estimated by a disturbance observer, and its estimation is used for the controller as feedforward

compensation. Subsequently, by using the resilient control method, a composite anti-disturbance resilient

controller is constructed to guarantee stochastic stability with L2 − L∞ performance of the closed-loop

systems. Subsequently, the Lyapunov stability method and linear matrix inequality technique are applied to

obtain the controller gain. Finally, an application example is provided to illustrate the effectiveness of the

proposed approach.
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1 Introduction

Markovian jump systems have attracted increasing attention in the past few decades and many useful

results are derived [1–14]. Numerous results are reported for Markovian jump systems with completely

known transition rate matrix [1–3]. However, it is difficult to precisely know the transition rate matrix

in many actual systems. In recent times, many researchers are devoted to the study of the stability and

controller design for Markovian jump systems with partly unknown transition rates [4–10]. In [4–10],

the transition rate is either exactly known or completely unknown. In practice, it is difficult to precisely

estimate the transition rate. Therefore, a more practical situation is that the transition rate can be

completely unknown or its bound is known. This transition rate is referred to as the general uncertain

transition rate. Some useful results are provided for Markovian jump systems with general uncertain

transition rates [11, 12, 15].

In addition, many kinds of disturbances widely exist in practical system [16–19] and have adverse effects

on the control performance of closed-loop system. To enhance the anti-disturbance ability of the system,
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many control methods are proposed to solve the disturbance problems, such as the disturbance-observer-

based-control (DOBC) method [20–26], adaptive control scheme [27], and H∞ control theory [28, 29].

Among them, the DOBC scheme has been used in numerous fields owing to its strong robustness, ef-

ficiency, and practicability, e.g., airbreathing hypersonic vehicle [30], missile [31] and spacecraft [32]

systems. In the literatures, researchers often consider a single disturbance. Nevertheless, the practi-

cal systems always suffer from multiple disturbances, such as internal noise and external disturbance.

In [33, 34], the method of composite hierarchical anti-disturbance control is introduced.

Recently, some meaningful results have been presented for Markovian jump systems with multiple

disturbances via composite hierarchical anti-disturbance control [2, 3, 35]. However, in the above results,

the authors only consider the case where the controller can be realized exactly. In the realization of the

controller, the existences of round-off errors in numerical arithmetic, parameter drift, aging of controller

devices, finite word length in digital systems, and other factors result in some gain variations of the

controller. Therefore, the resilient controller has been applied to improve the control performance in [19,

36,37]. To the best of our knowledge, for Markovian jump nonlinear systems with multiple disturbances

and general uncertain transition rates, the composite anti-disturbance resilient control problem remains

open.

In this paper, the composite anti-disturbance resilient control problem is addressed for Markovian jump

nonlinear systems with multiple disturbances and uncertain transition rates. For the given systems, the

transition rate matrix is assumed to be generally uncertain, i.e., some elements are unknown, whereas for

the others, only their approximate ranges are known. The disturbances are divided into two types: one is

given by an exogenous system, and the other is assumed to belong to the space L2[0,∞). A disturbance

observer is established to estimate the disturbance generated by the exogenous system, for which the

estimation is introduced to the controller. Subsequently, a composite anti-disturbance resilient control

strategy is applied to attenuate and reject the disturbances and ensure stochastic stability with L2−L∞

control performance of the closed-loop systems. Some sufficient conditions for solving the controller gain

are provided by using the linear matrix inequalities method and Lyapunov function technique. Finally,

an application example is provided to illustrate the effectiveness of the proposed approach. Recently,

in [35], a composite anti-disturbance controller is established for Markovian jump nonlinear systems via

a disturbance observer approach. We list the main contributions of our study compared with [35], as

follows.

• Unlike the assumption in [35], the transition rate matrix is assumed to be generally uncertain, and

for some of its elements, only the approximate ranges are known, whereas others are completely unknown.

• In order to deal with the actuator uncertainties, an anti-disturbance resilient controller is designed

to enhance the robust stability of the closed-loop systems.

• Considering that parts of the disturbances belong to L2[0,∞) space, an energy-to-peak control

performance is introduced to reflect the ability of attenuation and rejection of the disturbance.

• Inspired by [1,4], a single link robot arm system is introduced and modeled as a Markovian jump non-

linear systems. For this practical example, we construct a composite anti-disturbance resilient controller

and verify the ability of attenuation and rejection of disturbance. Through simulation, we demonstrate

the effectiveness of our main results.

2 System model and problem formulation

The probability space (Ω,F ,P) is fixed, and the Markovian jump nonlinear system is considered:

ẋ(t) = A(rt)x(t) + F (rt)f(x(t), t) +G(rt)[u(t) + d1(t)] +H(rt)d2(t), (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m represents the control input, and f(x(t), t) ∈ R
q

denotes the nonlinear vector function. The disturbance d1(t) ∈ R
m is given by an exogenous system in

Assumption 1. The other d2(t) ∈ R
q belongs to L2(0,∞). Symbols A(rt), F (rt), G(rt) and H(rt) denote

known matrices with appropriate dimensions. The function {rt} has right continuous trajectories for
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a continuous-time Markovian process, whose values are considered from a finite set S = {1, 2, . . . , N}.

Π , {πij} is the transition rate matrix given by

P{rt+h = j|rt = i} =

{
1 + πiih+ o(h), if j = i,

πijh+ o(h), if j 6= i,
(2)

where h > 0, limh→0(o(h)/h) = 0 and πij denotes the transition rate from mode i at time t to mode j at

time t+ h, πii = −
∑N

j=1,j 6=i πij and πij > 0 when i 6= j.

Remark 1. In this paper, the Markovian jump nonlinear system (1) is discussed using the general

uncertain transition rate matrix. For instance, the transition probability-rate matrix that relates the

four operation modes is given as follows:

Π =




? π̂12 +∆12 π̂13 +∆13 ?

? π̂22 +∆22 ? π̂24 +∆24

? ? ? π̂34 +∆34

π̂41 +∆41 π̂42 +∆42 ? ?



,

where “?” represents the unknown element, symbols π̂ij and ∆ij ∈ [−δij , δij ] (δij > 0) denote the

estimation value and estimation error of the uncertain transition rate πij , and parameters π̂ij and δij are

known. For clarity, we define S = Sk
i + Suk

i , i ∈ S, and

Suk
i = {j | π̂ij is unknown for j ∈ S},

Sk
i = {j | π̂ij is known for j ∈ S}.

Moreover, if Sk
i 6= ∅, it is described as Sk

i = {l1i , l
2
i , . . . , l

m
i }, where lmi represents the m-th bound-known

element with the index lmi in the i-th row of matrix Π.

Therefore, in this study, we aim at designing a composite anti-disturbance controller such that the

closed-loop system has stochastic stability with L2 − L∞ control performance. Accordingly, some as-

sumptions and lemmas are introduced.

Assumption 1 ([35]). d1(t) is the disturbance in the control input path, which can be expressed as

the following system:

ẇ(t) = W (rt)w(t) +M(rt)d3(t),

d1(t) = V (rt)w(t),
(3)

where W (rt), M(rt), V (rt) are known matrices with appropriate dimensions, and d3(t) ∈ R
l belongs to

L2[0,∞).

Remark 2. In (3), the parameters W (rt), M(rt), and V (rt) are known in advance, but the initial

condition of the system (3) is unknown. This indicates that the disturbances cannot be precisely known

beforehand. In engineering, many kinds of disturbances can be illustrated using the system (3), for

example, unknown constants and harmonics with unknown phase and magnitude [33].

Assumption 2 ([11]). (i) If Sk
i 6= S, i 6∈ Sk

i , then π̂ij +∆ij > 0 (∀j ∈ Sk
i );

(ii) If Sk
i 6= S, i ∈ Sk

i , then π̂ij +∆ij > 0 (∀j ∈ Sk
i , j 6= i), π̂ii +∆ii 6 0, and

∑
j∈Sk

i
π̂ij 6 0;

(iii) If Sk
i = S, then π̂ij +∆ij > 0 (∀j ∈ S, j 6= i), π̂ii = −

∑
j∈S,j 6=i π̂ij , and δii = −

∑
j∈S,j 6=i δij .

Assumption 3. f(x(t), t) is assumed to satisfy

(i) f(0, t) = 0;

(ii) ‖f(x1(t), t)− f(x2(t), t)‖ 6 ‖U(x1(t)− x2(t))‖, where U is a known constant matrix.

For simplicity, when rt = i, i ∈ S, the matrix A(rt) is denoted by Ai; the same setting holds for the

other matrices, e.q., F (rt) is denoted by Fi.
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Lemma 1 ([11, 38]). Given any matrix Q and any real number ε, the matrix inequality

ε(Q+QT) 6 ε2P +QP−1QT

holds for any matrix P > 0.

Lemma 2 ([39]). D, E and F are known matrices. Suppose FTF 6 I, and then

DFE + ETFTDT 6 εDDT + ε−1ETE,

for any scalar ε > 0.

3 Main results

In this section, the cases of known and unknown nonlinearity function f(x(t), t) are discussed. A distur-

bance observer is built to estimate the disturbance d1(t) under the two cases, and by using the L2 −L∞

resilient control method, the composite anti-disturbance resilient controller is designed to guarantee that

the closed-loop systems are stochastically stable with L2 − L∞ control performance.

3.1 The case of known nonlinearity

The Markovian jump nonlinear system (1) is discussed under Assumptions 1 and 3, and f(x(t), t) is

known. We build the disturbance observer as

d̂1(t) = Viŵ(t),

ŵ(t) = v(t)− Lx(t), (4)

v̇(t) = (Wi + LGiVi)(v(t)− Lx(t)) + L(Aix(t) + Fif(x(t), t) +Giu(t)),

where L = L+∆L, ∆L is the variation in observer, and L denotes the observer gain.

Subsequently, the resilient controller can be constructed as follows:

u(t) = −d̂1(t) +Kix(t), (5)

where Ki = Ki +∆Ki, d̂1(t) is the estimation of d1(t), Ki is the controller gain, and ∆Ki denotes the

variation in controller gain.

From [36], we assume that ∆Ki = NiBi(t)Di and ∆L = RS(t)T , where Ni, Di R and T are known

matrices, and Bi(t) and S(t) are uncertain matrices satisfying BT
i (t)Bi(t) 6 I, ST(t)S(t) 6 I.

Remark 3. The composite resilient controller is divided into two parts: the first part is the negative of

the estimation of the disturbance d1(t), which originates from the disturbance observer (4); the second

part is the classical state feedback resilient control law. It is evident that, with the control scheme (5),

the disturbances d1 can be compensated via the first part of the controller, whereas the second plays an

important role in guaranteeing the dynamical system stability and satisfying performance requirement.

We define ew(t) = w(t) − ŵ(t), from (1), (3), (4), and the error dynamics is expressed as

ėw(t) = (Wi + L̄GiVi)ew(t) +Mid3(t) + LHid2(t). (6)

Remark 4. In order to satisfy the performance requirement, the disturbance observer gain is chosen

to guarantee the stability of the following systems:

ėw(t) = (Wi + L̄GiVi)ew(t). (7)

The Lyapunov function V0(ew(t), i, t) = eTw(t)Pew(t) is chosen. Let A be the weak infinitesimal gener-

ator of the random process {ξ(t), rt} [40]; thus, we have

AV0(ew(t), i, t) = ėTw(t)Pew(t) + eTw(t)P ėw(t) +

N∑

j=1

πije
T
w(t)Pew(t). (8)
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Noting that
∑N

j=1 πij = 0, AV0(ew(t), i, t) can be written as

AV0(ew(t), i, t)

= eTw(t)((Wi + LGiVi)
TP + P (Wi + LGiVi))ew(t)

= eTw(t)(W
T
i P + PWi + V T

i GT
i L

TP + PLGiVi + V T
i GT

i T
TST(t)RTP + PRS(t)TGiVi)ew(t).

Hence, AV0(ew(t), i, t) < 0 if

WT
i P + PWi + V T

i GT
i L

TP + PLGiVi + V T
i GT

i T
TST(t)RTP + PRS(t)TGiVi < 0. (9)

According to Lemma 2 and the Schur complement lemma, defining Y = PL, there exists a real number

α > 0, such that (9) holds under
(
WT

i P + PWi + V T
i GT

i Y
T + Y GiVi + αV T

i GT
i T

TTGiVi PR

∗ −αI

)
< 0. (10)

Thus, the system (7) is stochastically stable under the condition (10), and the disturbance observer

gain is L = P−1Y .

Remark 5. According to the disturbance estimation error system (7), a method to obtain the observer

gain is presented, in which a common Lyapunov function is chosen. This may lead to some conservatism.

Thus, by combining (1) and (5) with (6), we have

(Σ) ξ̇(t) = Ai(t)ξ(t) + F if(ξ(t), t) +Hid(t),

z(t) = C1ix(t) + C2iew(t) = Ciξ(t), (11)

where ξT(t) = (x(t), ew(t)), f(ξ(t), t) = f(x(t), t), dT(t) = (d2(t), d3(t)) and z(t) is the reference output,

with

Ai =

(
Ai +GiKi GiVi

0 Wi + L̄GiVi

)
, Hi =

(
Hi 0

L̄Hi Mi

)
, F i =

(
Fi

0

)
, Ci = (C1i C2i).

For the system (1) with (3), our task is to design a composite anti-disturbance resilient controller (5),

such that the closed-loop system satisfies the following conditions:

(i) The composite closed-loop system in (Σ) is stochastically stable under d(t) = 0;

(ii) Under zero initial condition, the following inequality holds:

‖z(t)‖2E∞

< γ‖d(t)‖22, (12)

where ‖z(t)‖2E∞

= supt>0 E{zT(t)z(t)}, the parameter γ > 0 is a prescribed L2 − L∞ performance, and

d(t) ∈ L2[0,∞).

Now, a sufficient condition is presented to guarantee that the system (Σ) is stochastically stable with

L2 − L∞ performance.

Theorem 1. Given the parameters γ > 0 and λ > 0, the composite system (11) is stochastically stable

with L2 − L∞ performance, under the disturbance observer (4) and resilient controller (5), if there exist

matrices Pi > 0, i ∈ S, such that the following inequalities hold:




Γi PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


 < 0, (13)

− Pi + γ−1C
T

i Ci < 0, (14)

where

Γi = PiAi +A
T

i Pi +

N∑

j

πijPj +
1

λ2
U, U =

(
UTU 0

0 0

)
.
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Proof. A Lyapunov function candidate is defined as

V (x(t), i, t) = ξT(t)Piξ(t) +
1

λ2

∫ t

0

(
‖Ux(τ)‖2 − ‖f(x(τ), τ)‖2

)
dτ, (15)

where Pi > 0, i ∈ S, λ > 0.

Let A be the weak infinitesimal generator of the random process {ξ(t), rt} [40]. For each rt = i, i ∈ S,

we have

AV (x(t), i, t) = ξT(t)


PiAi +A

T

i Pi +
N∑

j

πijPj


 ξ(t) + 2ξT(t)PiF if(x(t), t) + 2ξT(t)PiHid(t)

+
1

λ2

(
xT(t)UTUx(t) − fT(x(t), t)f(x(t), t)

)
. (16)

Now, to prove the L2 − L∞ performance of the composite system, we introduce the following perfor-

mance index:

J(T ) = E

{
V (x(T ), i, T )−

∫ T

0

dT(τ)d(τ)dτ

}
. (17)

Under the zero initial condition, based on (16) and (17), we have

J(T ) = E

{∫ T

0

AV (x(τ), i, τ) − dT(τ)d(τ)dτ

}
= E

{∫ T

0

ηT(τ)Θiη(τ)dτ

}
, (18)

where η(t) = ( ξT(t), fT(x(t), t), dT(t) ), and

Θi =




Γi PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


.

From (13) and (17), we have

E{V (x(T ), i, T )} < E

{∫ T

0

dT(τ)d(τ)dτ

}
. (19)

According to (11) and (14), we have

γ−1‖z(t)‖2E∞

= γ−1 sup
t>0

E{zT(t)z(t)} 6 E{V (x(t), i, t)}. (20)

Combining (14) with (20) and letting T → ∞ yields

‖z(t)‖2E∞

6 E{γV (x(t), i, t)} 6 γ‖d(t)‖22. (21)

Hence, the composite system Σ satisfies the L2 − L∞ performance.

Thus, the stochastic stability of the composite system is confirmed under d(t) = 0.

Inspired by [29], as Θi is a negative definite matrix, there exists a constant k > 0, and for each i ∈ S,

the following equality holds:

 PiAi +A

T

i Pi +
∑N

j πijPj + U PiF i

∗ −
1

λ2
I


 <

(
−kI 0

0 0

)
. (22)

Hence, according to Dynkin’s formula, we obtain

E

{∫ t

0

ξT(s)ξ(s)ds

}
6 k−1E{V (x(0), i, 0)} 6 ξT(0)Mξ(0), (23)

where M is a positive definite matrix and M > Pi, i ∈ S.

Therefore, according to [35], we conclude that the composite system (11) is stochastically stable.
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In Theorem 1, a sufficient condition is provided to guarantee the stochastic stability of a Markovian

jump nonlinear system with L2−L∞ performance. Now, considering the case of Markovian jump nonlinear

system with general uncertain transition rates, the condition in Theorem 1 is not solvable. Hence, some

solvable sufficient conditions are further developed such that the Markovian jump nonlinear system is

stochastically stable with L2 − L∞ performance.

Theorem 2. Consider the system (1) under Assumptions 1 and 3. Given the parameters γ > 0 and

λ > 0, the closed-loop system (11) is stochastically stable with L2 − L∞ performance, if there exist

matrices Pi > 0, Jij > 0, Vijk > 0, Sij > 0, i, j, k ∈ S, such that the following inequalities hold:

−Pi + γ−1C
T

i Ci < 0. (24)

(i) If i ∈ Suk
i ,




Γ1i PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


 < 0, (25)

Pi − Pj > 0, ∀j ∈ Suk
i , j 6= i; (26)

(ii) If i ∈ Sk
i and

∑
j∈Suk

i
πij 6= 0,




Γ2i PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


 < 0, ∀k ∈ Suk

i ; (27)

(iii) If i ∈ Sk
i and

∑
j∈Suk

i
πij = 0,




Γ3i PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


 < 0, (28)

where

Γ1i = PiAi +A
T

i Pi +
∑

j∈Sk
i

π̂ij(Pj − Pi) +
1

λ2
U +

∑

j∈Sk
i

[
δ2ij
4
Jij + (Pj − Pi)J

−1
ij (Pj − Pi)

]
,

Γ2i = PiAi +A
T

i Pi +
∑

j∈Sk
i

π̂ij(Pj − Pk) +
1

λ2
U +

∑

j∈Sk
i

[
δ2ij
4
Tijk + (Pj − Pk)T

−1
ijk (Pj − Pk)

]
,

Γ3i = PiAi +A
T

i Pi +
∑

i∈Sk
i
,j 6=i

π̂ij(Pj − Pi) +
1

λ2
U +

∑

i∈Sk
i
,j 6=i

[
δ2ij
4
Sij + (Pj − Pi)S

−1
ij (Pj − Pi)

]
.

Proof. First, consider the case where i ∈ Suk
i . Note that −

∑
j∈Suk

i
πij =

∑
j∈Sk

i
πij , πii 6 0, πij > 0,

i 6= j.

Subsequently, using (26), we have

PiAi +A
T

i Pi +

N∑

j=1

πijPj 6 PiAi +A
T

i Pi +
∑

j∈Sk
i

πijPj +
∑

j∈Suk

i

πijPi,

= PiAi +A
T

i Pi +
∑

j∈Sk
i

(π̂ij +∆ij)(Pj − Pi). (29)
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From Lemma 1, we obtain

∑

j∈Sk
i

∆ij(Pj − Pi) 6
∑

j∈Sk
i

[
δ2ij
4
Jij + (Pj − Pi)J

−1
ij (Pj − Pi)

]
. (30)

According to (29) and (30), we derive

PiAi +A
T

i Pi +
N∑

j=1

πijPj +
1

λ2
U

6 PiAi +A
T

i Pi +
∑

j∈Sk
i

π̂ij(Pj − Pi) +
∑

j∈Sk
i

[
δ2ij
4
Jij + (Pj − Pi)J

−1
ij (Pj − Pi)

]
+

1

λ2
U. (31)

This indicates that the system (11) is stochastically stable with L2 − L∞ performance if (25) is true.

Second, consider the case where i ∈ Sk
i and

∑
j∈Suk

i
πij 6= 0. Note that in this case

∑

j∈Sk
i

πij = −
∑

j∈Suk

i

πij ,
∑

j∈Sk
i

πij < 0, πij > 0, j ∈ Suk
i . (32)

After some manipulations, we obtain

PiAi +A
T

i Pi +

N∑

j=1

πijPj = PiAi +A
T

i Pi +
∑

j∈Sk
i

πijPj +
∑

k∈Suk

i

πikPk

=

∑
k∈Suk

i
πik

−
∑

j∈Sk
i
πij


PiAi +A

T

i Pi +
∑

j∈Sk
i

πij(Pj − Pk)


. (33)

From (33), Eq. (13) is equivalent to

∑
k∈Suk

i
πik

−
∑

j∈Sk
i
πij



Ψ1i PiFi PiHi

∗ −
1

λ2
I 0

∗ ∗ −I


 < 0, (34)

where Ψ1i = PiAi +A
T

i Pi +
∑

j∈Sk
i
πij(Pj − Pk) +

1
λ2U. By using Lemma 1, we obtain

PiAi +A
T

i Pi +
∑

j∈Sk
i

πij(Pj − Pk) +
1

λ2
U

6 PiAi +A
T

i Pi +
∑

j∈Sk
i

π̂ij(Pj − Pk) +
1

λ2
U +

∑

j∈Sk
i

[
δ2ij
4
Tijk + (Pj − Pk)T

−1
ijk (Pj − Pk)

]
. (35)

Hence, Eq. (34) holds under (27), and this implies (13).

Third, consider the case where i ∈ Sk
i and

∑
j∈Suk

i
πij = 0. Observe that −πii =

∑
j∈Sk

i
j 6=i πij . Thus,

the following holds:

PiAi +A
T

i Pi +

N∑

j=1

πijPj = PiAi +A
T

i Pi +
∑

j∈Sk
i
,j 6=i

(π̂ij +∆ij)(Pj − Pi).

Applying Lemma 1 to (36) yields

PiAi +A
T

i Pi +
∑

j∈Sk
i
,j 6=i

(π̂ij +∆ij)(Pj − Pi) +
1

λ2
U
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6 PiAi +A
T

i Pi +
∑

j∈Sk
i
,j 6=i

π̂ij(Pj − Pi) +
1

λ2
U +

∑

j∈Sk
i
,j 6=i

[
δ2ij
4
Sij + (Pj − Pi)S

−1
ij (Pj − Pi)

]
. (36)

This together with (28) yields (13).

Therefore, according to Theorem 1 and the above analysis, we conclude that the composite system (Σ)

is stochastically stable with L2 − L∞ performance. The proof is completed.

Here, in order to obtain the gains of the disturbance observer and resilient controller, the linear matrix

inequality (LMI) technique is applied to derive the sufficient conditions.

Theorem 3. Consider the system (1) under Assumptions 1 and 3. Given the parameters γ > 0 and

λ > 0, by designing a disturbance observer and a resilient controller in the forms of (4) and (5), the

closed-loop system (Σ) is stochastically stable with L2 −L∞ performance, if there exist matrices Qi > 0,

P2i > 0, J1ij > 0, J2ij > 0, j ∈ Sk
i , T 1ijk > 0, T2ijk > 0, j ∈ Sk

i , k ∈ Suk
i , S1ij > 0, S2ij > 0, j ∈ Sk

i , and

Xi, and positive numbers εi, i ∈ S, β1 > 0, and β2 > 0, such that the following inequalities hold:

(
−P2i CT

2i

∗ −γI + C1iQiC
T
1i

)
< 0. (37)

(i) If i ∈ Suk
i ,




Π11i GiVi Fi Hi 0 0 0 Ξ1i

∗ Π22i 0 P2iLHi P2iMi P2iR P2iR Ξ2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ3i




< 0, (38)

P2j − P2i 6 0, ∀j ∈ Suk
i , j 6= i, (39)

−Qj +Qi 6 0, ∀j ∈ Suk
i , j 6= i; (40)

(ii) If i ∈ Sk
i and

∑
j∈Suk

i
πij 6= 0, then, for ∀k ∈ Suk

i




Π′
11i GiVi Fi Hi 0 0 0 Ξ′

1i

∗ Π′
22i 0 P2iLHi P2iMi P2iR P2iR Ξ′

2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ′
3i




< 0, (41)

−Qi +Qk 6 0; (42)
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(iii) If i ∈ Sk
i and

∑
j∈Suk

i
πij = 0,




Π′′
11i GiVi Fi Hi 0 0 0 Ξ′′

1i

∗ Π′′
22i 0 P2iLHi P2iMi P2iR P2iR Ξ′′

2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ′′
3i




< 0, (43)

where

Ξ1i = (QiD
T
i QiU

T Π18i Π19i 0 Π111i), Ξ3i = diag(−εiI −λ2I Π88i Π99i π1010i Π1111i),

Ξ2i = (0 0 0 0 Π210i 0), Π18i = (Qi · · · Qi), Π19i = (Qi −Ql1
i
· · · Qi −Qlm

i
),

Π111i =
(

δ
il1

i

2 Qi · · ·
δilm

i

2 Qi

)
, Π210i =

(
P2l1

i
− P2i · · · P2lmi

− P2i

)
,

Π88i = −diag
(
π̂
−1
il1

i

Ql1
i
· · · π̂−1

ilm
i
Qlm

i

)
, Π99i = −diag

(
2Ql1

i
− J1il1

i
· · · 2Qlm

i
− J1ilm

i

)
,

Π1010i = −diag
(
J2il1

i
· · · J2ilm

i

)
, Π1111i = −diag

(
π̂
−1
il1

i

J1il1
i
· · · π̂−1

ilm
i
J1ilm

i

)
,

Ξ′
1i = (QiD

T
i QiU

T Π′
18i Π′

19i 0 Π′
111i), Ξ′

3i = diag(−εiI −λ2I Π′
88i Π′

99i π
′
1010i Π′

1111i),

Ξ′
2i = (0 0 0 0 Π′

210i 0), Π′
18i = (Qi · · · Qi · · · Qi), Π′

19i = (Qi −Ql1
i
· · · Qi −Qlr

i
· · · Qi −Qlm

i
)lr

i
6=i,

Π′
111i =

(
δ
il1

i

2 Qi · · ·
δilr

i

2 Qi · · ·
δilm

i

2 Qi

)
lr
i
6=i

, Π′
210i = (P2l1

i
− P2k · · · P2lm

i
− P2k),

Π′
88i = −diag

(
π̂
−1
il1

i

Ql1
i
· · · π̂−1

ilr
i
Qlr

i
· · · π̂−1

ilm
i
Qlm

i

)
lr
i
6=i

, Π′
1010i = −diag

(
T2il1

i
k · · · T2ilm

i
k

)
,

Π′
1111i = −diag

(
π̂
−1
il1

i

T 1il1
i
k · · · π̂

−1
il1

i

T 1il1
i
k · · · π̂

−1
ilmi

T 1ilm
i
k

)
lri 6=i

, Ξ′′
1i = (QiD

T
i QiU

T Π′′
18i Π′′

19i 0 Π′′
111i),

Ξ′′
3i = diag(−εiI −λ2I Π′′

88i Π′′
99i Π′′

1010i Π′′
1111i), Ξ′′

2i = (0 0 0 0 Π′′
210i 0), Π′′

18i = (Qi · · · Qi · · · Qi),

Π′′
19i = (Qi −Ql1

i
· · · Qi −Qlr

i
· · · Qi −Qlm

i
)lr

i
6=i, Π′′

111i =
(

δ
il1

i

2 Qi · · ·
δilr

i

2 Qi · · ·
δilm

i

2 Qi

)
lr
i
6=i

,

Π′′
210i=(P2li1−P2i · · · P2lir−P2i · · · P2lm

i
−P2i)lri 6=i, Π′′

88i=−diag
(
π̂
−1
il1

i

Ql1
i
· · · π̂−1

ilr
i
Qlr

i
· · · π̂−1

ilm
i
Qlm

i

)
lr
i
6=i

,

Π′′
1010i = −diag(S2il1

i
· · · S2ilr

i
· · · S2ilm

i
)lr

i
6=i, Π′′

1111i = −diag
(
π̂
−1
il1

i

S1il1
i
· · · π̂−1

il1
i

S1il1
i
· · · π̂−1

ilm
i
S1ilm

i

)
lr
i
6=i

,

Π11i = AiQi +QiA
T
i + εiGiNiN

T
i GT

i +GiXi +XT
i G

T
i −

∑

j∈Sk
i

π̂ijQi,

Π22i=P2iWij+P2iLGiVi+WT
i P2i+V T

i GT
i L

TPT
2i+β1V

T
i GT

i T
TTGiVi +

∑

j∈Sk
i

(
π̂ijP2j−π̂ijP2i+

δ2ij
4
J2ij

)
,

Π′
11i = AiQi +QiA

T
i + εiGiNiN

T
i GT

i +GiXi +XT
i G

T
i + π̂ii

δ2ii
4
(2Qi − T 1iik)−

∑

j∈Sk
i
,j 6=i

π̂ijQi,

Π′
22i=P2iWij+P2iLGiVi+WT

i P2i+V T
i GT

i L
TPT

2i+β1V
T
i GT

i T
TTGiVi+

∑

j∈Sk
i

(
π̂ijP2j−π̂ijP2k+

δ2ij
4
T2ijk

)
,

Π′′
11i = AiQi +QiA

T
i + εiGiNiN

T
i GT

i +GiXi +XT
i G

T
i + π̂ii

δ2ii
4
(2Qi − S1ii)−

∑

j∈Sk
i
,j 6=i

π̂ijQi,
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Π′′
22i=P2iWij+P2iLGiVi+WT

i P2i+V T
i GT

i L
TPT

2i+β1V
T
i GT

i T
TTGiVi+

∑

j∈Sk
i
,j 6=i

(
π̂ijP2j−π̂ijP2i+

δ2ij
4
S2ij

)
,

Π′
99i = −diag(2Ql1

i
− T 1il1

i
k · · · 2Qlr

i
− T 1ilr

i
k · · · 2Qlm

i
− T 1ilm

i
k)lri 6=i,

Π′′
99i = −diag

(
2Ql1

i
− S1il1

i
· · · 2Qlr

i
− S1ilr

i
· · · 2Qlm

i
− S1ilm

i

)
lr
i
6=i
.

Moreover, the controller gains are given by Ki = XiQ
−1
i .

Proof. First, if i ∈ Suk
i , according to Lemma 1 and letting ε = 1, we have Π99i > −diag(Ql1

i
J
−1

1il1
i
Ql1

i
,

. . . , Qlm
i
J
−1

1ilm
i
Qlm

i
). We define Λi = diag(Q−1

l1
i

, . . . , Q−1
lm
i

), Qi = P−1
1i , Xi = KiQi, J1ij = J

−1

1ij . Pre-

multiplying and post-multiplying (38) with the term Π99i replaced by the element of −diag(Ql1
i
J
−1

1il1
i
Ql1

i
,

. . . , Qlm
i
J
−1

1ilm
i
Qlm

i
), simultaneously using diag{Q−1

i I I I I I I I Λi I I }, we have




Π11i P1iGiVi P1iFi P1iHi 0 0 0 Ξ1i

∗ Π22i 0 P2iLHi P2iMi P2iR P2iR Ξ2i

∗ ∗ −
1

λ2
i

I 0 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ3i




< 0, (44)

where

Π11i = P1iAi +AT
i P1i + εiP1iGiNiN

T
i GT

i P1i + P1iGiKi +KT
i G

T
i P1i −

∑

j∈Sk
i

π̂ijP1i,

Ξ1i = (DT
i UT Π18i Π19i 0 Π111i ), Π18i = ( I, . . . , I ), Π19i = ( P1l1

i
− P1i, . . . , P1lm

i
− P1i ),

Ξ3i = diag(−εiI −λ2I Π88i Π99i π1010i Π1111i ), Π111i = ( I, . . . , I ), Π99i = −diag( J1il1
i
, . . . , J1ilm

i
).

According to Lemma 2, we obtain




Υ1i GiVi Fi Hi 0

∗ Υ2i 0 P2iLHi P2iHi

∗ ∗ −
1

λ2
i

I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I




< 0, (45)

where

Υ1i = P1iAi +AT
i P1i + P1iGiKi +KT

i G
T
i P1i + P1iGiNiBi(t)Di +DT

i B
T
i (t)N

T
i P1i +

1

λ2
UT
i Ui

+
∑

j∈Sk
i

(π̂ijP1j − π̂ijP1i) +
∑

j∈Sk
i

(
δ2ij
4
J1ij + (P1j − P1i)J

−1
1ij (P1j − P1i)

)
,

Υ2i = P2iWij + P2iLGiVi +WT
i P2i + V T

i GT
i L

T
P2i +

∑

j∈Sk
i

(π̂ijP2j − π̂ijP2i)

+
∑

j∈Sk
i

(
δ2ij
4
J2ij + (P2j − P2i)J

−1
2ij (P2j − P2i)

)
.
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Let Pi = ( P1i 0

0 P2i
) and Jij = (

J1ij 0

0 J2ij
). We obtain (25) and (27) from (39) and (40).

Subsequently, if i ∈ Sk
i and

∑
j∈Suk

i
πij 6= 0, or i ∈ Sk

i and
∑

j∈Suk

i
πij = 0, following similar steps as

the case (i), we can derive (27) from (41) and (42), and (28) from (43). Thus, by using Schur complement,

(24) could be deduced if (37) holds. Hence, according to Theorem 2, we conclude that the composite

system (11) is stochastically stable with L2 − L∞ performance.

3.2 The case of unknown nonlinearity

In this subsection, we suppose that Assumptions 1 and 3 hold, and the nonlinear function f(x(t), t) is

unknown; thus the disturbance observer is designed as [35]

d̂1(t) = Viŵ(t),

ŵ(t) = v(t)− L̄x(t), (46)

v̇(t) = (Wi + L̄GiVi)(v(t)− L̄x(t)) + L̄(Aix(t) +Giu(t)).

The composite resilient controller is constructed in the same form as (5). We define ew(t) = w(t)−ŵ(t),

and subsequently, we express the error system as

ėw(t) = (Wi + L̄GiVi)ew(t) +Mid3(t) + LHid2(t). (47)

Combining (1) and (5) with (47), the composite system can be expressed as

(Σ′) ξ̇(t) = Ai(t)ξ(t) + F if(ξ(t), t) +Hid(t),

z(t) = C1ix(t) + C2iew(t) = Ciξ(t), (48)

where ξ(t) = (xT(t), eTw(t))
T, d(t) = (dT2 (t), d

T
3 (t))

T, fi(ξ(t), t) = f(x(t), t) and z(t) is reference output,

with

Ai =

(
Ai +GiKi GiVi

0 Wi + L̄GiVi

)
, Hi =

(
Hi 0

L̄Hi Mi

)
, F i =

(
Fi

L̄Fi

)
, Ci = [C1i, C2i].

Now, we present a sufficient condition by using the LMI technique, such that the augmented system

in (Σ′) satisfies the conditions (i) and (ii).

By comparing the system matrices in (11) and (48) and following similar arguments for Theorem 3,

we can directly obtain Corollary 1.

Corollary 1. Consider system (1) under Assumptions 1 and 3. Given the parameters γ > 0 and λ > 0,

by designing a disturbance observer and a resilient controller in the forms of (4) and (5), the closed-loop

system (Σ) is stochastically stable with L2 − L∞ performance, if there exist matrices Qi > 0, P2i > 0,

J1ij > 0, J2ij > 0, j ∈ Sk
i , T 1ijk > 0, T2ijk > 0, j ∈ Sk

i , k ∈ Suk
i , S1ij > 0, S2ij > 0, j ∈ Sk

i and Xi, and

positive numbers εi, i ∈ S, such that the following inequalities hold:
(
−P2i CT

2i

∗ −γI + C1iQiC
T
1i

)
< 0. (49)

(i) If i ∈ Suk
i ,




Π11i GiVi Fi Hi 0 0 0 Ξ1i

∗ Π22i P2iLFi P2iLHi P2iMi P2iR P2iR Ξ2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ3i




< 0, (50)
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P2j − P2i 6 0, ∀j ∈ Suk
i , j 6= i, (51)

−Qj +Qi 6 0, ∀j ∈ Suk
i , j 6= i; (52)

(ii) If i ∈ Sk
i and

∑
j∈Suk

i
πij 6= 0, then, for ∀k ∈ Suk

i




Π′
11i GiVi Fi Hi 0 0 0 Ξ′

1i

∗ Π′
22i P2iLFi P2iLHi P2iMi P2iR P2iR Ξ′

2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ′
3i




< 0, (53)

−Qi +Qk 6 0; (54)

(iii) If i ∈ Sk
i and

∑
j∈Suk

i
πij = 0,




Π′′
11i GiVi Fi Hi 0 0 0 Ξ′′

1i

∗ Π′′
22i P2iLFi P2iLHi P2iMi P2iR P2iR Ξ′′

2i

∗ ∗ −
1

λ2
I 0 0 0 0 0

∗ ∗ ∗ −I+β2H
T
i T

TTHi 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −β1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ′′
3i




< 0. (55)

The corresponding matrices are given in Theorem 3. Moreover, the controller gains are given by

Ki = XiQ
−1
i .

4 Application example

In this section, we demonstrate the effectiveness of the proposed control method using a single link robot

arm system inspired by [1, 4, 41],

α̈(t) = −
mgl

J
sin(α(t)) −

D

J
α̇(t) +

1

J
[u(t) + d1(t)] +

1

J
d2(t), (56)

where α is the angle position of the arm, u(t) denotes the control input, and d2(t) represents the external

disturbance. The disturbance d1(t) can be described by the exogenous system (3). Parameters l, D, g, m,

and J denote the arm length, viscous friction, gravity acceleration, payload mass, and inertia moment,

respectively. The values of some important parameters are given as D = 1, l = 0.1, and g = 9.8.

Remark 6. When the single link robot arm functions under different environmental conditions and

with changing payload, it can be modeled as a Markovian jump system [1, 4].

Let x1(t) = α(t) and x2(t) = α̇(t); the reference output is chosen as zT(t) = (x1(t), x2(t)). Thus, the

single link robot arm system (56) is modeled as a Markovian jump system with four modes

ẋ(t) =




0 1

0 −
D

Ji


 x(t) +




0

−
migl

Ji


 sin(x1(t)) +

(
0

Ji

)
[u(t) + d1(t)] +

(
0

Ji

)
d2(t), (57)
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z(t) = (x1(t) x2(t))
T. (58)

Mode 1:

J1 = 3.3, m1 = 0.4, V1 = (2.0 1.8), N1 = 0.9, W1 =

(
0 −2.0

2.0 0

)
, M1 =

(
−0.8

0.9

)
, D1 = (−0.4 1.0).

Mode 2:

J2 = 2.1, m2 = 0.9, V2 = (1.9 − 0.5), N2 = 2.0, W2=

(
0 2.0

−2.0 0

)
, M2=

(
2.8

−1.7

)
, D2 = (−0.2 1.3).

Mode 3:

J3 = 1, m3 = 0.7, V3 = (−1.4 − 0), N3 = 1.0, W3 =

(
0 −1.0

1.0 0

)
, M3 =

(
1.0

−1.1

)
, D3 = (0.3 0.9).

Mode 4:

J4 = 3, m4 = 0.4, V4 = (1.0 − 0.2), N4 = 2, W4 =

(
0 1.0

−1.0 0

)
, M4 =

(
1.3

0.5

)
, D4 = (1.1 1.2).

The transition rate matrix Π is given as

Π =




−0.7 + ∆11 0.1 + ∆12 ? ?

0.3 + ∆21 ? ? 0.2 + ∆24

? 0.4 + ∆32 ? 0.2 + ∆34

0.2 + ∆41 0.3 + ∆42 0.3 + ∆43 −0.8 + ∆44



,

and δ11 = 0.05, δ12 = 0.02, δ21 = 0.01, δ24 = 0.02, δ32 = 0.02, δ34 = 0.02, δ41 = 0.01, δ42 = 0.02,

δ43 = 0.01, δ44 = 0.03. The uncertain matrices Bi(t) are chosen as Bi(t) = sin(t) and S(t) is chosen

as S(t) = cos(t), i ∈ 1, 2, 3, 4. The external disturbance is d2(t) = e−t sin(t) and uncertain variation is

d3(t) = e−t sin(t).

Thus, we confirm that the composite anti-disturbance resilient control methods for the nonlinear func-

tions are known and unknown.

4.1 The case of known nonlinear function

Based on (6), we obtain L = ( 0 −2.4731

0 −3.0237
), and from Theorem 3, we obtain

K1 = (−3.4647 −0.5687 ), K2 = (−4.6521 −1.2711 ),

K3 = (−10.1173 −2.4719 ), K4 = (−3.7536 −0.8171 ).

The simulation results are shown in Figure 1. In Figure 1(a), under the designed composite anti-

disturbance resilient controller, the closed-loop system shows good control performance when suffering

from the above multiple disturbances. In Figure 1(b), the control input is shown. The switching signal

is presented in Figure 1(c). We can observe from Figure 1(d) that the disturbance d1(t) is efficiently

estimated using a disturbance observer.

4.2 The case of unknown nonlinear function

According to (47), we obtain L′ = ( 0 −2.2247

0 −1.8199
). By using Corollary 1, we obtain

K ′
1 = (−4.4407 −1.4418 ), K ′

2 = (−4.1981 −1.5704 ),

K ′
3 = (−7.5673 −2.8038 ), K ′

4 = (−5.3893 −1.7894 ).
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Figure 1 (Color online) Curves of simulation trajectories with known nonlinearity function. (a) System states; (b) control

input; (c) switching signal; (d) disturbances and disturbance estimation.

The corresponding simulation results are presented in Figure 2. The state trajectories of the closed-

loop system are given in Figure 2(a), which demonstrates that the composite anti-disturbance resilient

control method is feasible in spite of existing multiple disturbances. The control input is shown in

Figure 2(b). The switching signal is shown in Figure 2(c). In Figure 2(d), the exogenous disturbances

d1(t) is estimated effectively using the proposed disturbance observer.

4.3 Comparison between the proposed method and the conventional L2−L∞ control scheme

In order to show the superiority of the proposed method, we compare the proposed algorithm with the

conventional L2−L∞ control scheme. From Figure 3, we can observe that, in contrast to the conventional

L2 − L∞ control, our approach can achieve smaller overshoots and better rejection and attenuation of

multiple disturbances.

Remark 7. In this study, the single link robot arm system (56) is modelled as a Markovian jump

nonlinear system. Compared with the existing literatures, the disturbance of the single link robot arm

system (56) has been divided into two kinds, which promotes the anti-disturbance ability of the system.

Further, the transition rate matrix is generally uncertain, which makes the model suitable to describe a

wide range of practical systems. Using the designed composite anti-disturbance resilient controller, we

achieve a satisfactory attenuation level.

Remark 8. The system parameters of a single link robot arm are chosen according to [1,4]. With the aid

of the MATLAB software, the controller gains are solved via LMI Toolbox. The SIMULINK simulation

model of the single link robot arm is established, which is based on the S-function. In addition, the

simulation results are presented.

5 Conclusion

We have investigated the composite anti-disturbance resilient control problem for Markovian jump nonlin-

ear systems with general uncertain transition rates and multiple disturbances. Two cases of disturbances
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Figure 2 (Color online) Curves of simulation trajectories with unknown nonlinearity function. (a) System states;

(b) control input; (c) switching signal; (d) disturbances and disturbance estimation.
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Figure 3 (Color online) Curves of z(t). (a) Composite anti-disturbance resilient control; (b) the conventional control.

are fully considered and some sufficient conditions have been established for verifying the stochastic sta-

bility while ensuring the L2 − L∞ performance of the closed-loop system. A composite anti-disturbance

resilient controller has been designed by solving a set of convex optimization conditions. All the con-

ditions have been transformed into the form of linear matrix inequalities for the sake of calculation.

Finally, we have modeled the single link robot arm system as a Markovian jump nonlinear system and

studied its composite anti-disturbance resilient control problem, which verifies the effectiveness of the

main algorithm in this paper.

In the future, in order to obtain less conservative results, the uncertain transition rate of polytoptic type

will be considered [10, 15] and the composite anti-disturbance controller will be designed for Markovian

jump systems.
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