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Abstract This paper investigates the state consensus for double-integrator networks under heterogeneous

interaction topologies. For double-integrator networks, the setting of heterogeneous topologies means that

position and velocity information flows are modeled by two different graphs. The corresponding protocol

proposed in this paper is based on edge-event-triggered control. The events based on position information

are irrelevant to velocity information and independent of the events based on velocity information. And for

different edges, the corresponding events are activated independently of each other. Once an event occurs,

the agents connected by the associated edge will sample their corresponding relative state information and

update their corresponding controllers. Furthermore, under the presented event-triggering rules, the state

consensus of double-integrator networks can be achieved by designing appropriate parameters. In addition,

the proposed protocol with the event-triggering rules can effectively improve the system performance and

avoid the occurrence of Zeno behaviors. Finally, a simulation example is worked out to verify the theoretical

analysis.
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1 Introduction

Distributed control of networked systems has drawn great attention of researchers in various fields owing to

its wide applications [1–20]. Therein, consensus problems of multi-agent systems are of great interest, and

they aim to drive all agents to reach a common state with limited and unreliable information transmission

by designing appropriate control laws. The typical consensus model under directed networks was given

by Olfati-Saber and Murray in [21], where they discussed the consensus problems under directed fixed

networks, directed switching networks and undirected fixed networks with communication time-delays,

respectively.

Many existing studies were centred on multi-agent systems with multiple first-order integrators. In

practical engineering applications, the behavior of some agents needs to be modeled by second-order

dynamics [22]
{

ẋi(t) = vi(t),

v̇i(t) = ui(t),
i ∈ n = {1, 2, . . . , n}, (1)
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where xi(t), vi(t) are the position and velocity of agent i at time t, respectively, and ui(t) is the con-

trol input. In practice, it is hard to guarantee continuous communication and uninterrupted controller

update for agents. Periodic sampled-data models characterize the process of interaction among agents

intermittently [23,24]. Compared with the typical periodic sampled-data control, event-triggered control

is a possible alternative with respect to reducing unnecessary data sampling and redundant controller

update [25–35]. In event-triggered control, an important task is to design event-triggering schemes. As a

topic in event-triggered control, the edge-event-triggered control of multi-agent systems was introduced

in [27], where edge events were defined independently for communication links and when the events of

some edge are activated, the pair of adjacent agents connected by this edge sample the corresponding state

data and update their controllers. In [27], the authors solved the average consensus problem for single-

integrator networks based on hybrid event-time triggered control. The combination of time-triggered

control and event-triggered control effectively eliminates Zeno behaviors. Furthermore, Cao et al. [32]

investigated the average consensus of multiple double-integrator networks based on edge-event-triggered

control, and proposed a corresponding protocol as well as event-detecting rules.

In this paper, we focus on the edge-event-based sampled-data consensus of multiple double-integrator

systems over heterogeneous topologies. In [26,36,37], the centralized event-triggered control was investi-

gated. It relaxes the requirement of continuous controller update. However, it needs global information

to evaluate the triggering condition and requires all agents to update their controllers simultaneously. In

this paper, we consider the decentralized event-triggered control, in which each agent detects the event-

triggering condition only based on the states of its neighbors and its own. And all agents update their

control signals asynchronously. In the event-triggered control studied in [25, 26, 31, 33, 36, 37], when an

event occurs, the corresponding agent and all its neighbors will update all their controllers accordingly.

Different from that mechanism, we consider a novel mechanism based on edge-event-triggered control,

which designs events for the edges of the communication graph rather than nodes. At event times, only

a pair of adjacent agents exchange information. In the implementation of event-triggered control, an im-

portant issue is to avoid Zeno behaviors. However, many existing results were difficult to achieve the goal

based on continuous monitoring. To overcome the difficulty, we adopt a hybrid time- and event-triggered

mechanism to get rid of the Zeno behaviors. In engineering applications, an agent could be equipped

with multiple sensors. And it is not practical to assume that all these sensors work synchronously.

Therefore, different types of senors for position measurement and for velocity measurement may lie in

different networks, which motivates us to investigate the multi-agent systems with heterogenous topolo-

gies. The system we investigate is more general than the double-integrator networks with homogeneous

topologies [32]. Theoretically, the convergence analysis of system (1) over heterogeneous networks is more

challenging than that over homogeneous networks. In homogeneous networks [32], when some events of

some edge occur, the corresponding agents connected by this edge sample both their relative position

information and relative velocity information, and update position information and velocity information

in their controllers, which leads to energy waste to some extent. However, in the case of heterogeneous

networks, position-based edge events and velocity-based edge events occur independently over different

graphs. Owing to the independence, when events of some edge occur, the agents jointed by this edge only

need to sample the corresponding state information (position information or velocity information) and

update corresponding information in their controllers. For instance, at some event-detecting time, if some

events over position communication graph are activated, the corresponding agents sample their relative

position information and update their position information in controllers. In such a case, the agents do

not need to sample their relative velocity information as required in [32], which reduces communication

costs and controller-updating costs. We propose a protocol for heterogeneous networks and provide the

corresponding event-detecting rules based on edge-event-triggered control, which can effectively reduce

communication costs and controller-updating costs. Furthermore, we give a sufficient condition for state

consensus which is verified by Lyapunov methods.

The outline of this paper is as follows. In Section 2, we introduce some basic definitions in algebraic

graph theory and propose the protocol; in Section 3, the event-detecting rules are presented, and the

consensus problem is solved by Lyapunov methods; Section 4 gives a simulation example to demonstrate
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the effectiveness of the result; finally, we make a brief conclusion of this paper and discuss possible future

studies in Section 5.

Notation. R, Rn and R
m×n denote the sets of real numbers, n-dimensional real column vectors and

all m×n real matrices, respectively. I and 0 are the n×n identity matrix and a zero vector or matrix with

compatible dimensions, respectively. The set {1, 2, 3, . . . , n} is denoted by n. In addition, ‖A‖ represents

the (induced) 2-norm of matrix or vector A and |a| is the absolute value of number a. λ2(A) denotes

the second smallest eigenvalue of real symmetric matrix A. For matrices A, B, A > B means A − B is

positive definite.

2 Preliminaries

Consider the multi-agent system (1) modeled by double-integrator network, which consists of n agents. In

this paper, we investigate the consensus of system (1) in the setting that position information and velocity

information is transmitted over different networks. Assume that there are mp communication channels

in the position communication network and mv communication channels in the velocity communication

network. The two networks are modeled by graph Gp and Gv, respectively. In Gp and Gv, each vertex

represents an agent and each edge represents a communication channel between agents. Gp = {V , Ep, Ap}

consists of a vertex set V = {V1,V2, . . . ,Vn}, an edge set Ep = {ep1, e
p
2, . . . , e

p
mp

} ⊆ V×V , and an adjacency

matrix Ap = [apij ] ∈ R
n×n. a

p
ij > 0 if there is an edge (Vj ,Vi) in Gp from Vj to Vi, otherwise a

p
ij = 0.

Moreover, apij is called the weight of edge (Vj ,Vi). Analogously, Gv = {V , Ev, Av} consists of the vertex

set V , an edge set Ev = {ev1, e
v
2, . . . , e

v
mv

} ⊆ V × V , and an adjacency matrix Av = [avij ] ∈ R
n×n. In Gp

(resp. Gv), Vj is called a neighbor of Vi, if a
p
ij > 0 (resp. avij > 0). And the set of all neighbors of Vi in

Gp (resp. Gv) is denoted by N
p
i (resp. Nv

i ). In addition, define edge weight matrix Wp of Gp (resp. Wv

of Gv) as Wp = diag(wp
1 , w

p
2 , . . . , w

p
mp

) (resp. Wv = diag(wv
1 , w

v
2 , . . . , w

v
mv

)), where wp
q (resp. wv

q ) is the

weight of edge epq , q ∈ mp (resp. evq , q ∈ mv), equal to a
p
ij with epq = (Vj ,Vi) (resp. a

v
ij with evq = (Vj ,Vi)).

For undirected graph Gp, assign an arbitrary orientation to each edge, and define the incidence matrix

Dp = [dpij ] ∈ R
n×mp as

d
p
ij =















−1, if Vi is the tail of the j-th oriented edge in Gp,

1, if Vi is the head of the j-th oriented edge in Gp,

0, otherwise.

Define the Laplacian matrix Lp = [lpij ] ∈ R
n×n of graph Gp as

l
p
ij =











−a
p
ij , if i 6= j,

∑

k∈N
p

i

a
p
ik, if i = j.

Apparently, Lp = DpWpD
T
p holds for undirected graph Gp. Similarly, define the incidence matrix Dv =

[dvij ] ∈ R
n×mv and the Laplacian matrix Lv = [lvij ] ∈ R

n×n of graph Gv, and if Gv is an undirected graph,

Lv = DvWvD
T
v holds as well.

Let tk, k = 0, 1, 2, . . . , denote the event-detecting times of all edges in Gp and Gv with tk+1 =

tk + h, where h > 0 is the event-detecting period. At these times, each agent checks the edge-event-

triggering conditions shared with its corresponding neighbor, and decides whether to sample the relative

data and to update its controller accordingly. The agents, connected by different edges, follow the

aforementioned procedure independently of each other. Furthermore, let tkp(ij)(t) or tkp(q)(t) (resp. tkv(ij)(t)

or tkv(q)(t)) denote the recent event time before or at time t for edge epq = (Vi,Vj) (resp. evq = (Vi,Vj)).

Mathematically, kp(q)(t) = max{k|tk 6 t, an edge event of epq in Gp occurs at tk}, q ∈ mp, and kv(q)(t) =

max{k|tk 6 t, an edge event of evq in Gv occurs at tk}, q ∈ mv.

Specifically, we adopt the following protocol:

ui(t) =
∑

j∈N
p

i

a
p
ij(xj(tkp(ij)(t))− xi(tkp(ij)(t))) + k

∑

j∈Nv
i

avij(vj(tkv(ij)(t))− vi(tkv(ij)(t))), (2)
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where k is to be designed later. Under protocol (2), we consider the state consensus of system (1), that

is, for any initial states xi(0), vi(0), i ∈ n, xi(t) →
1
n

∑n

j=1 xj(t), vi(t) →
1
n

∑n

j=1 vj(t), i ∈ n as t → ∞.

3 Consensus based on edge-event-triggered control

For convenience, we introduce variables δi(t) = xi(t) −
1
n

∑n
j=1 xj(t), σi(t) = vi(t) −

1
n

∑n
j=1 vj(t), and

it is clear that system (1) achieves the state consensus if δi(t) → 0, σi(t) → 0, i ∈ n. We consider the

following Lyapunov function candidate

V (t) =
[

δT(t) σT(t)
]







βLp +
kαλ2(Lv)

2
I

α

2
I

α

2
I βI







[

δ(t)

σ(t)

]

, (3)

where parameters α, β are to be designed, δ(t)=[δ1(t) δ2(t) · · · δn(t)]
T, and σ(t)=[σ1(t) σ2(t) · · · σn(t)]

T.

Lemma 1. Assume that Gp and Gv are both connected. The Lyapunov function (3) is positive definite

if β > α
2kλ2(Lv)

> 0. Moreover, V (t) = 0 if and only if δ(t) = σ(t) = 0, which implies system (1) achieves

the state consensus.

Proof. Let

P =







βLp +
kαλ2(Lv)

2
I

α

2
I

α

2
I βI






.

Obviously, βLp +
kαλ2(Lv)

2 I is invertible. Define

Q =







I −
α

2

(

βLp +
kαλ2(Lv)

2
I

)−1

0 I






.

Then, we have that

QTPQ =









βLp +
kαλ2(Lv)

2
I 0

0 βI −
α2

4

(

βLp +
kαλ2(Lv)

2
I

)−1









.

Because Lp is a real symmetric matrix, it is easy to get that βLp + kαλ2(Lv)
2 I is positive definite

for any α, β > 0. Because Lp is a symmetric real matrix and positive semi-definite, there exists an

invertible matrix Φ such that Lp = Φ−1ΛΦ, where Λ is a diagonal matrix with diagonal elements being

the eigenvalues of Lp. Therefore, we have that

βI −
α2

4

(

βLp +
kαλ2(Lv)

2
I

)−1

= Φ−1

(

βI −
α2

4

(

βΛ +
kαλ2(Lv)

2
I

)−1
)

Φ,

where βI − α2

4 (βΛ + kαλ2(Lv)
2 I)−1 is a diagonal matrix. Because β > 0 and Λ is a diagonal matrix with

nonnegative diagonal elements, βΛ + kαλ2(Lv)
2 I >

kαλ2(Lv)
2 I and (kαλ2(Lv)

2 I)−1 > (βΛ + kαλ2(Lv)
2 I)−1

hold. Therefore, β > α
2kλ2(Lv)

> 0, which is equivalent to βI > α2

4 ( 2
kαλ2(Lv)

I) and can guarantee

βI > α2

4 (βΛ + kαλ2(Lv)
2 I)−1. In conclusion, β > α

2kλ2(Lv)
> 0 can guarantee the positive definiteness of

βLp +
kαλ2(Lv)

2 I and βI − α2

4 (βLp +
kαλ2(Lv)

2 I)−1. Furthermore, P is positive definite, and V (t) = 0 if

and only if [δT σT]T = 0.

Afterwards, we introduce variables y(t) = DT
p x(t) and z(t) = DT

v v(t), where x(t) = [x1(t) x2(t) · · ·

xn(t)]
T, v(t) = [v1(t) v2(t) · · · vn(t)]

T, y(t) = [y1(t) y2(t) · · · ymp
(t)]T ∈ R

mp , z(t) = [z1(t) z2(t) · · ·

zmv
(t)]T ∈ R

mv . From the definitions of Dp, Dv, for any yq1(t), q1 ∈ mp, there exist agents i1 and j1,
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such that yq1(t) = xi1(t) − xj1(t) with d
p
i1q1

= 1 and d
p
j1q1

= −1, which denotes the relative position

information of agents i1 and j1 connected by epq1 in Gp at time t. Similarly, for any zq2(t), q2 ∈ mv, there

exist agents i2 and j2, such that zq2(t) = vi2(t) − vj2 (t) with dvi2q2 = 1 and dvj2q2 = −1, which denotes

the relative velocity information of agents i2 and j2 connected by evq2 in Gv at time t. Moreover, we

introduce two vectors as follows: ŷ(t) = [ŷ1(t) ŷ2(t) · · · ŷmp
(t)]T and ẑ(t) = [ẑ1(t) ẑ2(t) · · · ẑmv

(t)]T

with ŷq1(t) = yq1(tkp(q1)(t)), q1 ∈ mp and ẑq2(t) = zq2(tkv(q2)(t)), q2 ∈ mv. According to the definitions

of tkp(q1)(t) and tkv(q2)(t), it is easy to understand that ŷq1(t) represents the sampled relative position

information between agents i1 and j1 at the recent event time before or at time t for edge epq1 = (Vi1 ,Vj1)

in graph Gp. ẑq2(t) represents the sampled relative velocity information between agents i2 and j2 at the

recent event time before or at time t for edge evq2 = (Vi2 ,Vj2) of graph Gv. Furthermore, we can derive

the compact form of system (1) with protocol (2) as follows:

{

ẋ = v,

v̇ = −DpWpŷ(t)− kDvWv ẑ(t).
(4)

Let v(t) = 1
n

∑n

i=1 vi(t), and similar to Lemma 2 of [32], it is easy to get that v(t) is a constant. And

according to the definitions of δ(t), σ(t), we can get the equivalent form of system (4)

[

δ̇

σ̇

]

=

[

0 I

0 0

][

δ

σ

]

−

[

0 0

DpWp kDvWv

] [

ŷ(t)

ẑ(t)

]

. (5)

Next, we design the event-detecting rules in the heterogeneous networks.

Rule I. If the following inequalities are not all satisfied for the q1-th edge of Gp at time tk, the edge

event of epq1 of Gp occurs:

(I-1) when ŷq1(tk−1) > 0, aŷq1(tk−1) < yq1(tk) < bŷq1(tk−1);

(I-2) when ŷq1(tk−1) < 0, bŷq1(tk−1) < yq1(tk) < aŷq1(tk−1);

if the following inequalities are not all satisfied for the q2-th edge of Gv at time tk, the edge event of evq2
of Gv occurs:

(I-3) when ẑq2(tk−1) > 0, cẑq2(tk−1) < zq2(tk) < dẑq2(tk−1);

(I-4) when ẑq2(tk−1) < 0, dẑq2(tk−1) < zq2(tk) < cẑq2(tk−1).

In the above inequalities, 0 < a, c 6 1 and b, d > 1.

Rule II. If the following inequalities are not all satisfied for the q1-th edge with ŷq1(t) = xi1 (tkp(q1)(t))−

xj1(tkp(q1)(t)) of Gp at time tk, the edge event of epq1 of Gp occurs:

(II-1) when ŷq1(tk−1) > 0, −
1− a

2
ŷq1(tk−1) < xi1 (tk)− xi1 (tkp(q1)(tk−1)

) <
b− 1

2
ŷq1(tk−1);

(II-2) when ŷq1(tk−1) < 0,
b− 1

2
ŷq1(tk−1) < xi1 (tk)− xi1(tkp(q1)(tk−1)

) < −
1− a

2
ŷq1(tk−1);

if the following inequalities are not all satisfied for the q2-th edge with ẑq2(t)=vi2(tkv(q2)(t))−vj2(tkv(q2)(t))

of Gv at time tk, the edge event of evq2 of Gv occurs:

(II-3) when ẑq2(tk−1) > 0, −
1− c

2
ẑq2(tk−1) < vi2(tk)− vi2 (tkv(q2)(tk−1)

) <
d− 1

2
ẑq2(tk−1);

(II-4) when ẑq2(tk−1) < 0,
d− 1

2
ẑq2(tk−1) < vi2(tk)− vi2(tkv(q2)(tk−1)

) < −
1− c

2
ẑq2(tk−1).

Before summarizing the conclusion, we introduce two constants

M = −aθ1λmin(Wp) + β‖Dp‖ ‖Wp‖r1 + (α− θ1)‖Wp‖br1 + ω1hλ
Wp

n + ω2hλ
d1
n + ω3hλ

D1
n + ω4hλ

D3
n , (6)
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with






















































































θ1 = α−
kα(λ2(Lv) + λn(Lv))

2λ2(Lp)
,

θ2 =

(

β‖Dp‖ ‖Wp‖r1 +

(

1 +
h(k + 1)

2

)

βhλLp

n

)

1

λ2(Lv)
,

ω1 =
θ1

2
+ (b2 + r21)

2 + h(k + 1)

4
(α− θ1),

ω2 =
2θ1h+ khθ1

4
+

(

kβ −
kα

4
−

α

2λ2(Lv)

)

,

ω3 = (α− θ1)
2h+ 2βh+ 2h2 + h3 + 2kh3

4
,

ω4 =

(

kα

2
+

α

λ2(Lv)
θ2

)

(1 + h(k + 1)),

and

N = −c

(

2kβ − kα−
α

λ2(Lv)

)

λmin(Wv) + ϑ1r2α‖Wv‖+ ϑ2λ
Wv

n + ϑ3hλ
d2
n + ϑ4hλ

D2
n + ϑ5h

2λD4
n , (7)

with






























































































ϑ1 =
k(d+ 1)

2
+

d

λ2(Lv)
,

ϑ2 =

(

kα

2
+

α

λ2(Lv)

)

h(1 + k)(d2 + r22)

2
+ θ1d

2(1 + h+ kh),

+
hd2λ

Lp

n

λ2(Lv)

(

θ1

2
+ β + (α − θ1)

(

1 + h+
h2 + kh2

2

))

,

ϑ3 =
khθ1

4
+

(

1

2
+ k

)(

2kβ − kα−
α

λ2(Lv)

)

+
kα+ 2k2α

4
,

ϑ4 = (k + kh(k + 1))

(

α

λ2(Lv)
+

kα

2

)

+ θ1k(1 + h+ kh),

ϑ5 = (α − θ1)k

(

1 + h

2
+

h2(k + 2)

4

)

+
kβ

2
,

where r1 = max{1 − a, b − 1}, r2 = max{1 − c, d − 1}, and λ
Lp
n , λLv

n , λ
Wp
n , λWv

n , λd1
n , λd2

n , λD1
n ,

λD2
n , λD3

n , λD4
n denote the largest eigenvalues of matrices Lp, Lv, Wp, Wv, WpD

T
p DpWp, WvD

T
v DvWv,

WpD
T
p DpWpD

T
p DpWp, WvD

T
v DvWvD

T
v DvWv, WpD

T
p DvWvD

T
v DpWp, WvD

T
v DpWpD

T
p DvWv, respec-

tively.

Theorem 1. Suppose that position topology Gp and velocity topology Gv are both connected. If for

given parameter k and the common event-detecting period h, there exist constants α, β, a, b, c, d with

0 < a, c 6 1, b, d > 1, such that


























α−
kα(λ2(Lv) + λLv

n )

2λ2(Lp)
> 0,

2kβ − kα−
α

λ2(Lv)
> 0,

M,N < 0,

(8)

then multi-agent system (1) achieves the state consensus by protocol (2) under Rule I or II.

Proof. Consider the Lyapunov function (3), and by Lemma 1, we know that matrix P is positive

definite. The derivative of V (t) is given by

V̇ (t) = 2
[

δT σT
]







βLp +
kαλ2(Lv)

2
I

α

2
I

α

2
I βI







[

δ̇

σ̇

]
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=
[

δT σT
]







βLp +
kαλ2(Lv)

2
I

α

2
I

α

2
I βI







([

0 I

0 0

][

δ

σ

]

−

[

0 0

DpWp kDvWv

] [

ŷ(t)

ẑ(t)

])

= 2βδTLpσ + kαλ2(Lv)δ
Tσ + ασTσ − αyTWpŷ − 2βσTDpWpŷ − kαδTDvWv ẑ − 2kβzTWv ẑ.

According to the property of undirected graph [38]

min
δ 6=0,1Tδ=0

δTLpδ

δTδ
= λ2(Lp), min

σ 6=0,1Tσ=0

σTLvσ

σTσ
= λ2(Lv).

Based on Lp = DpWpD
T
p , Lv = DvWvD

T
v , and the inequality 2xTy 6 xTx+ yTy, we further get that

V (t) 6 2βσTDpWp(y − ŷ) +
kα(λ2(Lv) + λLv

n )

2λ2(Lp)
yTWp(y − ŷ)−

(

α−
kα(λ2(Lv) + λLv

n )

2λ2(Lp)

)

yTWpŷ

+

(

kα

2
+

α

λ2(Lv)

)

zTWv(z − ẑ)−
kα

2
(zT − ẑT)Wv ẑ −

(

2kβ − kα−
α

λ2(Lv)

)

zTWv ẑ. (9)

From (4), for any t ∈ [tk, tk+1), it is easy to get that






v(t) = v(tk)− h′DpWpŷ − kh′DvWv ẑ,

x(t) = x(t) + h′v(tk)−
h′2

2
DpWpŷ − k

h′2

2
DvWv ẑ,

(10)

where h′ = t− tk. Furthermore, considering y(t) = DT
p x(t) and z(t) = DT

v v(t), we have

z(t) = z(tk)− h′DT
v DpWpŷ − kh′DT

v DvWv ẑ, (11)

and

y(t) = y(tk) + h′DT
p v(tk)−

h′2

2
DT

p DpWpŷ −
kh′2

2
DT

p DvWv ẑ. (12)

Equivalently, based on DT
p v(tk) = DT

p (v(tk)− v) = DT
p σ(tk), (12) yields that

y(t) = y(tk) + h′DT
p σ(tk)−

h′2

2
DT

p DpWpŷ −
kh′2

2
DT

p DvWv ẑ. (13)

Moreover, under Rule I or II, the following inequalities hold [32]:
{

a |ŷq(tk)| 6 |yq(tk)| 6 b |ŷq(tk)| and yq(tk)ŷq(tk) > 0, q ∈ mp,

c |ẑq(tk)| 6 |zq(tk)| 6 d |ẑq(tk)| and zq(tk)ẑq(tk) > 0, q ∈ mv.
(14)

Also, we obtain that
{

0 6 ‖y(tk)− ŷ(t)‖ 6 r1‖ŷ(t)‖,

0 6 ‖z(tk)− ẑ(t)‖ 6 r2‖ẑ(t)‖.
(15)

Then we substitute (11) and (13) into (9). By utilizing the Hölder inequality and the inequality

2xTy 6 xTx+ yTy, and by (14) and (15), we can get the following inequalities:






















































































− y(tk)
TWpŷ 6 −aλmin(Wp)ŷ

Tŷ,

− z(tk)
TWv ẑ 6 −cλmin(Wv)ẑ

Tẑ,

z(tk)
T(z(tk)− ẑ) 6 r2dẑ

Tẑ,

y(tk)
T(y(tk)− ŷ) 6 r1bŷ

Tŷ,

ẑT(z(tk)− ẑ) 6 r2ẑ
Tẑ,

‖σ‖ ‖y(tk)− ŷ‖ 6
r1

2

(

ŷTŷ + σTσ
)

,

σTσ 6
1

λ2(Lv)
zTWvz,

σ(tk)
Tσ(tk) 6

λWv
n

λ2(Lv)
d2ẑTẑ.

(16)
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Figure 1 Position topology. Figure 2 Velocity topology.

In addition, we have










































































ŷTWpŷ 6 λWp

n ŷTŷ,

ẑTWv ẑ 6 λWv

n ẑTẑ,

ŷTWpD
T
p DpWpŷ 6 λd1

n ŷTŷ,

ẑTWvD
T
v DvWv ẑ 6 λd2

n ẑTẑ,

ŷTWpD
T
p DpWpD

T
p DpWpŷ 6 λD1

n ŷTŷ,

ẑTWvD
T
v DvWvD

T
v DvWv ẑ 6 λD2

n ẑTẑ,

ŷTWpD
T
p DvWvD

T
v DpWpŷ 6 λD3

n ŷTŷ,

ẑTWvD
T
v DpWpD

T
p DvWv ẑ 6 λD4

n ẑTẑ.

(17)

Therefore,

V̇ 6 MŷTŷ +NẑTẑ 6 0. (18)

Furthermore, V̇ (t) = 0 suggests that ŷ(t) = 0, ẑ(t) = 0, which leads to δ(t) = 0, σ(t) = 0 by (11), (13),

(14), the last inequality in (16), and the definitions of δ(t) and σ(t). Thus, system (1) with protocol (2)

achieves the state consensus, that is, xi(t) →
1
n

∑n

j=1 xj(t) and vi(t) →
1
n

∑n

j=1 vj(t), i ∈ n as t → ∞.

Remark 1. Here we show the existence of M , N . In (6) and (7), set a = b = c = d = 1. Then

r1 = r2 = 0. Moreover, set k = k0, α = α0 and β = β0 such that the first and the second inequalities in

(8) hold. Then, it is clear that M and N are the functions of h and monotone increasing. Based on this,

M = −λmin(Wp)(α0 −
k0α0(λ2(Lv)+λLv

n )
2λ2(Lp)

) < 0 and N = −λmin(Wv)(2k0β0 − k0α0 −
α0

λ2(Lv)
) < 0 hold with

h = 0. Therefore, there exists some h = hmax such that M(hmax) = 0 and N(hmax) = 0. Because of the

monotonicity of M and N , there exist appropriate parameters satisfying (8) with any h ∈ (0, hmax).

Remark 2. In this paper, we adopt the hybrid event- and time-triggered mechanism which can effec-

tively avoid the Zeno behaviors. The event-triggered control is based on periodic event detections, that

is, every two neighboring event detections are performed discontinuously and separated by a fixed time

interval h. Event-triggering conditions are checked at the event-detecting times. Furthermore, the events

of each edge occur at some event-detecting times. Therefore, the inter-event time intervals are equal to

or greater than h with h > 0.

4 Simulation

In this section, in order to verify the correctness of the theoretical result in Section 3, we present a

numerical simulation.

Considering system (1) under protocol (2), we suppose that the position communication topology

and velocity communication topology are modeled as Figures 1 and 2, respectively, which are both

connected. Obviously, system (1) consists of 5 agents, and the position communication graph and velocity

communication graph consist of 4 and 6 communication channels, weighted with 1, 1, 1, 1, 1, 3, 2, 2, 5,

5, respectively.
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Figure 3 (Color online) State trajectories under Rule I. Figure 4 (Color online) Edge-event times in position

graph under Rule I.
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Figure 5 (Color online) Edge-event times in velocity

graph under Rule I.

Figure 6 (Color online) Event numbers counted up every

0.18 s under Rule I.

For system (1) with initial states x(0) = [2 4 6 8 10]T, v(0) = [5 3 2 − 4 − 1]T, we choose the event-

detecting period h = 0.002, parameter k = 1 in protocol (2) and parameters a = 0.9, b = 1.1, c = 0.8,

d = 1.2 in rules. Simulation results are presented in Figures 3–10. Figures 3 and 7 show that system

(1) achieves the state consensus under Rules I and II, respectively. Figures 4 and 5 give the event times

under Rule I based on position information in Gp and velocity information in Gv, respectively. About

9000 event detections were performed for each edge. Consequently, there are 27, 104, 114, 29 events in

Gp and 57, 100, 126, 56, 73, 137 events in Gv, respectively. Similarly under Rule II, there are 609, 677,

1117, 668 events in Gp and 57, 100, 126, 56, 73, 137 events in Gv, respectively. The corresponding event

times are depicted in Figures 8 and 9, respectively. In addition, we count up the event numbers every

0.18 s for each edge, which are shown in Figures 6 and 10 under Rules I and II, respectively. It is clear

that by Rules I and II, the event numbers are greatly reduced. Compare Figure 6 with Figure 10, and

we can find that event numbers under Rule I appear to be less than those under Rule II. However, from

Rule II, we know that at each event-detecting time, the corresponding agent does not require the state

information of the corresponding neighbor, so that the system avoids unnecessary information exchanges.

By the simulation, we can verify such a conclusion that based on edge-event-triggered control, systems

can greatly reduce communication costs and controller-updating costs.



Duan G P, et al. Sci China Inf Sci February 2019 Vol. 62 022203:10

0 2 4 6 8 10 12 14 16 18
0

10

20

30

0 2 4 6 8 10 12 14 16 18
−5

0

5

t

t

v
(t
)

x
(t
)

0 2 4 6 8 10 12 14 16 18
 

 

e1
e2
e3
e4

Time (s)

1

2

3

4

E
d
g
e 

in
d
ex

Figure 7 (Color online) State trajectories under Rule II. Figure 8 (Color online) Edge-event times in position

graph under Rule II.
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Figure 9 (Color online) Edge-event times in velocity

graph under Rule II.

Figure 10 (Color online) Event numbers counted up ev-

ery 0.18 s under Rule II.

5 Conclusion

In this paper, we solved the state consensus problems of double-integrator multi-agent systems based

on edge-event-triggered control under heterogeneous networks. We proposed the corresponding protocol

based on periodic event detections and designed the event-detecting rules as well. Furthermore, by

Lyapunov methods, we presented sufficient conditions for the state consensus. Moreover, we also gave

a simulation example to test the validity of theoretical results and showed the advantages of reduced

controller-updating costs and communication costs. Our future work will focus on the design of event-

triggering conditions to improve the system performance and on the asynchronous consensus of double-

integrator systems under heterogeneous networks with or without time delays and the edge-event-triggered

control of heterogeneous multi-agent systems [39].
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