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Abstract The symmetric and weighted Shapley values for cooperative n-person games are studied. Using

the semi-tensor product of matrices, it is first shown that a characteristic function can be expressed as a

pseudo-Boolean function. Then, two simple matrix formulas are obtained for calculating the symmetric

and weighted Shapley values. Finally, using these new formulas, a design technique for the agents’ payoff

functions in distributed resource allocation problems is proposed. It is possible to design payoff functions

with the weighted Shapley value by the nonsymmetric weights defined on the players, thus ensuring that the

optimal allocation is a pure Nash equilibrium. Practical examples are presented to illustrate the theoretical

results.
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1 Introduction

Game-theoretic control has attracted a great deal of attention in distributed resource allocation problems,

such as distributed power control [1] and sensor coverage [2]. In [3], an architectural view was presented

to illustrate this approach using potential games as the interface. This architecture allows a variety of

payoff function designs at the top layer and learning rule designs at the bottom layer. To design payoff

functions, Ref. [4] introduced certain natural approaches to distribution rules, such as equally shared,

wonderful life, and Shapley value payoffs.

The Shapley value has long been widely used in cooperative games. It was first introduced by

Shapley [5] and was recognized as a sensible method for distributing the profit of cooperation among

the players [6]. However, the assumption that all players have equal power may be unrealistic in several

applications. For example, in an open market, players may have different bargaining abilities. To re-

solve this, the weighted Shapley value, a generalization of the symmetric Shapley value, was proposed by

Shapley [7]. In economic systems, the weighted Shapley value arises from nonsymmetric divisions of the

surplus. There is an extensive literature on the characterizations of the weighted Shapley value [8–10].

Despite the widespread use of the Shapley value, its computation is highly complicated [4]. Particu-

larly, in large scale cases, computational complexity is a serious problem. In this study, two simple matrix

formulas are obtained for calculating the symmetric and weighted Shapley values, thereby reducing com-

putational complexity. Then, their application to distributed resource allocation problems is considered,

and certain desirable properties are explored. The basic mathematical technique for this approach is the
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semi-tensor product of matrices, which is a generalization of the usual matrix product [11]. It has been

successfully applied to the analysis of logical networks [12–18], graph theory [19, 20], and colored petri

nets [21]. Recently, it has also been used in cooperative games [22], noncooperative games [23, 24], and

evolutionary games [25–27].

The remainder of this paper is organized as follows. In Section 2, a brief review for the semi-tensor

product of matrices and cooperative games is presented. In Section 3, two matrix formulas are obtained

for calculating the symmetric and weighted Shapley values. In Section 4, the application of Shapley

values to distributed resource allocation problems is discussed. Section 5 concludes the paper.

2 Preliminaries

Some notations are first given.

• Mm×n: the set of m× n real matrices.

• Col(M): the set of columns of M ; Coli(M) is the i-th column of M .

• D := {0, 1}.

• δik: the i-th column of the identity matrix Ik.

• ∆k :=
{
δik|i = 1, . . . , k

}
.

• 1k := [1, 1, . . . , 1
︸ ︷︷ ︸

k

]T.

2.1 Semi-tensor product of matrices

The basic technique used in this study is the semi-tensor product of matrices [11].

Definition 1. Let A ∈ Mm×n, B ∈ Mp×q. Moreover, t = lcm{n, p} denotes the least common multiple

of n and p. Then, the semi-tensor product (STP) of A and B is defined by

A⋉B :=
(
A⊗ It/n

) (
B ⊗ It/p

)
∈ Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

The semi-tensor product is a generalization of the usual matrix product, and the symbol ”⋉” may be

omitted without confusion. The semi-tensor product has pseudo-commutative properties, and the key to

these properties is the swap matrix.

Definition 2. The matrix W[m,n] ∈ Mmn×mn, defined by

W[m,n] = δmn[1,m+ 1, . . . , (n− 1)m+ 1; 2,m+ 2, . . . , (n− 1)m+ 2; . . . ;m, 2m, . . . , nm],

is called the (m,n)-th dimensional swap matrix.

Proposition 1. Let X ∈ R
m and Y ∈ R

n be two columns. Then

W[m,n] ⋉X ⋉ Y = Y ⋉X.

If x ∈ D, then its vector form is

x ∼

[

x

1− x

]

∈ ∆2.

Using the vector form, a pseudo-logical function can be expressed algebraically.

Theorem 1. Let f : Dn → R be a pseudo-logical function. Then, there exists a unique vector Mf ∈

R
1×2n , such that

f(x1, x2, . . . , xn) = Mf ⋉
n
i=1 xi,

where xi ∈ ∆2, i = 1, . . . , n and Mf is called the structure vector of f .
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2.2 Cooperative games

Definition 3 ([28]). Let (N, v) be an n-person cooperative game, where N = {1, 2, . . . , n} with v(∅) = 0

is the set of players. All subsets of N are called coalitions, and N is called the grand coalition. v : 2N → R

is called the characteristic function.

For each coalition R ⊆ N , to express v(R) using logical variables, let

xR
i =

{

1, i ∈ R,

0, i /∈ R.

Then, each characteristic function v(R) can be expressed as a pseudo-logical function v : Dn → R,

that is,

v(R) = v
[
xR
1 , x

R
2 , . . . , x

R
n

]
, R ∈ 2N . (2)

Using Theorem 1, for each v(R), its structure vector Cv ∈ R
2n can be determined, so that (2) may be

converted into its algebraic form as follows:

v(R) = Cvx
R, (3)

where xR = ⋉
n
i=1x

R
i ∈ ∆2n , Cv := [v[1, 1, . . . , 1, 1], v[1, 1, . . . , 1, 0], . . . , v[0, 0, . . . , 0, 0]]. As v(∅) = 0, the

last element of Cv is 0, that is, v[0, 0, . . . , 0, 0] = 0.

In general, a cooperative game (N, v) is identified with its characteristic function v, and the set of all

games is denoted by Γ.

Dividing v(R) among the members of R is an important problem in a cooperative game, and it can be

approached using cores, stable sets, or Shapley values.

3 Matrix expression of Shapley values

In this section, two matrix formulas for the symmetric and weighted Shapley values are obtained.

3.1 Matrix formula of symmetric Shapley value

The symmetric Shapley value is defined as follows.

Definition 4 ([5]). Let v ∈ Γ be a cooperative game. The symmetric Shapley value ϕ : Γ → R
n is an

imputation defined as

ϕi(v) =
1

n!

∑

σ∈π(N)

[
v
(
Si
σ ∪ {i}

)
− v

(
Si
σ

)]

=
∑

S⊆N\{i}

|S|!(n− 1− |S|)!

n!
[v (S ∪ {i})− v (S)] , i = 1, 2, . . . , n, (4)

where π(N) is the set of all permutations for N = {1, 2, . . . , n}. Si
σ denotes the set of players preceding

i in the permutation σ, that is, Si
σ = {j|σ−1j < σ−1i}.

Using (3), we have

v(S ∪ {i})− v(S) = Cv

(

xS
1 · · ·xS

i−1

[

1

0

]

xS
i+1 · · ·x

S
n − xS

1 · · ·xS
i−1

[

0

1

]

xS
i+1 · · ·x

S
n

)

= Cv

(

W[2,2i−1]

[

1

0

]

xS
1 · · ·xS

i−1x
S
i+1 · · ·x

S
n −W[2,2i−1]

[

0

1

]

xS
1 · · ·xS

i−1x
S
i+1 · · ·x

S
n

)

= Cv

(

W[2,2i−1]

[

1

−1

]

xS
1 · · ·xS

i−1x
S
i+1 · · ·x

S
n

)

,
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where ⋉j 6=ix
S
j ∈ ∆2n−1 , and

xS
j =

{

δ12 , j ∈ S,

δ22 , j /∈ S.

Then,

xS
1 · · ·xS

i−1x
S
i+1 · · ·x

S
n = δj2n−1 , j = 1, 2, . . . , 2n−1.

A vector ℓj is now recursively constructed as follows:







ℓ1 =

[

1

0

]

,

ℓj+1 =

[

ℓj + 12j

ℓj

]

∈ R
2j+1

, j = 1, 2, 3, . . . .

Let ℓik denote the i-th component of ℓk, and let

ℓik =
∣
∣δi2k

∣
∣ = |S|, i = 1, 2, . . . , 2k,

where xS = ⋉
k
i=1x

S
i = δi2k . Then, a column vector ηk = [η1k, η

2
k, . . . , η

2k

k ]T is constructed, where

ηik =
(
ℓik
)
!
(
k − ℓik

)
!, i = 1, . . . , 2k.

By the above analysis, Eq. (4) can be expressed as

ϕi(v) =
1

n!
Cv

2n−1

∑

j=1

ηjn−1W[2,2i−1]

[

1

−1

]

δj2n−1 , i = 1, . . . , n. (5)

According to Definition 2, we have

W[2,2i−1]

[

1

−1

]

= diag









[

1

−1

]

, . . . ,

[

1

−1

]

︸ ︷︷ ︸

2i−1









∈ M2i×2i−1 .

It is clear that
(

W[2,2i−1]

[

1

−1

])

⋉ δj2n−1 =

((

W[2,2i−1]

[

1

−1

])

⊗ I2n−i

)

δj2n−1 = Colj(Ti),

where

Ti =

(

W[2,2i−1]

[

1

−1

])

⊗ I2n−i = diag









[

I2n−i

−I2n−i

]

, . . . ,

[

I2n−i

−I2n−i

]

︸ ︷︷ ︸

2i−1









∈ M2n×2n−1 . (6)

A new vector ε = ηn−1 is now defined, and ε is divided into m equal blocks as follows:

ε = ε11 =
[
ε12, ε

2
2

]T
= · · · =

[
ε1m, ε2m, . . . , εmm

]T
, m = 1, 2, 22, . . . , 2n−1.

Then, it is easy to verify that

2n−1

∑

j=1

ηjn−1W[2,2i−1]

[

1

−1

]

δj2n−1 =
[

ε12i−1 ,−ε12i−1 , ε22i−1 ,−ε22i−1 , . . . , ε2
i−1

2i−1 ,−ε2
i−1

2i−1

]T

.

Hence, a new matrix formula is obtained for calculating the symmetric Shapley value using the semi-

tensor product as follows.
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Theorem 2 ([22]). The Shapley value ϕ(v) = [ϕ1(v), . . . , ϕn(v)] of a game v ∈ Γ can be calculated by

ϕ(v) = CvΦn, (7)

where

Φn =
1

n!


















ε12n−1

−ε12n−1

ε12 ε22n−1

ε11 −ε12 · · · −ε22n−1

−ε11 ε22
...

−ε22 ε2
n−1

2n−1

−ε2
n−1

2n−1


















∈ M2n×n. (8)

3.2 Matrix formula of weighted Shapley value

The weighted Shapley value is a natural generalization of the symmetric Shapley value and can be used

for fairly dividing up v(N) by assigning to each player a positive weight. Let any permutation σ ∈ π(N)

be denoted by σ = [i1, i2, . . . , in], which implies that σ(k) = ik, k = 1, . . . , n. The weighted Shapley value

can then be defined as follows.

Definition 5 ([9]). Let v ∈ Γ be a cooperative game. Given a vector of positive weights λ =

[λ1, . . . , λn] ∈ R
n
+ such that

∑n
i=1 λi = 1, the weighted Shapley value ϕλ : Γ → R

n is defined by

ϕλ
i (v) =

∑

σ∈π(N)

Pλ(σ)
[
v
(
Si
σ ∪ {i}

)
− v

(
Si
σ

)]
, i = 1, 2, . . . , n, (9)

where Pλ(σ) =
∏n

k=1

λik∑
k
t=1

λit

is a probability distribution over σ ∈ π(N), and obviously,
∑

σ∈π(N) Pλ(σ)

= 1. If λi =
1
n for all i, then ϕλ

i (v) = ϕi(v).

For N = {1, 2, . . . , n}, all its permutations are considered. In combinatorics, the lexicographic order

method is widely used for systematically generating permutations [29].

In this approach, there is a one-to-one mapping between permutations and ordered sequences. For

example, given N = {1, 2, 3, 4}, the first sequence is (1, 2, 3, 4), and the last is (4, 3, 2, 1). Algorithm 1

provides a useful method for lexicographically ordering sequences [30].

Algorithm 1

Let σ = (i1, i2, . . . , in) be a permutation for N .

1: Start at the right end of σ. Find the largest index j such that ij < ij+1. If no such index exists, then σ is the last

permutation.

2: From the right-hand side of ij , find the largest index k greater than j such that ij < ik.

3: Swap the value of ij with that of ik;

4: Reverse the sequence ij+1, . . . , ik−1, ik, ik+1, . . . , in, and then the next permutation after σ is

σ′ = (i1, i2, . . . , ij−1, ij , in, . . . , ik+1, ik, ik−1, . . . , ij+1).

Using Algorithm 1, all permutations of N can be obtained in an order ≺. More precisely, σ =

(i1, i2, . . . , in) ≺ µ = (j1, j2, . . . , jn) if and only if there exists a 1 6 k 6 n such that

{

is = js,

ik < jk,
s < k.

A probability vector Ξ is now defined by

Ξ = [Pλ(π1), Pλ(π2), . . . , Pλ(πn!)], (10)
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where πp (p = 1, 2, . . . , n!) is the p-th permutation.

In vector form, the weighted Shapley value (9) can be rewritten as follows:

ϕλ
i (v) =

n!∑

p=1

Pλ(πp)
(

v
(

Si
πp

∪ {i}
)

− v
(

Si
πp

))

=

n!∑

p=1

Pλ(πp)Cv

(

x
Si
πp

1 · · ·x
Si
πp

i−1

[

1

0

]

x
Si
πp

i+1 · · ·x
Si
πp

n − x
Si
πp

1 · · ·x
Si
πp

i−1

[

0

1

]

x
Si
πp

i+1 · · ·x
Si
πp

n

)

=

n!∑

p=1

Pλ(πp)Cv

(

W[2,2i−1]

[

1

−1

]

x
Si
πp

1 · · ·x
Si
πp

i−1 x
Si
πp

i+1 · · ·x
Si
πp

n

)

= Cv

n!∑

p=1

Pλ(πp)

(

W[2,2i−1]

[

1

−1

]

x
Si
πp

1 · · ·x
Si
πp

i−1 x
Si
πp

i+1 · · ·x
Si
πp

n

)

,

where Si
πp

is the set of players preceding i in permutation πp, that is, S
i
πp

= {j|π−1
p j < π

−1
p i}. Let

x
Si
πp

1 ⋉ · · ·⋉ x
Si
πp

i−1 ⋉ x
Si
πp

i+1 ⋉ · · ·⋉ x
Si
πp

n = δ
jp,i
2n−1 , i = 1, 2, . . . , n, p = 1, 2, . . . , n!, (11)

where

x
Si
πp

j =

{

δ12 , j ∈ Si
πp
,

δ22 , j /∈ Si
πp
.

As in the proof of Theorem 2, we have

ϕλ
i (v) = Cv

n!∑

p=1

Pλ(πp)

(

W[2,2i−1]

[

1

−1

]

δ
jp,i
2n−1

)

= Cv

n!∑

p=1

Pλ(πp)Coljp,i(Ti).

From the above analysis, Theorem 3 can be obtained.

Theorem 3. Let v ∈ Γ be a cooperative game. Then, its weighted Shapley value ϕλ(v) = [ϕλ
1 (v), . . . ,

ϕλ
n(v)] can be calculated by

ϕλ(v) = Cv(ΞΨ), (12)

where

Ψ =










Colj1,1(T1) Colj1,2 (T2) · · · Colj1,n(Tn)

Colj2,1(T1) Colj2,2 (T2) · · · Colj2,n(Tn)
...

...
...

Coljn!,1
(T1) Coljn!,2

(T2) · · · Coljn!,n
(Tn)










∈ M(n!2n)×n. (13)

Remark 1. Comparing (7) and (12), it can be seen that the calculation of the weighted Shapley value

is more complicated than that of the symmetric Shapley value. This is primarily due to the computation

complexity of the matrix Ψ. Hence, the proposed formula (12) in Theorem 3 can only handle small size

cases. However, there is room for further improvement.

Example 1 (The horse trading problem). Player 1 is selling a horse. Players 2 and 3 intend to buy

a horse for at most 90 dollars and 100 dollars, respectively. It is assumed that these three players have

different bargaining abilities, which can be expressed as weights. It is now assumed that λ = [0.4, 0.1, 0.5].
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This problem can be modeled as a cooperative game, where N = {1, 2, 3}, v({1}) = v({2}) = v({3}) =

v({2, 3}) = 0, v({1, 2}) = 90, v({1, 3}) = 100, and v({1, 2, 3}) = 100. The characteristic function can be

converted into its algebraic form as

v(R) = Cvx
R
1 x

R
2 x

R
3 = [100, 90, 100, 0, 0, 0, 0, 0]xR,

where xR = ⋉
3
i=1x

R
i ∈ ∆23 .

Using Algorithm 1, all permutations of N = {1, 2, 3} are listed as follows:

π1 = (1, 2, 3), π2 = (1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2), π6 = (3, 2, 1).

According to Definition 5,

Ξ = [Pλ(π1), Pλ(π2), Pλ(π3), Pλ(π4), Pλ(π5), Pλ(π6)] = [0.1, 0.056, 0.4, 0.333, 0.044, 0.067].

Obviously,
∑6

p=1 Pλ(πp) = 1.

Using (11), it is easy to determine the index jp,i ∈ {1, 2, 3, 4}, where i = 1, 2, 3, and p = 1, 2, . . . , 3!.

Then, according to (13), the following matrix is constructed

Ψ =















Col4(T1) Col2(T2) Col1(T3)

Col4(T1) Col1(T2) Col2(T3)

Col2(T1) Col4(T2) Col1(T3)

Col1(T1) Col4(T2) Col3(T3)

Col3(T1) Col1(T2) Col4(T3)

Col1(T1) Col3(T2) Col4(T3)















,

where Ti, i = 1, 2, 3, is calculated by (6). Using the matrix formula (12), the weighted Shapley value is

ϕλ(v) = Cv(ΞΨ) = [80.4, 9, 10.6].

It is obvious that
∑3

i=1 ϕ
λ
i (v) = 100 = v({1, 2, 3}), which conforms with the efficiency axiom. Moreover,

compared with the symmetric Shapley value ϕ(v) = [65, 15, 20] for this problem [22], the weighted

Shapley value ϕλ(v) appears to be more sensible and realistic in this market trading, where players 1

and 3 tend to cooperate. This advantage makes the weighted Shapley value a powerful tool in practical

applications.

4 Application to distributed resource allocation

In this section, the application of Shapley value to the distributed resource allocation problem is investi-

gated.

Definition 6 ([3]). A resource allocation game is defined by the tuple G = (N,R,A, C,W ).

(i) N = {1, 2, . . . , n} is the set of distributed agents. The set of resources that will be shared by the

agents is denoted by R = {r1, r2, . . . , rm}.

(ii) A =
∏n

i=1 Ai is the set of possible allocations, where Ai ⊆ 2R is the action set for agent i, that is,

each agent i ∈ N can select multiple resources in R. The allocation of all agents but the i-th is denoted

by a−i ∈ A−i :=
∏

j 6=i Aj .

(iii) C = [c1, . . . , cn] ∈ R
n with ci : A → R is the payoff function for agent i.

(iv) W (a) : A → R is a global welfare function that should be optimized. It is assumed that W (a) =
∑

r∈RWr({a}r), where {a}r = {i ∈ N : r ∈ ai} is the set of agents that are allocated to resource r in

a ∈ A, and Wr : 2N → R is the local welfare function for resource r.

The aim is to design a payoff function for each player, so that a resource allocation game becomes a

potential game. Then, as the players maximize their payoff functions, the global welfare function can be

optimized.
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The design of a payoff function ci(ai, a−i) with the following form is first considered:

ci(ai, a−i) =
∑

r∈ai

Shi({a}r,Wr), (14)

where Shi({a}r,Wr) is the Shapley value of player i at resource r, that is,

Shi({a}r,Wr) =
∑

S⊆{a}r\{i}

|S|!(|{a}r| − |S| − 1)!

|{a}r|!
[Wr(S ∪ {i})−Wr(S)] . (15)

It is assumed that {a}r = {k1, k2, . . . , kl}, l = |{a}r|. According to (3), the structure vector CWr
∈ R

2l

of the local welfare function Wr(S) can be determined, so that

Wr(S) = CWr
⋉

l
i=1 a

S
ki
,

where

CWr
= [Wr({k1, k2, . . . , kl}),Wr({k1, k2, . . . , kl−1}), . . . ,Wr({kl}),Wr(∅)] ,

and aSki
∈ ∆2, i = 1, 2, . . . , l.

Using Theorem 2, we have Proposition 2.

Proposition 2. The payoff function (14) of a resource allocation game G = (N,R,A, C,W ) can be

calculated by

ci(ai, a−i) =
∑

r∈ai

Shi({a}r,Wr) =
∑

r∈ai

CWr
Coli(Φ

r
l ), (16)

where Φr
l ∈ M2l×l can be constructed using (8).

The payoff function ci(ai, a−i) with the following weighted Shapley value form is now considered:

ci(ai, a−i) =
∑

r∈ai

Shλ
i ({a}r,Wr). (17)

It is assumed that any permutation on {a}r is denoted by αr = (ik1
, ik2

, . . . , ikl
) ∈ π({a}r). Then,

according to Definition 5, we have

Shλi ({a}r,Wr) =
∑

αr∈π({a}r)

Pλ(α
r)
[
Wr(S

i
αr ∪ {i})−Wr(S

i
αr )
]
, (18)

where λ = [λk1
, . . . , λkl

] ∈ R
l
+, so that

∑l
i=1 λki

= 1. Si
αr is the set of players preceding i in the

permutation αr.

Let

Ξr = [Pλ(π
r
1), Pλ(π

r
2), . . . , Pλ(π

r
l!)],

where π
r
p (p = 1, 2, . . . , l!) is the p-th permutation of π({a}r).

Using the matrix formula (12) in Theorem 3, we have Proposition 3.

Proposition 3. The payoff function (17) of G = (N,R,A, C,W ) can be calculated by

ci(ai, a−i) =
∑

r∈ai

Shλ
i ({a}r,Wr) =

∑

r∈ai

CWr
[Ξr Coli(Ψ

r)], (19)

where Ψr ∈ M(l!2l)×l can be constructed using (13).

In [4], it was proved that both the symmetric and weighted Shapley values can be applied to a dis-

tributed resource allocation game, which can lead to a potential game, thus ensuring the existence of

pure Nash equilibria.

Remark 2. By introducing exogenous weights, the weighted Shapley value can ensure that the Nash

equilibria are efficient with respect to the global objective. That is, the Nash equilibria can be refined

to some extent by choosing proper weights, ensuring that the refined Nash equilibrium is the optimal

allocation.
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Table 1 Payoff function using symmetric Shapley value

r2 r3

r1 1, 1 1, 0.5

r2 1.5, 0.5 2, 0.5

Example 2. A classical vehicle target assignment problem is considered, where there are: (i) vehicles

N = {1, 2}, (ii) invariant detection probabilities p1 = 1 and p2 = 0.5, (iii) targets (or resources) R =

{r1, r2, r3}, (iv) values wr1 = 1, wr2 = 2, and wr3 = 1, and (v) action setsA1 = {r1, r2} and A2 = {r2, r3}.

The aim here is to develop a method for designing a payoff function ensuring the existence of pure Nash

equilibria and the convergence of the global behavior to a∗ that maximizes the global objective

W (a) =
∑

r∈R;{a}r 6=∅

wr



1−
∏

i∈{a}r

(1− pi)



. (20)

The symmetric Shapley value form (14) is first used. By (16),

(1) When a1 = r1, a2 = r2, we have

CWr1
= [Wr1({1}), Wr1({∅})] = [wr1(1 − (1− p1)), 0] = [1, 0],

CWr2
= [Wr2({2}), Wr2({∅})] = [wr2(1 − (1− p2)), 0] = [1, 0].

Then,

c1(a1, a2) = Sh1({a}r1,Wr1) = CWr1
Col1(Φ

r1
1 ) = 1,

c2(a2, a1) = Sh2({a}r2,Wr2) = CWr2
Col1(Φ

r2
1 ) = 1,

where Φr1
1 = Φr2

1 = [1, −1]T.

(2) When a1 = r2, a2 = r2, it follows that {a}r2 = {1, 2}; thus,

CWr2
= [Wr2({1, 2}), Wr2({1}), Wr2({2}), Wr2({∅})]

= [wr2(1− (1− p1)(1 − p2)), wr2(1− (1− p2)), wr2(1 − (1− p1)), 0]

= [2, 2, 1, 0].

Then,

c1(a1, a2) = Sh1({a}r2 ,Wr2) = CWr2
Col1(Φ

r2
2 ) = 1.5,

c2(a2, a1) = Sh2({a}r2 ,Wr2) = CWr2
Col2(Φ

r2
2 ) = 0.5,

where

Φr2
2 =









1 1

1 −1

−1 1

−1 −1









.

The payoff functions for (a1, a2) = (r1, r3) and (a1, a2) = (r2, r3) are similarly calculated, as shown in

Table 1.

It is clear that this game has two pure Nash equilibria (r2, r2) and (r2, r3). Using the method in [23],

it is easy to verify that it is a potential game, and its potential function is

P (a) = [0, −0.5, 0.5, 0.5]⋉2
i=1 ai + c0, ∀c0 ∈ R.

The value of W (a) can be calculated using (20). This is listed in Table 2, where it can easily be seen

that the optimal allocation (r2, r3) is that of pure Nash equilibria; thus, the convergence of the global

behavior to the optimal allocation cannot be ensured.
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Table 2 Global objective W (a)

r2 r3

r1 2 1.5

r2 2 2.5

Table 3 Payoff function using the weighted Shapley value

r2 r3

r1 1, 1 1, 0.5

r2 1.8, 0.2 2, 0.5

The weighted Shapley value form (18) is now considered. It is assumed that (λ1, λ2) = (0.2, 0.8). Then,

Ξr2 = [Pλ(π
r2
1 ), Pλ(π

r2
2 )] =

[
λ2

λ1 + λ2
,

λ1

λ1 + λ2

]

= [0.8, 0.2].

It should be noted that the weights affect the payoff function only for (a1, a2) = (r2, r2). Using (19),

we have

c1(a1, a2) = Shλ1 ({a}r2,Wr2) = CWr2
[Ξr2 Col1(Ψ

r2)] = 1.8,

c2(a2, a1) = Shλ2 ({a}r2,Wr2) = CWr2
[Ξr2 Col2(Ψ

r2)] = 0.2,

where

Ψr2 =

[

Col2(T
r2
1 ) Col1(T

r2
2 )

Col1(T
r2
1 ) Col2(T

r2
2 )

]

∈ M8×2,

and T r2
i ∈ M4×2, (i = 1, 2) is constructed by (6). A new payoff matrix is thus obtained, as shown in

Table 3. Obviously, this game has only one pure Nash equilibrium a∗ = (r2, r3), which is the optimal

allocation. Moreover, it can be proved that it is a weighted potential game, and its potential function is

Pw(a) = [−3.75, −4.375, 0.25, 0.625]⋉2
i=1 ai + c0, ∀c0 ∈ R.

It was shown that the weighted Shapley value design can lead to a weighted potential game and

ensure that the optimal allocation is the refined pure Nash equilibrium a∗, that is, a∗ = (r2, r3) =

argmaxa∈A W (a).

Motivated by this example, a simple noncooperative mechanism can be constructed whose outcome

always coincides with the Shapley value for cooperative games in economic systems, thus determining

how the surplus generated by cooperation is to be shared in a transferable utility environment.

5 Conclusion

A new approach to the symmetric and weighted Shapley values for cooperative games was proposed.

Matrix expressions for symmetric and weighted Shapley values were first obtained using the semi-tensor

product of matrices, and certain desirable characterizations of them were presented. Finally, the new

matrix formulas were extended to study the problem of distributed resource allocation. It was shown that

these new matrix expressions not only reduce computational complexity but also provide a convenient

design technique for practical applications.
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