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Abstract Wireless communication technologies such as fifth generation mobile networks (5G) will not

only provide an increase of 1000 times in Internet traffic in the next decade but will also offer the underlying

technologies to entire industries to support Internet of things (IOT) technologies. Compared to existing

mobile communication techniques, 5G has more varied applications and its corresponding system design is

more complicated. The resurgence of artificial intelligence (AI) techniques offers an alternative option that is

possibly superior to traditional ideas and performance. Typical and potential research directions related to

the promising contributions that can be achieved through AI must be identified, evaluated, and investigated.

To this end, this study provides an overview that first combs through several promising research directions

in AI for 5G technologies based on an understanding of the key technologies in 5G. In addition, the study

focuses on providing design paradigms including 5G network optimization, optimal resource allocation, 5G

physical layer unified acceleration, end-to-end physical layer joint optimization, and so on.
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1 Introduction

Fifth generation mobile networks (5G) implement the next generation of mobile telecommunication stan-

dards that aim to meet the demands of mobile communication in 2020 and beyond. 5G aims to provide

a complete wireless communication system with diverse applications. Specifically, 5G is responsible for

supporting three generic services that are classified as enhanced mobile broadband (eMBB), massive

machine-type communications (mMTC), and ultra-reliable and low-latency communications (URLLC)

(also referred to as mission-critical communications). These applications suggest new performance crite-

ria for latency, reliability, connection and capacity density, system spectral efficiency, energy efficiency, and

peak throughput that must be addressed using the 5G technology. To meet these criteria, ongoing studies

are being conducted in many areas primarily focusing on key technologies including massive multiple-

input multiple-output (MIMO), new radio access technology (RAT), heterogeneous ultra-densification

networks (UDN), channel coding and decoding (e.g., polar codes), and mmWave access [1–4]. In addi-

tion, 5G networks will inevitably be heterogeneous with multiple modes and devices implemented through

one unified air interface tailored for specific applications. Therefore, architectures such as the dense Het-

Net are involved and 5G systems are going to be virtualized and implemented over cloud data centers.
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Network slicing will be a major feature of a 5G network, including the use of a new air interface designed

to dynamically optimize the allocation of network resources and utilize the spectrum efficiently [5].

The 5G technology standards are in development and are in progress to becoming complete and ma-

ture [6,7]. In December 2017, the 3G Partnership Project (3GPP) officially announced new standards for

5G new radio (NR), which include standards for 5G non-standalone architecture (NSA) and eMBB [8].

On June 14, 2018, 3GPP formally completed the standalone (SA) version of the 5G NR standard, mark-

ing a long-awaited target date for 5G standardization [9]. These announced standards effectively set the

stage for launching full-scale and cost-effective developments in 5G networks. Compared to current 4G

networks, 5G NR: (1) enhances the MIMO systems using massive MIMO technology; (2) makes complete

time slot structures and resource block (RB) allocation of the orthogonal frequency-division multiplexing

(OFDM), proposing a more flexible air interface; (3) will introduce the non-orthogonal multiple access

(NOMA) to support the Internet of things (IoT) in the near future; (4) follows previous distributed

antenna systems [10], splits the wireless functions into distributed units (DU) and central units (CU),

and applies network virtualization and network slicing techniques based on cloud computing.

Overall, 5G networks will tailor the provisioning mechanisms for more applications and services, which

makes it more challenging in terms of complicated configuration issues and evolving service requirements.

Before 5G, studies on communication systems mainly aim to achieve satisfactory data transmission rates

and supportive mobility management. In the 5G era, communication systems will gain the abilities to

interact with the environment, and the targets are expanded to joint optimizations of ever-increasing

numbers of key performance indicators (KPIs), including latency, reliability, connection density, and

user experience [11]. Meanwhile, new features such as the dynamic air interface, virtualized network,

and network slicing introduce complicated system designs and optimization requirements to address the

challenges related to network operation and maintenance. Fortunately, such problems can be considered

in the field of artificial intelligence (AI), which provides brand new concepts and possibilities beyond

traditional methods. Therefore, AI has recently regained attention in the field of communications in both

academia and industry. 3GPP and ITU have both proposed research projects on 5G with AI techniques

involved [12, 13].

AI is dedicated to allowing machines and systems to function with intelligence levels similar to that

of humans. The field of AI research was born in the 1950s; it experienced advancements and challenges,

and has been revived in recent years because of rapid developments in modern computing and data

storage technologies. The general problem of simulating intelligence involves sub-problems like reasoning,

inference, data fitting, clustering, and optimization, and these sub-problems make use of approaches

such as genetic algorithms [14] and artificial neural networks (ANN) [15, 16]. Specifically, AI learning

techniques have constructed a universal framework for various problems and have made tremendous

progress, resulting in state-of-the-art techniques across various fields.

AI learning tasks are typically classified into two broad categories, supervised and unsupervised learn-

ing, depending on the availability of labels of training data for the learning system. Another learning

approach, reinforcement learning, is not exactly a supervised learning approach nor an unsupervised

learning approach, and so it can be listed as a new category.

• Supervised learning. Sample data pairs of inputs and desired outputs are fed into the computer,

and the goal is to learn a general function that relates the inputs to the outputs and further detects

the unknown outputs of the future inputs. One typical example of supervised learning is illustrated in

Figure 1, in which labeled data pairs are fed into a multi-layer deep neural network (DNN) to train the

weights between the nodes in the DNN. The training is performed offline, and after convergence, the

trained DNN will be ready for recognition and inference of new inputs.

• Unsupervised learning. In unsupervised learning, no labels are provided to the learning algorithm

and the structure in its input must be determined on its own. Self-organizing map (SOM) is an example

of training using unsupervised learning. In SOM, unlabeled data are fed into a neural network to produce

a low-dimensional (usually two-dimensional), discretized representation of the input space of the training

samples called a map (as illustrated in Figure 2). This method is used for dimensionality reduction.

• Reinforcement learning. This technique is based on an alternative interaction between “Agent”
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Figure 1 (Color online) Example of supervised learning: learning in deep neural networks.
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Figure 2 (Color online) Example of unsupervised learning: self organizing map.

and “Environment” and the process is illustrated in Figure 3. The “Agent” will perform certain actions

and as a result of this action, the Agent’s state will change, leading to either a reward or a penalty. The

Agent will then decide the next action based on this result. By iterating the action and reward/penalty

process, an Agent learns the Environment.

Popular learning methods in AI learning problems include:

• Backpropagation (BP). Backpropagation is a method used in ANNs that are in the category of

gradient descent [15]. Backpropagation iteratively calculates gradients of the defined loss function with

respect to the weights in the ANN to finally make the output of the ANN close to the known training

label. The dynamic learning rate of optimization and acceleration in BP learning are introduced in the

author’s previous works [16,17]. In [18], the local minima of the BP surface is discussed. Recently, BP has

been commonly used to train deep neural networks (DNN), which are neural networks with more than

one hidden layer. For example, convolutional neural network (CNN) is a class of feed-forward DNN with

multiple hidden layers including a convolutional layer, pooling layer, fully-connected layer, and ReLU

layer. CNN can be efficiently trained with the BP method, especially in the fields of image and voice

recognition.

• Q-learning. The Q-learning algorithm is also referred to as Bellman’s algorithm [19], which is a
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Figure 3 (Color online) Example of reinforcement learning: Q-learning.

classical algorithm for reinforcement learning. In this algorithm, a function (Q function) is defined to

evaluate the actions of the “Agent” based on the current “Environment” and outputs the result in the

form of an award or penalty. At a certain step, all the possible actions of the “Agent” will be evaluated by

the Q function, and the action with the maximum award in the current “Environment” will be selected

as the next step and will be actually executed. Bellman proposed a Bellman equation that is a recursive

expression that relates the Q functions of consecutive time steps. The Bellman equation basically allows

us to iteratively update and approximate the Q function through online temporal difference learning.

More details can be found in [20].

AI techniques of machine learning methods that incorporate the common data science algorithms (e.g.,

linear models, decision tree, k-means clustering) have been implemented for various commercial use. On

the other hand, deep learning methods (e.g., DNN, CNN, reinforcement learning) have received increas-

ing attention in the recent decade, resulting in major breakthroughs in fields like cognitive technology.

Meanwhile, new branches in deep learning, like meta-learning, are developing rapidly based on the new

concept of “learning to learn”. For example, in [21], a model-agnostic meta-learning (MAML) method

was proposed. This method does not make any assumptions on the form of the model and requires no

extra parameters for meta-learning. Therefore, the method can be applied to various fields including

classification, regression, and reinforcement learning. More recent developments in AI techniques are

summarized in [22–24]. These new technologies extend the possible applications of deep learning to

more complicated problems in various scenarios. This helps bring new opportunities into the applications

of AI in 5G.

2 Research directions for AI in 5G

As a universal intelligent problem-solving technique, AI can be broadly applied in the design, configura-

tion, and optimization of 5G networks. Specifically, AI is relevant to three main technical problems in

5G:

• Combinatorial optimization. One typical example of the combinatorial optimization problem in

5G NR includes network resource allocation. In a resource-limited network, an optimized scheme must be

considered for the allocation of resources to different users who share the network such that the utilization

of the resource achieves maximum efficiency. As an application of the HetNet architecture in 5G NR

with features like network virtualization, network slicing, and self-organizing networks (SON), network

resource allocation problems are growing in complexity and require more effective solutions.

• Detection. The design of the communication receiver is an example of the detection problem.

An optimized receiver can recover the transmitted messages based on the received signals, achieving

minimized detection error rate. Detection will be challenging in 5G within the massive MIMO framework.

• Estimation. The typical example is the channel estimation problem. 5G requires accurate estima-
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tion of the channel state information (CSI) to achieve communications in spatially-correlated channels of

massive MIMO. The popular approach includes the training sequence (or pilot sequence), where a known

signal is transmitted and the CSI is estimated using the combined knowledge of the transmitted and

received signals.

Many studies have been conducted related to the application of AI in 5G such as those in [25–33].

However, because of the limitations in communication systems and AI, some of the applications may

be restricted. First, after years of research and testing, conventional methods have demonstrated their

abilities to handle the communication systems. A complete framework with conventional techniques has

been developed, which is effective, mature, and easy to implement in real-world scenarios. Second, the

capacity of a communication system is constrained by certain upper bounds (e.g., the Shannon limit),

and some of the well-designed methods can reach near-optimal performance, suffering negligible loss with

respect to the capacity bound. For example, in [34] a transmitter optimization method for MIMO was

proposed based on an iterative water-filling algorithm, which closely achieves near-Shannon performance

in the general jointly correlated MIMO channels. This type of method will not be over-performed by even

the most-advanced AI techniques. Moreover, there are still obstacles to the application of AI learning

in real-world problems because of the convergence issues involved in training. Careful checks should

be performed to ensure that optimal performance can be “learned” with AI in every specific problem

in the communication system. Finally, AI algorithms are usually characterized by large computational

complexity, which makes them less competitive compared to conventional methods if the performance

improvement is minor.

With all these limitations, nonetheless, AI still demonstrates great potential and prospects in commu-

nication systems of the 5G era. As introduced above, 5G includes complicated configuration issues and

evolving service requirements, which results in new problems that are hard to model, solve, or implement

within the current conventional framework. Therefore, new opportunities and challenges are presented by

5G for AI techniques. For all the challenging problems associated with 5G, typical and potential research

directions to which AI can make promising contributions must be identified, evaluated, and investigated.

In this paper, we summarize the potential application directions for AI in 5G under four main categories:

(1) problems difficult to model; (2) problems difficult to solve; (3) uniform implementation; (4) joint

optimization and detection. In the following analysis and examples, we will observe that for problems in

(1) and (2), conventional methods are barely effective and AI techniques are expected to be promising;

on the other hand, for (3) and (4), the potential of AI is problem-dependent compared to conventional

methods, and careful investigation must be performed to identify if AI is beneficial.

• Problems difficult to model. Network optimization problems in communication systems are

generally a type of technical problems that are hard to model. Problems include typical issues such as

network coverage, interference, and neighboring cell selection and handover. Current solutions mostly

depend on the experience of engineers. For 5G NR scenarios, these problems are more challenging

because of the complicated network structures and large number of KPIs. Applications of new features

such as massive MIMO beamforming [35] are associated with high-dimensional optimization parameters

and the optimization problem itself can be difficult to model. In addition, 5G NR involves multiple KPIs,

including peak data rate, spectral efficiency, latency, connection density, quality of experience (QoE),

and so on. These KPIs must be jointly optimized even if some of them contradict each other [11]. In

these situations, an overall optimization model cannot be achieved using conventional methods and AI

techniques are expected to be able to handle the KPIs.

• Problems difficult to solve. Network resource allocation is a key issue in 5G NR [35,36], which

includes specific issues in inter-cell resource block allocation, orthogonal pilot resource allocation, beam-

forming resource allocation, massive MIMO user clustering, and resource pool deployment in virtualized

networks. Network resource allocation aims to maximize the throughput of the network while balancing

the service rate. It is mostly an NP-hard combinatorial optimization problem, and the computational

complexity to solve this type of problem increases exponentially as the size of the systems increases.

Traditional solutions use static partitioning of the network to reduce the computational cost of a sub-

optimal solution. With the assistance of current modern computing technologies, AI will be a new
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effective solution to these problems.

• Uniform implementation. Conventional methods are designed in a divide-and-conquer manner

for some function blocks in 5G NR. For example, the physical layer in 5G NR consists of a series of signal

processing blocks such as multiuser MIMO space-time processing, NOMA signal detection and encoding,

and decoding for LDPC or polar codes. Researchers have attempted to optimize the algorithms and

implementations of each processing module and achieved practical success. However, the efficient and

scalable implementation of the entire communication system with guaranteed performance is still lacking.

It is noted that AI techniques are supposed to be capable of handling each of the modules [25–33]. This

inspires us to further develop a uniform AI-based implementation that works jointly for all the key

modules in the 5G NR physical layer [37]. By unifying the modules with AI methods in both algorithm

and hardware, the design, configuration, and implementation of the physical layer communications will

be simpler, faster, more economical, and more efficient.

• Joint optimization and detection. An intuitive idea for applying AI in 5G is to simply sub-

stitute the conventional modules of transmitters and receivers by ANN. However, the capacity of the

channels is bounded by the Shannon limit and improvements through the use of ANN are limited. In

addition, as discussed above, the complexity and the convergence of training should be carefully ex-

amined in this area. Compared to this intuitive method, AI demonstrates more potential in a bigger

picture of the cross-layer joint optimization problem that cannot be solved efficiently using conventional

methods [38]. Typical examples include the joint optimizations for the physical and media access control

layers [39], joint source and channel optimizations [40], and the joint optimization for algorithm and

hardware implementation [41].

3 Paradigms of AI in 5G

In this section, examples of the application of AI techniques in 5G are presented, which cover four

different problems in 5G including: network resource allocation, SON, uniform 5G accelerator, and the

optimization of end-to-end physical layer communication.

3.1 AI for SON: automatic root cause analysis

Self-organizing networks (SONs) establish a new concept of network management that provide intelligence

in the operation and maintenance of the network. SON has been introduced by 3GPP as a key component

of LTE networks. In the 5G era, network densification and dynamic resource allocation will result in

new problems for coordination, configuration, and management of the network, thereby resulting in

increased demand for improvements in the SON functions. SON modules in mobile networks can be

divided into three main categories: self-configuration, self-optimization, and self-healing. The main

objectives of SON involve automatically performing network planning, configuration, and optimization

without human intervention to reduce the overall complexity, operational expenditure (OPEX), capital

expenditure (CAPEX), and man-made faults. Various studies on AI in SON have been summarized

in [42–44]. The studies include those on AI applied in automatic base station configuration, new cell and

spectrum deployment, coverage and capacity optimization, cell outage detection and compensation, etc.,

using approaches such as ANN, ant colony optimization, and genetic algorithm.

In this section, we introduce the automatic root cause analysis framework proposed in [45] as an

example of AI in SON. The design of the fault identification system in LTE networks faces two main

challenges: (1) A substantial number of alarms, KPIs, and configuration parameters can be considered

as fault indicators in the system. Meanwhile, most of the symptoms of these indicators are not labeled

with fault causes, and are difficult to identify. (2) The system is not automatic and experts are involved

in the analysis of each fault cause. With the large amount of high-dimensional data, human intervention

is not efficient but expensive. Authors of [45] proposed an AI-based automatic root cause analysis system

that combines supervised and unsupervised learning techniques as summarized in the following steps:
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Figure 4 (Color online) Automatic root cause analysis workflow [45].

• Step 1. Unsupervised SOM training. SOM as shown in Figure 2 is applied for an initial classification

of the high-dimensional KPIs. An SOM is a type of unsupervised neural network capable of acquiring

knowledge and learning from a set of unlabeled data. It will process high-dimensional data and reduce

the data to a two-dimensional map of neurons that preserves the topological properties of the input data.

Therefore, inputs close to each other will be mapped to adjacent neurons. Through this unsupervised

process, the high-dimensional KPIs are mapped into a lower-dimensional map that can classify new KPI

data by finding the closest neurons.

• Step 2. Unsupervised clustering. After SOM training, all the neurons in the SOM system will be

clustered into a certain number of groups using an unsupervised algorithm. Because the SOM neurons

are already ordered and the difference between the original inputs can be represented by the Euclidean

distance between the corresponding neurons, clustering algorithms based on Euclidean distance, e.g.,

Ward’s hierarchical method, can be applied for clustering neurons.

• Step 3. Labeling by Experts. After the above two steps, the original high-dimensional data are

clustered into several classes. We will finally include experts who will analyze and identify the fault

causes of each obtained cluster to ensure that all clusters are labeled.

With the training, clustering, and labeling, an automatic system for network diagnosis is constructed

by the workflow shown in Figure 4. A new input of KPIs will first be mapped to a neuron in SOM.

Using the label of the cluster to which the neuron belongs to, we can identify the fault and the causes.

After obtaining a certain amount of new fault data, we can verify whether the system is right or not

and update the system by re-training using the above three steps. Simulation results presented in [45]

demonstrate that the proposed root cause analysis system is highly accurate even though it is primarily

built using unsupervised techniques.

3.2 AI for resource allocation: OFDMA downlink resource allocation

The OFDM resource block (RB) allocation in 5G NR is more complicated and challenging than ever before

because of the support for the three aforementioned generic services. In Figure 5, a typical multi-cell,

multi-user downlink resource allocation scenario is illustrated. In this system, the intra-cell interference

is eliminated because the RB allocated to different users in the same cell is orthogonal to each other.

System interference mainly depends on the inter-cell interference, which makes the RB allocation for users

in neighboring cells important. Suppose the throughput of each user can be evaluated based on signal-to-

interference ratio (SIR), the target for the optimization of the RB allocation is the maximization of the

total system throughput. This is indeed an NP-hard combinatorial optimization problem with nonlinear
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Figure 5 (Color online) Dynamic resource allocation for multi-cell and multi-user systems.

constraints. The complexity of the traditional solution is proportional to the factorial of the number of

users in coverage, which is computationally prohibitive.

Q-learning can be applied to this problem. Suppose an “Agent” is in charge of the RB allocation, then

the possible “Action” of this “Agent,” which is to update the RB for each user, can be selected by the

following strategies: (1) Within the same cell, allocate free RB with higher SIR to the users; (2) update

the RB allocated to the user with the worst SIR in the current cell continuously to achieve better overall

system capacity; (3) for a certain RB, pair or cluster the user with the worst SIR in the current cell

with users with the best SIR from the neighboring cell. The first two strategies are intuitive. The third

one is applied to avoid allocating the same RB to users in neighboring cells that are located close to the

boarder because in such situations, the involved users cannot acquire essential SIR to work appropriately

regardless of the transmitting power of the base stations.

After defining all the possible “Actions”, the “Agent” will evaluate each of them to select the next

“Action” for adjusting the RB allocation that maximizes the overall capacity of the entire system. The

Q function is updated according to the Bellman equation [19] at the same time. We iterate through this

process until the Q function converges.

These iterations should also be considered with the optimization of the user power allocation. In [46], a

framework based on the generalized Nash equilibrium problem (GNEP) is proposed for the optimization

of the power control for users from multiple cells that are assigned the same RB. Global quality of service

(QoS) constraints are also considered and so Lagrange multipliers are introduced to evaluate the “Actions”

and establish the Q function. Refs. [47,48] summarizes the possible applications of AI techniques for 5G

resource allocations. In [49], a reinforcement learning-based method is proposed for the new network

slicing function in the 5G framework.

3.3 AI for baseband signal processing: Uniform 5G accelerator

The baseband signal processing in 5G consists of a series of signal processing blocks, including massive

MIMO detection, NOMA detection, and decoding for polar codes. The increased number of baseband

blocks results in more hardware area and varied implementation structures. However, we notice that

the belief propagation algorithm based on factor graphs can be applied to all the blocks as proposed

in [50–54]. For each specific block, the frameworks are kept unchanged and we only have to adapt the

symbol set and constraints of the variables to the certain function. Therefore, a uniform accelerator for

the baseband can be designed based on the belief propagation algorithms with configurable variables.

However, the performance of belief propagation is limited in some baseband blocks in certain scenarios.

Here, AI can be a possible solution to such problems. By improving the belief propagation methods with

the AI techniques, an AI-based uniform accelerator can be constructed. The AI-aided belief propagation

algorithms can be designed with the following two methods:
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• DNN-aided belief propagation. (1) Unfold the factor graph of belief propagation by duplicating

the iterations to form a DNN; (2) Train the DNN by supervised training. Applications of this method

in the baseband include the DNN-based polar codes decoder proposed in [30] and the DNN-aided MMO

detector proposed in [55].

• Belief propagation-based CNN. (1) Map each node in the factor graph of belief propagation to

one pixel in a picture, in which connected nodes should be mapped into neighboring pixels; (2) Train

the CNN using the obtained pictures. This method is utilized in the BP-CNN channel decoder proposed

in [56].

The neural networks are highly self-adaptive and reliable. By applying DNN and CNN in the baseband,

we can achieve performance enhancements as long as a uniform hardware implementation framework ex-

ists. Actually, the core operation of CNN is the convolution, while the core operation of DNN is the

multiplication of the two-dimensional matrices. We notice that the systolic architecture can realize both

operations. Figure 6 illustrates a reconfigurable systolic architecture designed for accelerating convolu-

tional neural network [28]. It can be seen that the systolic architecture is regular and scalable, which

supports different CNNs and DNNs. This motivates us to explore the possibilities of reusing the same

hardware architecture to realize both 5G and DL algorithms.

The authors of [31] indicate that in a system formed with the channel encoder, the channel, the channel

equalizer, and the decoder (as shown in Figure 7), the equalizer and the decoder can be implemented

with a CNN and a DNN, respectively. The associated AI accelerator can be jointly realized by two

strategies: (1) The uniform architecture. The overall receiver can be folded into one uniform processor

to save the hardware area. This processor first works as a CNN-based equalizer with the input signals

from the channel. The output of the CNN will be saved at this point. The processor will then function as

a DNN-based decoder, for which the saved output from the CNN will serve as the input. The decoding

results will be the final output. (2) The cascade architecture. Two processors will be cascaded directly to

construct the receiver, one being the CNN-based equalizer while the other being the DNN-based decoder.

This architecture has more hardware components but achieves a higher throughput rate.

Overall, the AI-based uniform accelerator is more flexible for the hardware implementation, and can

therefore achieve various system requirements.



You X H, et al. Sci China Inf Sci February 2019 Vol. 62 021301:10

m s v r s m

n

g(v)H(z)

Channel

C
h
an

n
el

 e
n
co

d
er

CNN equalizer

C
o
n
v
+

R
eL

U

la
y
er

s

C
o
n
v

NN decoder

^^

Figure 7 (Color online) Architecture of a receiver including neural network equalizer and decoder [31].

s
x y

s^

Transmitter Channel Receiver

O
n
e 

h
o
t 

v
ec

to
r

M
u
lt

ip
le

 d
en

se
 l

ay
er

s

M
u
lt

ip
le

 d
en

se
 l

ay
er

s

N
o
rm

al
iz

at
io

n
 l

ay
er

N
o
is

e 
la

y
er

S
o
ft

m
ax

 l
ay

er

S
o
ft

 o
u
tp

u
t

Figure 8 (Color online) A simple autoencoder for an end-to-end communication system [58].

3.4 AI for physical layer: DNN-based end-to-end communication

As mentioned above, AI, especially DNN, has been applied to different function blocks in the physical

layer, e.g., modulation recognition [57], polar codes decoder [30], and MIMO detection [56]. For the joint

optimization of two or more blocks, AI algorithms also achieve success, e.g., the aforementioned joint

optimization of channel equalizer and channel decoder proposed in [31]. Refs. [58, 59] both provide a

comprehensive summary of AI in the physical layer. However, optimizing each of the blocks individually

does not guarantee the optimization for the entire physical layer communication [58]. From the viewpoint

of the entire end-to-end communication system, the intuitive connection of different AI modules may result

in extra computational cost for both training and online tasks. Therefore, a joint optimization method

for the end-to-end system is needed.

Ref. [59] proposes an autoencoder-based end-to-end system optimization method, in which the com-

munication system is recast as an end-to-end reconstruction optimization problem, and a novel concept,

the autoencoder, is introduced to serve as a simplified representation of the system. The autoencoder

is a type of ANN. It aims at learning a representation (encoding) for a set of data in an unsupervised

manner, which will be capable of reconstructing compressed inputs at the output layer. In the proposed

approach in [59], the end-to-end system is simply represented by three blocks, the transmitter, the re-

ceiver, and the channel. The transmitter and the receiver are both represented as fully connected DNNs.

A normalization layer is connected to the transmitter to guarantee the energy constraints, whereas a

softmax activation layer is placed before the receiver to output soft decisions for the received informa-

tion. The AWGN channel in between is represented as a simple noise layer with a certain variance. The

resulting autoencoder has a structure as shown in Figure 8. This autoencoder is trained based on bit

error rate (BER) or block error rate (BLER). After training, the autoencoder will be able to reconstruct

the transmitted signals based on the received signals.

The autoencoder is a novel concept that is different from all traditional, conventional methods. DNNs

are utilized to represent the entire end-to-end system without considering the specific models in each

traditional function block. Therefore, in scenarios that are too complicated to model, The autoencoder



You X H, et al. Sci China Inf Sci February 2019 Vol. 62 021301:11

MIMO channel

generator

R
eL

U
 l

ay
er

s

L
in

ea
r 

la
y
er

N
o
rm

al
iz

at
io

n
 l

ay
er

C
o
m

p
le

x
 m

u
lt

ip
ly

 l
ay

er

N
o
is

e 
la

y
er

R
eL

U
 l

ay
er

s

S
o
ft

m
ax

 l
ay

er

S
o
ft

 o
u
tp

u
t

Transmitter H Channel Receiver

s
x y

ŝ

Figure 9 (Color online) A general MIMO channel autoencoder architecture [58].

can be an appropriate solution to “learn” these scenarios and optimize the performance. This scheme

is extended to a multi-user scenario with interfering channels in [59] and is further extended to MIMO

in [60] by adding a module for the channel matrix as shown in Figure 9. Simulation results presented

in [59,60] illustrate that the autoencoder can “learn” different scenarios with various CSI and numerous

antennas and achieves enhanced BER performance.

4 Conclusion

5G promises significant breakthroughs in traditional mobile communication systems. While enhancing

the service capability of traditional mobile networks, it further evolves to support the applications of

IoT in various fields including business, manufacturing, health care, and transportation. Therefore, 5G

will serve as the basic technology for future IoT technologies that connect and operate entire societies.

Aiming to support differentiated applications with a uniform technical framework, 5G is facing enormous

challenges. With the revival and rapid developments in recent years, AI is rising to these challenges.

AI is a potential solution to the problems associated with the 5G era, which will lead to revolutionary

concepts and capabilities in communication systems.

Many studies have already been conducted for applying AI in 5G. In this paper, instead of reviewing

all existing literature, we focus on clarifying promising research directions with the greatest potential.

Through additional efforts in these research directions, 5G is anticipated to achieve significantly bet-

ter performance and more convenient implementations compared to traditional communication systems.

With the inspiring research paradigms introduced in this paper, we look forward to the remarkable

applications of AI in 5G in the near future.
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