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Dear editor,
Control configuration selection of complex net-
works with ensured controllability is of crucial im-
portance for achieving reliable network function-
alities [1]. In many scenarios, the exact numeri-
cal parameters of system model are not available
owing to modeling uncertainties or measurement
noise, and the structural controllability is pursued
in control configuration design. As first proposed
by Lin in [2], a system is said to be structurally
controllable if one can seek a numerical realization
for the unknown parameters so that the result-
ing system is controllable in classical sense. More
often than not, considering the installation and
maintenance cost, it is economic to have full con-
trol over the system while minimizing the actua-
tion infrastructures. Therefore, the issue pertain-
ing to minimum input selection (MIS) for struc-
tural controllability is of more interest, which can
be formally stated as: identifying the minimal sub-
set of actuated states that ensures system’s struc-
tural controllability.

In recent years, triggered by multifarious de-
mands of switching control targets in complex net-
works, such as failure isolation, function extension
and process improvement, a class of reconfigurable
architecture systems with changing network topol-
ogy has emerged. Motivated by its numerous ap-
plications and the significance of optimal inputs
allocation, the minimum input selection of recon-
figured systems (MIS-RSs) attracts increasing at-

tention [3]. Constrained by existing control config-
uration, the main challenge to address MIS-RS is
how to find the least actuators from a given collec-
tion of inputs while achieving structural controlla-
bility.

In [4], a distributed method to determine MIS
was presented, which benefits the system struc-
tural analysis with changing topology. Neverthe-
less, the constraint on actuated states that are
possible for selection is not considered. In exist-
ing literature [5], a similar issue called constrained
MIS was investigated, where it proved that this
problem is NP-hard if each input drives multiple
states. Particularly, if a favorable structure is at-
tainable, i.e., the generic-rank condition of struc-
tural controllability is certainly satisfied, then the
constrained MIS can be reduced to a minimum
set covering problem and is polynomially solv-
able. However, it is a strong hypothesis to net-
work topology and can not be satisfied by a general
reconfigured system. In this study, we character-
ize the optimal solution of MIS-RS and propose
a polynomial algorithm to find a minimum input
allocation of MIS-RS, which is suitable for recon-
figured systems with arbitrary architecture. To
this end, the novel procedure is proposed based on
the mild assumption that dedicated inputs (i.e.,
each input actuates at most a single state) are em-
ployed, which is the same condition utilized in the
classic MIS and is more readily to be satisfied in
real scenarios.
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Model and methodology. Now consider a linear
reconfigurable architecture system depicted by

ẋ(t) = Arex(t) +Breu(t), (1)

where x, u ∈ R
n are the state and input vector

of reconfigured systems. Let Āre ∈ {0, 1}n×n be
a binary matrix that encodes the structural pat-
tern of Are. B̄re = Ip

n is an n× n identity matrix
with p nonzero diagonal entries. On this basis,
the MIS-RS problem satisfying (Āre, B̄re) is struc-
turally controllable can be formally posed as P :
Given Āre ∈ {0, 1}n×n, B̄re = Ip

n, determine

J ∗ = arg min
J⊆[1:p]

|J | (2)

s.t. (Āre, B̄re
J ) is structurally controllable,

where J is a subset of indices associated with given
inputs. [1 : p] is the set {1, 2, . . . , p} and |J | is the
cardinality of J , i.e., the number of elements that
J consists of. B̄re

J represents the subset of nonzero
columns of B̄re with index in J .

Unless otherwise specified, the graph theoretic
notations used in this study can be referenced
in [5]. Notably, we use SCC to denote a strongly
connected component, which refers to a maximal
subgraph of a digraph so that there exists a path
between any two vertices of the graph. In addi-
tion, non-top linked SCC (NT-SCC) is an SCC
that has no incoming edge from another SCC. To
proceed, the result used to determine if a system
is structurally controllable is provided.

Lemma 1 ( [6]). The pair (Āre, B̄re) is said to
be structurally controllable if and only if both the
following two conditions hold:

(i) Every NT-SCC of the reconfigured system
digraph D(Āre, B̄re) consists of at least one input;

(ii) Any maximum matching of the bipartite
graph B(Āre, B̄re) has no right-unmatched vertex.

On this basis, the optimal solution of MIS-RS
can be characterized by Theorem 1.

Theorem 1 (Dedicated solution to P). Let r be
the number of NT-SCCs of D(Āre) and NNT

j be
the set of states of j-th NT-SCC. Let R(M∗

Āre,i
)

be the right-unmatched vertex-set of B(Āre) with
respect to maximum matchingM∗

Āre,i
and by dR =

|R(M∗
Āre,i

)|. For any given B̄re = Ip
n, the number

of minimum inputs for MIS-RS is

s∗ = dR −
r∑

j=1

||R∗(M∗
Āre,i

) ∩ NNT
j ||+ r, (3)

where ||R∗(M∗
Āre,i

) ∩ NNT
j || = 1 if R∗(M∗

Āre,i
) ∩

NNT
j 6= ∅, otherwise ||R∗(M∗

Āre,i
) ∩ NNT

j || = 0.

The optimal R∗(M∗
Āre,i

) is determined by

R∗(M∗
Āre,i

)=argmax

r∑

j=1

||R(M∗
Āre,i

) ∩NNT
j || (4)

s.t. R(M∗
Āre,i

) ⊆ J .

Proof. First, let η be the number of different
maximum matchings of B(Āre) and define the new
set XNT= {xj : xj =[NNT

j , 1], ∀j ∈ [1 : r]}, where

[NNT
j , 1] denotes any one state of NNT

j . Then ac-
cording to Lemma 1, the minimum inputs required
to achieve condition (i) is r while the minimum ac-
tuators needed to achieve condition (ii) is dR. In
consequence, the fewest number of inputs of MIS-
RS to ensure structural controllability equals to

s∗ = |R∗(M∗
Āre,i

) ∪ XNT|

= min
i∈[1:η]

|R(M∗
Āre,i

) ∪ XNT|

= dR − max
i∈[1:η]

|R(M∗
Āre,i

) ∩ XNT|+ r. (5)

Determined by (4), the optimal R∗(M∗
Āre,i

) is

obtained. Therefore, it derives

|R∗(M∗
Āre,i

) ∩ XNT| =
r∑

j=1

||R∗(M∗
Āre,i

) ∩NNT
j ||.

By substituting this equation to (5), Eq. (3) is
proved to be the minimum inputs of MIS-RS.

Owing to the constraint R(M∗
Āre,i

) ⊆ J , the

optimal solution of MIS-RS may be suboptimal
to MIS, which can be illustrated by an example
shown in Figure 1(a)–(d). In light of Theorem 1,
the key to solve MIS-RS is how to find R∗(M∗

Āre,i
).

To do this, Definitions 1–3 are brought in.

Definition 1 (Augmenting path). In B(Āre), the
augmenting path from a right-unmatched state x−

i

to a right-matched state x−
[j] refers to a path con-

necting x−
i and x−

[j] on which the matching edge

and the un-matching edge appear alternatively.
The augmenting path between x−

i and x−
[j] is de-

noted by aug(x−
i , x

−
[j]).

The augmenting path inversion aug−1(x−
i , x

−
[j])

can be obtained by turning every matching edge of
aug(x−

i , x
−
[j]) into an un-matching one while chang-

ing the un-matching edges into matching ones.

Definition 2 (Complete induced vertex-set).
Let M∗

Āre
be any maximum matching of B(Āre).

∀x−
i (M

∗
Āre

) ∈ R(M∗
Āre

), if there exists an aug-

menting path aug(x−
i (M

∗
Āre

), x−
[j](M

∗
Āre

)), then

x−
[j](M

∗
Āre

) is an induced vertex of x−
i (M

∗
Āre

). The

induced vertex-set is denoted by ind[x−
i (M

∗
Āre)]

and complete induced vertex-set is represented as

Ind[x−
i (M

∗
Āre)] = ind[x−

i (M
∗
Āre)] ∪ x−

i (M
∗
Āre). (6)

Definition 3 (Intersecting augmenting path). In
B(Āre), the path satisfying following conditions is
referred to be an intersecting augmenting path:
(1) it starts from an induced vertex and ends on
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Figure 1 (Color online) (a) Reconfigured state digraph; (b) The MIS of (a) is {b}; (c) the MIS-RS is {a, d} if J = {a, d},
which is a suboptimal solution to MIS; (d) the MIS-RS is {b} if J = {b, d}, which is also an optimal solution to MIS;
(e) the example used for algorithm verification.

another induced vertex; (2) it is located on the in-
tersection of different augmenting paths; (3) all the
left-matched vertices on it do not connect with an
induced vertex. The set of induced vertices on k-
th intersecting augmenting path is denoted by Tk.

Then the MIS-RS problem can be solved by Al-
gorithm 1.

Algorithm 1 Solution to the MIS-RS problem

Input: Āre and J .
Output: The optimal solution J ∗ of problem P.
Step1: determine M∗

Āre
and R(M∗

Āre
) of B(Āre);

Step2: ∀x−
i ∈ R(M∗

Āre
), obtain Ind[x−

i (M∗
Āre

)], Tk;

Step3: derive Sl = Ind[x−
i (M∗

Āre
)] ∩ J , ∀l ∈ [1 : dR];

Step4: find NT-SCCs {NNT
j }j∈[1:r] of D(Āre);

Step5: In the B({Sl}l∈[1:dR], {N
NT
j }

j∈[1:r]
, E{Sl},{N

NT

j
}),

E{Sl},{N
NT

j
} = {(Sl,N

NT
j ) : Sl ∩NNT

j 6= ∅}, find M∗;

Step6:
- ∀NNT

j matched by Sl, obtain [Sl ∩NNT
j , 1] ∈ J ∗

1 sat-

isfying |J ∗
1 ∩ Tk| 6 1;

- ∀NNT
j not matched, obtain [NNT

j ∩ J , 1] ∈ J ∗
2 ;

- ∀Sl not matched, obtain [Sl, 1] ∈ J ∗
3 satisfying

∩l∈[1:dR][Sl, 1] = ∅, J ∗
1 ∩ J ∗

3 = ∅, |J ∗
1 ∪ J ∗

3 ∩ Tk| 6 1;
Step7: return J ∗ = J ∗

1 ∪ J ∗
2 ∪ J ∗

3 .

Because each step of Algorithm 1 is polynomi-
ally solvable [7], the MIS-RS issue can be solved
by the presented arithmetic in polynomial time.

The established procedure to address MIS-RS is
verified through a structural leader-selection prob-
lem presented in [5], which is posed as: con-
sidering a reconfigured multi-agent system con-
sisting of 13 agents (the system structure is
shown in Figure 1(e)). Let part of the agents
be equipped with a dedicated input, i.e., J =
{x3, x5, x9, x10, x11, x12, x13}. In reconfigured sys-
tems, the leader-selection problem aims to deter-
mine the minimum agents from set J and employ
their inputs to achieve structural controllability.

By Algorithm 1, R(M∗
Āre

) = {x−
10, x

−
11, x

−
12, x

−
13}

and Tk = ∅. For any x−
i ∈ R(M∗

Āre
), there is

Ind[x−
i (M

∗
Āre

)] = Sl = {x−
i }, ∀l ∈ [1 : 4]. The NT-

SCCs are shown by dashed boxes in Figure 1(e).
Because perfect matching is found between
{Sl}l∈[1:4] and {NNT

j }j∈[1:4], J
∗
1 = {x10, x11, x12,

x13}, J
∗
2 = ∅ and J ∗

3 = ∅. Thus, J ∗ = {x10, x11,

x12, x13}.
Conclusion and future work. We proposed a

novel procedure to solve the MIS-RS problem. Un-
der the mild assumption that dedicated input is
used, the presented algorithm can select the mini-
mum controls from a given collection of inputs in
polynomial time for reconfigured systems with ar-
bitrary network topology. The future research will
focus on the minimum input addition problem of
reconfigured systems that are not controllable.
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