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Dear editor,
RNA-binding proteins (RBPs) are involved in
both transcriptional and post-transcriptional gene
regulation, such as RNA splicing and localiza-
tion. In addition, their dysregulations are closely
associated with many diseases [1]. For exam-
ple, mutations in the RBPs FUS and TDP-43
that can cause amyotrophic lateral sclerosis [2].
To date, huge volume of experimentally verified
RBP binding sites have been collected [3] by high-
throughput sequencing. However, they are still
time-consuming and high-cost. Many machine
learning-based methods have been developed to
learn patterns for RNA-protein interactions. For
example, RNAcommender trains a recommended
system for suggesting RNA targets for RBPs by
integrating RNA structures and RBPs domain in-
formation [4]. Recently, neural networks and deep
learning have been popularly applied in computa-
tional biology [5], especially RNA-protein binding
sites [6, 7]. For example, DeepBind trains a CNN
to identify DNA/RNA binding preferences of pro-
teins [6]. iDeep trains a hybrid deep network with
deep belief networks (DBNs) and CNNs using mul-
tiple data sources [7]. iDeepE combines a global
CNN and a local CNN to predict RNA-protein
binding sites and motifs from sequences alone [8].
Considering the structure preference of RBPs,
iDeepS takes structures into consideration for RBP

binding specificity [9]. It trains two individual
CNNs and a long short term memory network
(LSTM) for sequences and structures to capture
binding sequence and structure motifs of RBPs.
All the above methods train RBP-specific models,
where each model can only predict RNA targets for
one RBP. In addition, the relationship among dif-
ferent RBPs are totally ignored. For example, dif-
ferent RBPs share similar binding domains, which
can also be integrated into predict RNA-protein
interaction. Another disadvantage of RBP-specific
model is that it requires constructing negative
samples for each RBP, how to construct negative
sites for each RBP has big impact on the trained
RBP-specific models. Different strategies to con-
struct negative sets yield different prediction per-
formance. For example, randomly shuffling RNA
positive sequences as negative sequences can make
trained models yield better performance than ran-
domly shuffling the coordinates of the bound sites
within the same gene [8]. As mentioned above,
CNNs can extract high-level motif features and
LSTMs can learn long-range dependency. Thus,
a hybrid CNN/LSTM model that does not require
constructing negative sets for individual RBPs is
needed. In this study, our goal is to predict which
one or multiple RBPs can bind to a given in-
put RNA sequence. To this end, we formulate
this prediction problem as a multi-label classifica-
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tion problem using deep learning, which does not
need construct negative sites for each RBP. Thus,
we present a joint computational model based on
multi-label deep learning to predict how a RNA
sequence is attached by a set of RBPs. We use
a CNN to learn shared abstract features across
RBPs, which is different from learning shared fea-
tures across different sources of features in iDeep.
Then the learned abstract features are further fed
to LSTM under multi-label learning framework.
It connects deeply to how to model the depen-
dency and combinations of RBPs. To the best of
our knowledge, our work is the first computational
method to explore multi-label learning for pre-
dicting RNA-binding proteins using deep learning.

Dataset. We constructed our benchmark
dataset from RNAcommender [4], which includes
a total of 502178 binding sites derived from CLIP-
seq for 67 RBPs, and each RBP has different num-
ber of binding sites. Here we treat RBPs as labels.
If one RNA binds to multiple RBPs, then we as-
sign multiple labels to this RNA sequence. Be-
sides the 67 RBPs, we also add another label for
those RNA sequences that do not bind to any of
67 RBPs. Here we randomly select the number of
UTRs (untranslated regions) the same as the RBP
with the largest number of binding sequences. We
also investigate that how many RNAs have mul-
tiple binding proteins, and we find that 74.7% of
RNAs have at least two binding proteins. The dis-
tribution of number of binding proteins is shown in
Figure A1. The data is randomly stratified split,
where 80% of the data is used for training and 20%
is left for testing.

iDeepM method. We present a deep multi-
label learning method called iDeepM for predicting
RNA-binding proteins (Figure 1 and Algorithm
A1)1). It first encodes sequences to one-hot en-
coding matrix, which is fed into a CNN, followed
by a LSTM layer, where CNNs are used to extract
high-level motif features [7] and LSTMs are used
to learn dependency among labels. Please refer
to Appendix A for more details. The iDeepM is
implemented in python using Keras v1.2.0 library.
For the CNN, the parameter nb filter (number of
motifs) is 102, which is the total number of veri-
fied motifs in CISBP-RNA database. The kernel
size of filters is 10, which is used in iDeepM. For
the LSTM, we set the hidden size = 68, equaling
to the number of classes. The Dropout probability
between each layer is 0.5. We learn the model pa-
rameters by minimizing the binary cross-entropy
loss using Adam optimizer, and batch size is 64.
Our experiments are ran on a Ubuntu server with

CPUs 2.00 GHz.
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Figure 1 (Color online) The flowchart of iDeepM.
iDeepM first converts RNA sequence into one-hot encoded
matrix, which is further fed into a CNN, followed by LSTM
to learn label dependency under multi-label learning frame-
work.

Results. We evaluate iDeepM on our con-
structed benchmarked dataset, where it classifies
RNA sequences to be bound to 68 RBPs or not,
including one artificial one that do not bind to
any of 67 RBPs. We first checked the impact of
epochs with values (10, 15, 20, 25) on prediction
performance. As shown in Table B1, the larger
number of epochs yield better performance, but it
is more time-consuming. The number of epochs
(nb epoch) has no big impact on the AUC mea-
surement, but it has impacts on the F1 measure-
ment with a larger change. In addition, when
nb epoch is nearby 20, the F1 measurement also
approximates to be similar. Considering the trade-
off between training time and performance, in this
study, we use nb epoch = 20. In addition, we
can also see that the testing time of iDeepM is
fast. The iDeepM yields high AUCs nearby 0.90
for Macro-AUC, Micro-AUC and Weighted-AUC,
but F1 measurements with a large difference. The
results indicate that iDeepM has strong power for
classifying RNA-binding proteins. To demonstrate
the advantage of deep learning over other conven-
tional machine learning models, we develop an-
other kmer-SVM method to fit a binary SVM clas-
sifier for each label against the rest of the labels.
The inputs of kmer-SVM is the 4-mer (AAAA,
AAAA, . . ., UUUU) frequency, and the kernel of
the SVM is linear kernel and other parameters are
default values in scikit-learn. As shown in Ta-
ble B1, kmer-SVM yields very bad performance, it

1) https://github.com/xypan1232/iDeepM.
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is close to random guessing, and its prediction re-
sults are dominated by two majority classes “nega-
tives” and “Ago1”. The results indicate that SVM
is especially not good at handling the imbalanced
data of this study and it needs be combined with
other up-sampling or down-sampling techniques.
In addition, the testing time of kmer-SVM is much
longer than iDeepM.

We also further investigate the performance of
different RBPs. The developed iDeepM can yield
very high AUC for all RBPs. However, for F1-
score, the performance across RBPs varies a lot.
Thus, we list those RBPs with top 10 F1-score (Ta-
ble B2). We can see that for some RBPs from the
same protein family, iDeepM yields similar perfor-
mance, like TIAL1 and TIA1. Especially, iDeepM
can classify RNAs that do not bind to any of 67
RBPs with high AUC 0.87. Furthermore, we inves-
tigate the relationship between binding domains
and the performance. Thus we scan each RBP se-
quence against the HMM models of the Pfam-A
v. 28.0 database, and select all domains with e-
value 6 1.0 for this RBP. Of the top 10 RBPs,
TIAL1, TIA1 and RBP47 have domain PF00076
(RNA recognition motif), LIN28A and LIN28B
have shared domain PF00098 (Zinc finger). We
also collect those domains that are shared by at
least three RBPs of the 67 RBPs, then we plot
the boxplot of AUC and AUPRC with these do-
mains (Figure B1). For domain PF12235 (Frag-
ile X-related 1 protein core C terminal) shared
by five RBPs, iDeepM yield almost the same high
AUCs and AUPRCs on these 5 RBPs. However,
for some domains, iDeepM can yield different per-
formance for different RBPs sharing the same do-
main, e.g., PF00035 (double-stranded RNA bind-
ing motif). The potential reason is that our train-
ing and testing RNAs are all single-stranded, thus
iDeepM cannot learn binding specificities for do-
main PF00035 from them.

Conclusion and future work. We propose a
novel approach for RNA-binding proteins predic-
tion that formulates the task as a multi-label clas-
sification problem, which is different from previous
RBP-specific models. To the best of our knowl-
edge, it is the first study to predict RNA-binding
proteins under multi-label learning framework. In
addition, we also combine the power of deep learn-
ing to better learn high-level features with strong
discriminate power for RNA-binding proteins pre-

diction. Please refer to Appendix C for future
work and discussion about iDeepM. It is expected
that this study provides a new avenue for predict-
ing RNA-binding proteins.
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