
SCIENCE CHINA
Information Sciences

January 2019, Vol. 62 019102:1–019102:3

https://doi.org/10.1007/s11432-017-9459-5

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

. LETTER .

How security bugs are fixed and what can be

improved: an empirical study with Mozilla

Xiaobing SUN1,2,3*, Xin PENG1,2, Kai ZHANG1,2, Yang LIU4 & Yuanfang CAI5

1School of Computer Science, Fudan University, Shanghai 201203, China;
2Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 201203, China;

3School of Information Engineering, Yangzhou University, Yangzhou 225127, China;
4School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;

5Department of Computer Science, Drexel University, Philadelphia 19104, USA

Received 20 November 2017/Revised 5 February 2018/Accepted 30 March 2018/Published online 17 December 2018

Citation Sun X B, Peng X, Zhang K, et al. How security bugs are fixed and what can be improved: an empirical

study with Mozilla. Sci China Inf Sci, 2019, 62(1): 019102, https://doi.org/10.1007/s11432-017-9459-5

Dear editor,
A bug is regarded as security related when it cre-
ates vulnerability in the software, which the ma-
licious attackers could exploit to attack the sys-
tem [1]. Security bugs widely exist in released
software, and are serious threats to organizations,
which can cause serious monetary loss and reputa-
tion damage. Therefore, addressing security bugs
is a top priority in software maintenance [1].

To support developers in addressing security
bugs, researchers have developed techniques for se-
curity bug identification assessment [2,3], vulnera-
ble component prediction [4], security testing [5,6].
These studies mainly focus on detection of security
bugs and how to fix them [7].

Early and quick fix of security bugs is essential
for the development team [8]. In practice, how-
ever, security bugs are usually fixed in an ad-hoc
way and the fixing process often takes a long time
due to various reasons. It is common that security
bugs are fixed in multiple commits, reopened after
the initial fix, or left unresolved due to other block-
ing bugs. Zaman et al. [9] reported that security
bugs are usually triaged and fixed the fastest, but
they also found that security bugs are the most
reopened and tossed compared with other types of
bugs. These findings indicate that there are some
factors that hinder the fixing of security bugs.

Study design. To help developers fix security

bugs more quickly and easily, there is a need to
learn how security bugs are fixed in practice and
how it can be improved by answering the following
research questions.

• RQ1: How is the source code revised to fix
different types of security bugs? Are there com-
mon patterns for fixing security bugs?

• RQ2: Why do some security bugs need to
be fixed in multiple commits? Are there common
strategies for fixing complex security bugs that re-
quire multiple commits?

• RQ3: What are the causes for reopening of
security bugs?

• RQ4: Why is the fixing of security bugs
sometimes blocked by other bugs? What is the
relationship between security bugs and their block-
ing bugs?

To answer these questions, we conducted an em-
pirical study on bug fixing practices in Mozilla. We
identified 1609 bugs between July 2005 and Aug
2015 that were marked as security bugs. We re-
viewed the descriptions of each security bug and
identified 252 security bugs that were unanimously
confirmed to fall within the scope of our study. We
analyzed the bug reports, comments, and commits
of these bugs to understand the process for fixing
them and the corresponding code changes to an-
swer the research questions.

Study results. Security bug fixing patterns. We

*Corresponding author (email: xbsun@yzu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9459-5&domain=pdf&date_stamp=2019-1-3
https://doi.org/10.1007/s11432-017-9459-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9459-5
https://doi.org/10.1007/s11432-017-9459-5


Sun X B, et al. Sci China Inf Sci January 2019 Vol. 62 019102:2

manually analyzed change history of security bug
fixing in Mozilla and identified ten different local
fixing patterns. We found that when fixing secu-
rity bugs, most patches were local and small. In
addition, the security bugs could be classified into
three groups — data preprocessing, data process-
ing, and data ensuring — according to the data
computation process in a code module, as shown
in Figure 1. Data preprocessing is usually used to
prevent data from external attacks, which is gen-
erally set in the entrance of a code module. There
are four fixing patterns at the data preprocessing
phase: checking data (CKD), filtering illegal data
(FID), strengthening data constraint (SDC), and
weakening data constraint (WDC). Data process-
ing is used to guarantee that the data is processed
in a secure way. There are five fixing patterns
at the data processing phase: adding code branch
(ACB), changing the type of an object to its parent
class (COP), changing the type of an object to its
sub class (COS), adding tryCatch module (ATC),
and changing the weak reference to strong refer-
ence (CWS). Data ensuring is used to guarantee
the validity and legality of the code module be-
fore transmission to another code module(s). The
primary fixing pattern also includes the checking
data (CKD-E) pattern similar to that of CKD at
the data preprocessing phase.

Process of fixing security bugs. Some security
bugs are resolved in multiple commits. Of the 252
security bugs examined in our study, 138 (55%)
security bugs required multiple commits.

For security bugs fixed in multiple commits, we
summarize their process into five strategies. The
first strategy is a widely used fixing process (Strat-
egy i), i.e., developers first fix a security bug and
commit it, then they may verify whether their
patch is correct. So they test their fixing code
and commit again. Since fixing security bugs is
usually emergent, developers may employ a tem-
porary patch to fix the security bug. When he/she
has enough time, a better patch is used to fix the
original security bug (Strategy ii). In addition,
there are also some security bugs, which are dif-
ficult to fix in a single commit. At this time, de-
velopers may intentionally divide the fixing pro-
cess into multiple commits (Strategy iii). There
are also some security bugs that are not correctly
fixed in their initial commit. Then developers need
to fix the original security bug again (Strategy iv).
To improve the quality of fixing security bugs, de-
velopers sometimes refactor their previous fixing,
which is another typical fixing strategy in multiple
commits (Strategy v).

Reopening of security bugs. During the fixing
process of security bugs, some may be not fully re-

solved. Then these security bugs are reopened and
fixed again. There are totally 68 reopened security
bugs in our study.

First, some security bugs are reopened because
they are not completely fixed in their original
patch(es). Therefore, this type of bug reopening
is used to fix the problem related to their original
fixing. The relation between the fixing after re-
opening and the original fixing includes coordinate
relation (Type i) and liner relation (Type ii). Co-
ordinate relation is used to indicate that the fixing
patterns, functionalities, and code after a bug re-
opening are different from their original patch(es),
but they focus on the same security bug. For liner
relation, it is used to indicate that the fixing pat-
terns and functionalities are similar to their origi-
nal patch(es), but the position of code patches are
different.

There are also some patches for reopened bugs
to enhance the fixing of the original security bugs.
Two ways are used to enhance fixing of original se-
curity bugs, i.e., being wider (Type iii) and being
stronger (Type iv). When a security bug is fixed in
a wider way after its reopening, it indicates that
the protection scope of the original patch is ex-
tended. When a security bug is fixed in a stronger
way after its reopening, it indicates that the origi-
nal patch is not enough, in this way, another more
secure patch is required. The main difference be-
tween being wider and being stronger is that ways
of fixing after the reopening and the original fixing
are similar for being wider fixing, but different for
being stronger fixing.

To fix security bugs, sometimes the patch is too
strong, which may affect the performance or func-
tionality of the system. So some security bugs are
reopened to relax the patch(es) of the original fix-
ing (Type v).

There are also some security bugs that are not
correctly revised, which needs to be reopened for
a correct fixing (Type vi). In our study, we also
found that there are some patches without any
changes on the code after reopening of a security
bug. For these security bug reopening, developers
just added some tests (Type vii) or checked the
original fixing (Type viii).

Blocking for security bugs. One reason that a
security bug remains unresolved is that blocking
bugs prevent the developers from fixing it. Hence,
developers should first fix address blocking bugs.
These blocking bugs include both non-security and
security related bugs.

Based on the investigation of the 252 security
bugs in Mozilla, we found that there were 88 secu-
rity bugs that have 88 non-security blocking bugs
and 15 security-related blocking bugs. For these



Sun X B, et al. Sci China Inf Sci January 2019 Vol. 62 019102:3

Fix patterns

Data 
preprocessing

Data 
processing

Data ensuring

CKD

FID

SDC

WDC

ACB

COP

COS

ATC

CWS

CKD-E

Add if module
Add assertion module
Add mark variable
Add if module
Add loop module

Move code into if module
Strengthen if condition

Move code into if module
Weaken if condition

Add if/switch module

Change the type of an object to its parent class

Change the type of an object to its son class

Add try Catch module

Change the weak reference to strong reference

Check data

Figure 1 Common fixing patterns of security bugs.

two different blocking bugs, we identify different
blocking relations. These blocking bugs are di-
vided into three types, In-functionality blocking
(Blocking i), Cross-functionality blocking (Block-
ing ii), and Platform blocking (Blocking iii). In-
functionality blocking represents the blocking bugs
within a functionality. When fixing a security bug,
if the fixing patches depend on other components
within the same functionality, which includes non-
security or security bugs, these bugs become the
in-functionality blocking bugs. Cross-functionality
blocking indicates the blocking between different
functionalities, which occurs only for non-security
bugs. For platform blocking, it means that there is
a bug in the platform that may prevent its associ-
ated components (with security bugs) from being
fixed. The platform blocking includes both non-
security related bugs and security related bugs.

Possible improvements in security bug fixing.
Our findings from the study suggest possible im-
provements for security bug fixing, including:

• developing automatic program repair tech-
niques or tools for security bug fixing considering
the specific fixing patterns;

• developing security-related regression testing
and fixing solution recommendation techniques or
tools to decrease the cost of fixing security bugs;

• using program analysis or clone detection
tools to improve the patch quality of security bugs;

• developing techniques or tools for predicting
blocking bugs considering different types of block-
ing relations.

Acknowledgements This work was supported partially

by Natural Science Foundation of China (Grant Nos.

61872312, 61402396, 61611540347, 61472344), Jiangsu

Qin Lan Project, China Postdoctoral Science Foundation

(Grant No. 2015M571489), and Natural Science Founda-

tion of Yangzhou City (Grant No. YZ2017113).

References

1 Viega J, McGraw G. Building Secure Software: How
to Avoid Security Problems the Right Way. 1st ed.
London: Addison-Wesley, 2011

2 Cai Y, Jia C, Wu S, et al. ASN: a dynamic
barrier-based approach to confirmation of deadlocks
from warnings for large-scale multithreaded programs.
IEEE Trans Parallel Distrib Syst, 2015, 26: 13–23

3 Cai Y, Chan W K. Magiclock: scalable detection of
potential deadlocks in large-scale multithreaded pro-
grams. IEEE Trans Softw Eng, 2014, 40: 266–281

4 Shar L K, Tan H B K, Briand L C. Mining SQL injec-
tion and cross site scripting vulnerabilities using hy-
brid program analysis. In: Proceedings of the 35th In-
ternational Conference on Software Engineering, San
Francisco, 2013. 642–651

5 Felderer M, Büchler M, Johns M, et al. Chapter one
- security testing: a survey. Adv Comput, 2016, 101:
1–51

6 Cai Y, Lu Q. Dynamic testing for deadlocks via con-
straints. IEEE Trans Softw Eng, 2016, 42: 825–842

7 Cai Y, Cao L. Fixing deadlocks via lock pre-
acquisitions. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, Austin,
2016. 1109–1120

8 Wang L, Sun X, Wang J, et al. Construct bug knowl-
edge graph for bug resolution: poster. In: Proceedings
of IEEE/ACM International Conference on Software
Engineering, 2017. 189–191

9 Zaman S, Adams B, Hassan A E. Security versus per-
formance bugs: a case study on firefox. In: Proceed-
ings of the 8th Working Conference on Mining Soft-
ware Repositories, New York, 2011. 93–102

https://doi.org/10.1109/TPDS.2014.2307864
https://doi.org/10.1109/TSE.2014.2301725
https://doi.org/10.1109/TSE.2016.2537335

