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Abstract In this paper, the attitude tracking control problem for a rigid spacecraft in the presence of system

parameter uncertainties and external disturbances is addressed. First, a new nonsingular finite-time sliding

surface is introduced and third-order sliding mode finite-time attitude control law is designed to achieve

precise accurate tracking responses and robustness against inertia uncertainties and external disturbances.

The stability of the closed-loop system is rigorously proved using the Lyapunov stability theory. Then, a new

finite-time extended state observer is established to estimate total disturbances of the system. The extended

stated observer-based sliding mode control technique yields improved disturbance rejection and high-precision

attitude tracking. Moreover, this control law can avoid the unwinding phenomenon and overcome the input

saturation constraint by introducing an auxiliary variable to compensate for the overshooting. A Lyapunov

based analysis is provided to guarantee sufficiently small observation error and stabilization of the closed-loop

system in finite time. Numerical simulations are conducted to verify the effectiveness of the proposed control

method.
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gence, unwinding phenomenon
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1 Introduction

Attitude control of spacecraft has attracted much interest among researchers over past decades. The

interest is motivated by its main role in many space missions such as satellite surveillance and forma-

tion flying. Because the dynamics of spacecraft are nonlinear, highly coupled and affected by various

disturbances coming from the environment, an attitude controller design is usually difficult. Thus, the

attitude controller designs of spacecraft are very challenging and interesting mathematical problems of

great practical importance.

Various nonlinear control schemes have been proposed to address the attitude tracking control problem

such as adaptive attitude control [1,2], sliding mode control [3,4], optimal control [5,6], output feedback

control [7], LMI-based control [8], backstepping control [9, 10], passivity-based control [11], and fuzzy

control [12]. Among these methods, sliding mode control (SMC) has been widely used owing to its

competence for a system with model uncertainties and external disturbances [13]. However, all results
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proposed above only ensure asymptotic stability and convergence in infinite time. The ability of control

methods to provide rapid maneuver performance is highly desirable in many space missions.

Recently, terminal sliding mode control (TSMC) methods using nonlinear sliding surfaces instead of a

linear surface were proposed to obtain convergence of system states in finite time [14,15]. TSMC has been

given by [16, 17] for the attitude tracking of a rigid spacecraft. However, a main disadvantage of TSM

control is the singularity problem. To solve this problem, the nonsingular terminal sliding mode control

(NTSMC) [18, 19], nonsingular fast terminal sliding mode control (NFTSMC) [20], time-varying sliding

mode [21], and integral sliding mode control (ISMC) [22, 23] have been designed to solve the attitude

tracking problem.

All the results mentioned in the above literature have been derived without considering the saturation

input. In practice, when the requested control torque is higher than the maximum value that the actuator

can produce, a performance degradation or system instability may occur [24]. In order to overcome this

drawback, several attitude control approaches with control input saturation have been increasingly taken

into consideration. Wallsgrove and Akella [25] designed a saturated attitude controller by using the

hyperbolic tangent function to prevent actuator saturations, while Boškovic et al. [26] used saturation

functions to design saturated attitude controllers. Hu et al. [27] proposed a method of disturbance

observer based finite-time attitude control design which takes actuator saturation into consideration.

To further enhance the performance of SMC, higher order sliding mode control (HOSMC) has been

developed. The benefit of HOSMC is that it can reduce the chattering while still maintain the disturbance

attenuation ability of SMC. Wide real-life applications have been controlled in a practical implementation

of HOSMC (e.g., electropneumatic actuator [28], electric power system [29], reusable launch vehicle [30],

and hybrid vehicle [31]). Second order sliding mode control (SOSMC) has widely been implemented

to control many practical nonlinear systems [32–34]. In [35], an SOSMC technique has been applied

to an aircraft pitch control system. In [36], a smooth SOSMC law for a missile guidance system has

been developed. A SOSMC law for spacecraft attitude tracking has been developed in [22]. Finite time

convergence is ensured the Lyapunov theory and homogeneity approach. An output feedback SOSMC

scheme that yields chattering attenuation and finite-time stability have been proposed in [37] to deal

with the attitude tracking control problem of a rigid spacecraft. Pukdeboon and his colleagues [38] have

designed SOSMC and third-order sliding mode control (TOSMC) schemes for attitude tracking control

of spacecraft. However, in that work, both control techniques cannot enforce finite-time convergence

of the spacecraft system. Due to the difficulty of proving the finite-time stability, TOSMC designs for

nonlinear spacecraft systems have been rarely studied. The main benefits of TOSMC are that it yields

high accurate outputs and chattering attenuation. Therefore, the TOSMC scheme is a good choice to

apply to develop an attitude tracking controller for a rigid spacecraft.

Recently, disturbance observer (DO) methods have been introduced to compensate for strong nonlin-

earity, unmodeled dynamics and external disturbances of uncertain systems. Among these disturbance

observers, extended state observer (ESO) is widely employed in various control engineering systems such

as an autonomous underwater vehicle [39] and permanent-magnet synchronous motors [40]. To further

alleviate the chattering in SMC, the combination between sliding mode control and extended state ob-

server is proposed. In [41], a missile guidance law has been presented by using an ESO. In [2, 42],

ESO-based SMC methods are proposed to deal with an attitude tracking control problem of rigid space-

craft. In [43], SMC and disturbance observer are applied to systems with mismatched uncertainties.

Yang et al. [44] developed a continuous nonsingular terminal sliding mode controller for systems with

mismatched disturbances. In [45], dynamic SMC and higher-order mismatched disturbance observer are

merged to designed a robust controller for motion control systems. Various disturbance observer designs

for permanent-magnet synchronous motor (PMSM) drives are proposed in [46]. However, these control

schemes study the first-order SMC design which usually provides lower performance when compared with

HOSMC.

In this paper, the finite time attitude tracking control for a rigid spacecraft is examined by combing a

nonsingular sliding mode control with an ESO. The ESO is designed to estimate the total disturbance.

To the best knowledge of the author, there are no application of the ESO-based SMC technique to the



Pukdeboon C Sci China Inf Sci January 2019 Vol. 62 012206:3

solution for attitude tracking of spacecraft without unwinding. Then, both adequately small observation

error and stabilization of the closed-loop system are analyzed in finite time.

The main contributions of this paper are:

(1) The main feature of this controller is that it avoids the use of the first and second time derivatives

of the sliding variables. These time derivatives are required in the standard TOSMC design. This is

very significant because the use of time derivatives often induces the noise introduced in the controller.

Moreover, the proposed control scheme is designed based on continuous TOSMC, so it is a very effective

control method to deal with the chattering problem.

(2) A new structure of TOSMC is introduced in this paper. The main limitation of the exist TOSMC

schemes is that the fractional power terms must be selected such that the closed-loop system is in a

homogeneous form. Then, the homogeneous approach is used to prove the finite time stability. Unlike

these TOSMC methods, the fractional power terms used in our proposed control approach can be se-

lected freely. In this paper, an appropriate Lyapunov function that has state variables with an unknown

fractional power is used to prove the finite-time stability of the non-homogeneous closed-loop system.

The paper is organized as follows. Section 2 describes spacecraft attitude dynamics and kinematics

given by [47,48]. The problem formulation is also provided. The proposed SMC scheme with a nonsingular

sliding surface for a spacecraft attitude control system is designed in Section 3. In Section 4, a new ESO

is established such that the observer error dynamics converge to a bounded region containing the origin

in finite time. In Section 5, simulation results are presented to show the performance of the proposed

control method. In Section 6, we present the conclusion.

2 Nonlinear model and problem formulation

2.1 Spacecraft attitude dynamics and kinematics

The unit quaternion is widely used to represent the attitude kinematics of rigid spacecraft owing to its

non-trigonometric expression and non-singular computations [49]. The attitude control system of a rigid

spacecraft consists of kinematic and dynamic equations which can be modeled as [48]

q̇ =
1

2
(q4I3 + q×)ω, (1)

q̇4 = −1

2
qTω, (2)

Jω̇ = −ω×Jω + u+ d, (3)

where Q̄ = [qT q4]
T ∈ R

3 × R is the unit quaternion vector consisting of the vector part q ∈ R
3 and the

scalar part q4. They are subject to the constraint qTq + q24 = 1. J ∈ R
3×3 denotes the symmetric inertia

matrix of the spacecraft, ω ∈ R
3 is the angular velocity of the spacecraft, u ∈ R

3 represents the control

vector, and d ∈ R
3 are external unknown disturbances. I3 is the 3× 3 identity matrix, and for any vector

a ∈ R
3, a skew-symmetric matrix a× is defined by

a× =









0 −a3 a2

a3 0 −a1
−a2 a1 0









.

2.2 Relative attitude error dynamics and kinematics

Now the kinematic equation (1) is considered. Let the desired attitude of the spacecraft be Qd =

[qTd q4d]
T ∈ R

3 × R where qd ∈ R
3, q4d ∈ R, and ωd be the desired angular velocity. Then, the desired

attitude motion is generated by

q̇d =
1

2
(q4dI3 + q×d )ωd, (4)
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q̇4d = −1

2
qTd ωd. (5)

The quaternion errorQe = [qTe q4e]
T ∈ R

3×R represents the relative attitude error from the body-fixed

reference frame to the desired reference frame. Using the quaternion multiplication law, the quaternion

error [49] is obtained as

Qe =

[

q4dq − q4qd − q×d q

q4q4d + qTqd

]

(6)

satisfying the constraint

QT
eQe = (qTq + q24)(q

T
d qd + q24d) = 1. (7)

As a result, the relative attitude error can be expressed as [42]

q̇e =
1

2
T (Qe)ωe,

q̇4e = −1

2
qTe ωe, (8)

where T (Qe) = q×e + q4eI3.

Define the angular velocity error as ωe = ω − Cωd, where C denotes the rotation matrix given by

C = (q24e − 2qTe qe)I3 + 2qeq
T
e − 2q4eq

×
e . Note that ‖C‖ = 1 and Ċ = −ω×

e C. The first time derivative of

ωe is

ω̇e = ω̇ + ω×
e Cωd − Cω̇d. (9)

Substituting (9) into (3), the dynamic equation of the error rate can be written as

Jω̇e = −(ωe + ωr)
×J(ωe + ωr) + u+ d+ J(ω×

e Cωd − Cω̇d)

= −ω×Jω + J(ω×
e Cωd − Cω̇d) + u+ d. (10)

To consider the inertia uncertainties of the spacecraft system, Assumption 1 is required.

Assumption 1. The inertia matrix in (3) can be described as J = J0 + ∆J where J0 is the known

nonsingular constant matrix and ∆J denotes the uncertain inertia matrix.

Letting ωr = Cωd and substituting J = J0 +∆J into (10), the spacecraft attitude dynamics (10) can

be rewritten as

J0ω̇e = −ω×J0ω − J0ω̇r + u+ d̃, (11)

where ω̇r = Cω̇d − ω×
e Cωd and d̃ = d−∆Jω̇ − ω×∆Jω.

Before describing the controller design in later sections, Assumption 2 is needed.

Assumption 2. Assume that the total uncertainty vector d̃ ∈ C2 and satisfies ‖ ¨̃d‖ 6 ψ̄, where ψ̄ is a

positive constant.

Remark 1. The unknown external disturbance includes environmental disturbance, solar radiation

and magnetic effects. These factors are all bounded and continuous in practice. The desired angular

velocity and its first time derivative are assumed to be bounded and differentiable. Moreover, the control

inputs are restricted with maximum torques produced by generating devices, so the state variables are

normally bounded and differentiable. Therefore, it is reasonable to suppose that the total disturbance

and its higher order are bounded as given in Assumption 2. The boundedness condition is a common

requirement in many existing spacecraft attitude control results [50–52].

2.3 Problem statement

In this paper, we assume that the quaternion and angular velocity measurements are always available.

Also, the desired angular velocity ωd and its first time derivative ω̇d are bounded. The main control

objective is to developed an ESO-based TOSMC approach such that the attitude and angular velocity

errors converge to a small neighborhood about zero in finite time. This can be expressed as

lim
t→T

(qe(t), ωe(t)) ∈ Ωc, (12)

where T is a finite time and Ωc denotes a small region containing the origin.
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3 Unwinding finite-time attitude control via TOSMC

The main purpose of this section is to present a TOSMC controller design to solve the finite-time attitude

tracking control problem. Using Lyapunov theory analysis, the proposed controller ensures that attitude

tracking and angular velocity errors converge to a desired region in finite time.

Now, we define the auxiliary variable as

z = ωe +Ksign(q4e)qe, (13)

where K > 0 is a diagonal matrix. The first time derivative of z can be obtained as

ż = −J−1
0 ω×J0ω − ω̇r + J−1

0 u+ J−1
0 d̃+

1

2
Ksign(q4e)T (Qe)ωe. (14)

Now, we define the sliding surface as

si = zi +

∫ t

0

φdτ, (15)

where φ is defined as

φi = c1i|zi|1+
1

γ sign(zi) + c2ie
λ|zi|zi + c3i|zi|1−

1

γ sign(zi), (16)

where γ > 1, c1i, c2i and c3i, i = 1, 2, 3 are positive constants satisfying 4c1ic3i > c22i. In (16), e is the

Euler number and λ is a positive constant. Therefore, the dynamics of the associate sliding mode can be

obtained as

żi = −c1i|zi|1+
1

γ sign(zi)− c2ie
λ|zi|zi − c3i|zi|1−

1

γ sign(zi), (i = 1, 2, 3). (17)

We now show that the states zi = 0 (i = 1, 2, 3) of the dynamics (17) converge to zero in finite time.

Theorem 1. The zero solution zi = 0 (i = 1, 2, 3), of the sliding mode dynamics (17) is globally

fixed-time stable and the settling time is given by

T 6
2γ

√

4c1ic3i − c22i

(

π

2
− arctan

(

c2i
√

4c1ic3i − c22i

))

. (18)

Proof. The Lyapunov function candidate is chosen as

V1 = |zi|. (19)

Its first time derivative is

V̇1 = sign(zi)żi

= sign(zi)
(

−c1i|zi|1+
1

γ sign(zi)− c2ie
λ|zi|zi − c3i|zi|1−

1

γ sign(zi)
)

= −c1i|zi|1+
1

γ − c2ie
λ|zi|zi − c3i|zi|1−

1

γ . (20)

For α > 0, one has e(α|zi|) > e0 = 1 and it follows that

V̇1 6 −c1i|zi|1+
1

γ − c2izi − c3i|zi|1−
1

γ

6 −c1iV
1+ 1

γ

1 − c2iV1 − c3iV
1− 1

γ

1 . (21)

It follows that

dt 6
−dV1

c1iV
1+ 1

γ

1 + c2iV1 + c3iV
1− 1

γ

1

6
−dV

1

γ

1

V
1

γ
−1

1 (c1iV
1+ 1

γ

1 + c2iV1 + c3iV
1− 1

γ

1 )
. (22)
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Let ̟ = V
1

γ

1 , and then d̟ = 1
γ
V

1− 1

γ

1 dV1. Thus, Eq. (22) becomes

dt 6
−γd̟

c1i̟2 + c2i̟ + c3i

6
−γd̟

c1i

(

(̟ + c2i
2c1i

)2 +
(

√
4c1ic3i−c2

2i

2c1i

)2) . (23)

Taking the integral of both sides from 0 to T and letting V1(T ), one obtains

T 6
2γ

√

4c1ic3i − c22i



arctan





2c1iV
1

γ

1 (0) + c2i
√

4c1ic3i − c22i



− arctan

(

c2i
√

4c1ic3i − c22i

)



. (24)

Obviously, T is bounded by a constant defined by (20). By the concept of fixed-time stability, it can

conclude that zi = 0 (i = 1, 2, 3) are fixed-time stabilized. This completes the proof.

We now consider the spacecraft systems (8) and (11) in the presence of the disturbance d̃(t). The

proposed control law is designed as

u(t) = ueq(t) + us(t), (25)

where

ueq = ω×J0ω + J0ω̇r − J0Ksign(q4e)(q4eI3 + q×e )ωe − C1sign
1+ 1

γ (s)− C2sign
1− 1

γ (s) (26)

with γ ∈ (0, 1) and

us(t) = −J0β1signρ(s)− J0β2

∫ t

0

signρ(s(τ))dτ − J0β3

∫ t

0

∫ τ

0

sign2ρ−1(s(υ))dυdτ (27)

with ρ ∈ (0.5, 1). In (26) and (27) for α ∈ (0, 1), the function signα(s) is defined as

signα(s) =









|s1|αsign(s1)
|s2|αsign(s2)
|s3|αsign(s3)









.

Next, the convergence of the system state errors to the origin is analyzed in Theorem 2.

Theorem 2. Consider the spacecraft system in the presence of the disturbance d̃(t). If the proposed

controller is defined by (25), then the sliding surface s(t) can be stabilized to a neighborhood of zero in

finite time.

Proof. Differentiating (14) with respect to time and then premultiplying the results by J0, one can

obtain

J0ṡ(t) = −ω×J0ω − J0ω̇r +
1

2
J0Ksign(q4e)T (Qe)ωe + C1sign

1+ 1

γ (s) + C2sign
1− 1

γ (s) + u+ d̃. (28)

Substituting the control law (25) into (28), one gains

ṡ = −β1signρ(s)− β2

∫ t

0

signρ(s(τ))dτ − β3

∫ t

0

∫ τ

0

sign2ρ−1(s(υ))dυdτ. (29)

Let

φ1 = −β2
∫ t

0

signρ(s(τ))dτ + d̃(t)− β3

∫ t

0

∫ τ

0

sign2ρ−1(s(υ))dυdτ, (30)

and

φ2 = −β3
∫ t

0

sign2ρ−1(s(τ))dτ +
˙̃
d(t). (31)
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Setting z1 = s, z2 = φ1, z3 = φ2 and ψ(t) = ¨̃
d(t), then (29) can be rewritten as in the scalar form

(i = 1, 2, 3) as

ż1i = −β1i|z1i|ρsign(z1i) + z2i,

ż2i = −β2i|z1i|ρsign(z1i) + z3i, (32)

ż3i = −β3i|z1i|2ρ−1sign(z1i) + ψ(t).

Next, it requires to ensure that the states z1i, z2i and z3i (i = 1, 2, 3) converge to the neighborhood of

zero in finite time. The Lyapunov function is selected as

V2(t) = ϑTPϑ, (33)

where ϑ = [|z1i|ρsign(z1i) z2i z3i]T and

P =











β1i

ρ
+ β2

2i + β2
3i −β2i −β3i

−β2i 2 0

−β3i 0 2











. (34)

Note that V2 satisfies

λmin(P )‖ϑ‖2 6 V2 6 λmax(P )‖ϑ‖2, (35)

and λmin(P ) and λmax(P ) are the minimum and maximum singular values of the matrix P .

The first time derivative of ϑ(t) is obtained as

ϑ̇(t) =









ρ|z1i|ρ−1 (z2i − β1isign
ρ(z1i))

z3i − β2isign
ρ(z1i)

−β3isign2ρ−1(z1i) + ψ(t)









= Aϑ+Bψ(t), (36)

where

A =









−ραβ1i −ρα 0

−β2i 0 1

−αβ3i 0 0









and B =









0

0

1









, (37)

where α = |z1i|ρ−1 > 0. The characteristic equation of the matrix A is obtained as

G(s̃) = s̃3 + ραβ1is̃
2 + ραβ2is̃+ ρα2β3i. (38)

If there exist β1i, β2i, β3i > 0 and z1i 6= 0, then G(s̃) is Hurwitz which implies that the matrix A is

stable. The time derivative of V2(ϑ(t)) is

V̇2(t) = ϑ̇TPϑ+ ϑTP ϑ̇

= (Aϑ+Bψ(t))T Pϑ+ ϑTP (Aϑ+Bψ(t))

= ϑT
(

ATP + PA
)

ϑ+ 2ψ̄B̂Tϑ, (39)

where B̂T = BTP = [−β3i 0 2] and ψ̄ = max(|ψi(t)|), i = 1, 2, 3. Since A is a Hurwitz matrix, there is a

positive definite matrix Q such that

ATP + PA = −Q. (40)

Considering ‖ϑ‖2 = |z1i|+ z22i + z23i, it follows that

‖ϑ‖ > |z1i|
1

2 . (41)

Using (40) and (41), the inequality is obtained as

V̇2(t) = −ϑTQϑ+ 2ψ̄B̂Tϑ
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6 −λmin(Q)‖ϑ‖2 + 2ψ̄‖B̂‖‖ϑ‖

= −
(

λmin(Q)‖ϑ‖ − 2ψ̄‖B̂‖
)

‖ϑ‖. (42)

The matrix A can be expressed as

−A = A1A2, (43)

where

A1 =









ρα 0 0

0 1 0

0 0 α









and A2 =









β1i −1 0

β2i 0 −1

β3i 0 0









. (44)

It follows that

λmin(A1)λmin(A2) 6 λmin(A1A2) = λmin(−A). (45)

Since A is a diagonal matrix and ρα < α, there exists

λmin(A1) =



















1, |z1i| <
(

1

ρ

)
1

ρ−1

,

ρα, |z1i| >
(

1

ρ

)
1

ρ−1

.

If |z1i| > ( 1
ρ
)

1

ρ−1 then ‖ϑ‖ > ( 1
ρ
)

ρ

ρ−1 . One can have

λmin(Q) > 2ραλmin(A2)λmin(P ). (46)

Considering (42) and (46), one has

δ1 = λmin(Q)‖ϑ‖ − 2‖B̂‖ψ̄
> 2αρλmin(A2)λmin(P )|z1i|ρ − 2‖B̂‖ψ̄
= 2ρ|z1i|ρ−1λmin(A2)λmin(P )|z1i|ρ − 2‖B̂‖ψ̄

> 2ρ

(

1

ρ

)
2ρ−1

ρ−1

λmin(A2)λmin(P )− 2‖B̂‖ψ̄. (47)

With ρ ∈ (0.5, 1), there exists a constant φ such that

2ρ

(

1

ρ

)
2ρ−1

ρ−1

> φ. (48)

Letting δ1m = φλmin(A2)λmin(P )− 2‖B̂‖ψ̄ > 0 and choosing the suitable parameters β1i, β2i and β3i
such that φλmin(A2)λmin(P ) > 2‖B̂‖ψ̄, one obtains

V̇2(t) 6 − δ1m
√

λmax(P )
V

1

2

2 = −Λ1V
1

2

2 , (49)

where Λ1 = δ1m√
λmax(P )

. Based on concepts of finite-time stability given by [14], ‖ϑ‖ converges to the

region ‖ϑ‖ 6 ( 1
ρ
)

ρ

ρ−1 in finite time ts1 defined as

ts1 6
2

Λ1
V

1

2

2 (ϑ(t)) 6
2

Λ1
V

1

2

2 (ϑ(t0)). (50)

If ‖ϑ‖ < ( 1
ρ
)

ρ

ρ−1 then |z1i| < ( 1
ρ
)

1

ρ−1 . Therefore, there is

λmin(Q) > 2λmin(A2)λmin(P ). (51)
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According to (42) and (51), one obtains

δ2 = λmin(Q)‖ϑ‖ − 2‖B̂‖ψ̄
> 2λmin(A2)λmin(P )‖ϑ‖ − 2‖B̂‖ψ̄. (52)

If
(

1

ρ

)
ρ

ρ−1

> ‖ϑ‖ > ‖B̂‖ψ̄
λmin(A2)λmin(P )

= Ψ (53)

is satisfied, then there exists

δ2 > 2λmin(A2)λmin(P )Ψ− 2‖B̂‖ψ̄ = 0. (54)

It follows that

V̇2(t) 6 − δ2
√

λmax(P )
V

1

2

2 (ϑ(t)) = −Λ2V
1

2

2 (ϑ(t)), (55)

where Λ2 = δ2√
λmax(P )

. Then, one obtains

ts2 6
2

Λ2
V

1

2

2 (ϑ(t)) 6
2

Λ2
V

1

2

2 (ϑ(ts1)). (56)

Therefore, ‖ϑ‖ is decreased and converges to the region

‖ϑ‖ 6
‖B̂‖ψ̄

λmin(A2)λmin(P )
(57)

in finite time ts = ts1 + ts2.

Obviously, if the suitable parameters β1i, β2i and β3i are chosen such that λmin(A2)λmin(P ) is suffi-

ciently large, then ‖ϑ‖ is limited to sufficiently small in finite time. This implies that si = z1i (i = 1, 2, 3)

converge to a neighborhood of zero in finite time. The proof is completed.

4 Nonlinear disturbance observer

In this section, a nonlinear disturbance observer is designed to estimate the total disturbance d̃. In

practical engineering, the specific information of the total disturbance is difficult to obtain owing to the

complicate structure of disturbance. However, it is reasonable to assume that d̃, ˙̃
d and ¨̃

d are bounded.

4.1 Extended state observer

In a general way, the system (14) can be written as

ẋ = F + J−1
0 u+G, (58)

where x = z, F = −J−1
0 ω×J0ω − ω̇r +

1
2Ksign(q4e)T (Qe)ωe and G = J−1

0 d̃.

We can rewrite (58) with extended states as

ẋ1 = F (x1) + J−1
0 u+ x2,

ẋ2 = x3,

ẋ3 = h(t), (59)

where h(t) is the second time derivatives of the total disturbance G. To approximate the compounded

disturbance of the system (58), the proposed extended state observer is designed as

Ż1 = Z2 + F (x1) + J−1
0 u− λ1sign

κ(Z1 − x1),

Ż2 = Z3 − λ2sign
κ(Z1 − x1),

Ż3 = −λ3sign2κ−1(Z1 − x1), (60)

where κ ∈ (0.5, 1), Z1, Z2 and Z3 are the estimates of x1, G and Ġ, respectively. The convergence proof

for the proposed ESO is given in Theorem 3.
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Theorem 3. Considering the proposed ESO (60) and Assumption 2, there exist observer parameters

λ1i, λ2i and λ2i, i = 1, 2, 3 such that the observer error states converge to a small region containing the

origin in finite time.

Proof. Let e1 = Z1 − x1, e2 = Z2 − x2 and e3 = Z3 − x3. From the system (59) and the designed ESO

(60), the corresponding observer error dynamics can be written in the scalar form (i = 1, 2, 3) as

ė1i = e2i − λ1i|e1i|κsign(e1i),
ė2i = e3i − λ2i|e1i|κsign(e1i),
ė3i = −λ3i|e1i|2κ−1sign(e1i) + h(t). (61)

Evidently, the closed-loop system (61) is the same form of the system (32) presented in Theorem 2.

Thus, the stability proof can be analyzed by following the similar process in Theorem 2. This completes

the proof.

Thus, the proposed ESO-based TOSMC is given by

u = ueq + us − J0Z2. (62)

One can conclude that if the inertia uncertainties ∆J and external disturbance d(t) are twice differen-

tiable. The total disturbance G can be compensated by the proposed ESO.

Remark 2. Normally, existing ESO results are based on the algorithms presented in [39–41]. These

ESO schemes did not use SMC concepts. In this paper, to improve the robust performance, the new

structure of ESO is introduced by employing TOSMC technique. Compared to those ESO results, our

proposed ESO is more robust against noise that may occur in the observed process.

4.2 Attitude control with input saturation

In practical application, input saturation must be considered because the torques applied to the spacecraft

system cannot be larger than the maximum torques generated by the actuators.

Consider the rigid spacecraft system with actuator constraints

J0ω̇e = −ω×J0ω − J0ω̇r + sat(u) + d̃, (63)

where sat(u) = [sat(u1) sat(u2) sat(u3)]
T is the saturated torque produced by the actuators (or thrusters).

The saturation function sat(ui), i = 1, 2, 3 is of the form

sat(ui) = sign(ui)min(umax,i, |ui|), (64)

where umax,i and umin,i, i = 1, 2, 3 are the maximum and minimum output torques. This saturated torque

can be expressed as

sat(u) = u+ δu, (65)

where δui is given by

δui =











umax,i − ui, ui > umax,i,

0, umin,i 6 ui 6 umax,i,

umin,i − ui, ui < umin,i.

(66)

Substituting (65) into (63), we obtains

J0ω̇e = −ω×J0ω − J0ω̇r + u+ δu+ d̃. (67)

Considering the dynamic equation (11), let the total disturbance d̃ be defined as

d̃ = d−∆Jω̇ − ω×∆Jω + δu. (68)

Then the stability of the closed-loop system can be analyzed by following the same steps presented in

Theorem 2.
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Remark 3. For a given practical system, the term δu cannot be too large. If this term is too big, it

means that the actuator cannot generate sufficiently large control torques to make system stable [53].

According to the controllability of a practical system, it is reasonable that ‖δu‖ is always bounded by a

constant.

5 Simulations

Numerical simulations have been conducted to demonstrate the performance of the proposed ESO-based

TOSMC scheme and the fast terminal sliding mode control (FTSMC) law in [20]. Consider the spacecraft

system with the nominal inertia matrix

J =









20 1.2 0.9

1.2 17 1.4

0.9 1.4 15









kg ·m2, (69)

and the uncertain inertia

∆J = diag (sin(0.1t), 2 sin(0.2t), 3 sin(0.3t)) kg ·m2. (70)

Suppose that attitude control problem is considered with the periodic disturbances provided by

d(t) = 0.1 [sin(0.1t) sin(0.2t) sin(0.3t)]. (71)

The desired angular velocity is assumed to be

ωd(t) = 0.05

[

sin

(

πt

100

)

sin

(

2πt

100

)

sin

(

3πt

100

)]

rad/s. (72)

Numerical simulations are performed by using the initial quaternion and angular velocities chosen as

Q(0) = [−0.2 0.4 0.7 − 0.5568]T and ω(0) = [−0.04 − 0.12 0.05]T rad/s. Also, the initial desired

quaternion is selected as Qd(0) = [0 0 0 − 1]T. The limitation of output torques are umax,i = 2.5 and

umim,i = −2.5 N-m, i = 1, 2, 3.

For the FTSMC in [20], the attitude tracking motion is considered with the focus on the following

parameters: k1 = 1.5, k2 = 0.1, γ = 0.8, α = 0.7, β = 0.1, λ = 0.0005 and η = 0.00001. On the other

hand, the control parameters of the ESO-based TOSMC are selected as K = 0.8I3, β1 = 5I3, β2 = 3I3,

β3 = 0.2I3, ρ = 0.75, λ = 1.0, c1i = 0.2, c2i = 0.1 and c3i = 0.2, i = 1, 2, 3. For the proposed observer

(60), the parameters are chosen as κ = 0.8, λ1i = 5, λ2i = 7 and λ3i = 1, i = 1, 2, 3. It should be noted

that all control parameters for the ESO-based TOSMC method must be chosen such that the condition

φλmin(A2)λmin(P ) > 2‖B̂‖ψ̄ and the simulation results are satisfied. In other words, control parameters

are reassigned until the condition and satisfied simulation results are achieved.

From Figures 1(a)–(c), one can see that the proposed ESO-based TOSMC scheme achieves faster

stabilization of attitude tracking errors to zero. As shown in Figure 1(d) when the ESO-based TOSMC is

applied, the scalar quaternion converges to q4e = −1 quicker than one of the FTSMC method. Both the

FTSMC in [20] and proposed controller avoid the occurrence of unwinding phenomenon. Figures 2(a)–(c)

show that the proposed controller is able to drive angular velocity tracking errors to zero with faster

convergence rate than the FTSMC in [20]. From Figures 3(a)–(c), it can be seen that the sliding variables

under the FTSMC in [20] and proposed controller approach the sliding manifold si = 0 (i = 1, 2, 3) in

finite time.

As shown in Figures 4(a)–(c), control signals obtained by the ESO-based TOSMC scheme have less

variation when compared with the FTSMC [20]. As shown in Figures 5(a)–(c), the disturbances estimated

by the proposed ESO can track the true values in finite time. In the final steady state, the tracking errors

of FTSMC are ‖qe‖ 6 2.81 × 10−5 and ‖ωe‖ 6 2.93 × 10−5 and ‖s‖ 6 3.54 × 10−5 with sampling time

h = 0.005. On the other hand, the steady state tracking accuracy attained by the ESO-based TOSMC
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Figure 1 Attitude tracking error responses. The time history of (a) q1e, (b) q2e, (c) q3e, (d) q4e.
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Figure 2 Angular velocity tracking error responses. The time history of (a) ω1e, (b) ω2e, (c) ω3e.
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Figure 3 Sliding variables. The time history of (a) s1, (b) s2, (c) s3.
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Figure 4 Control torque responses. The time history of (a) u1, (b) u2, (c) u3.
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Figure 5 Estimated disturbance vector. The time history of (a) d̂1, (b) d̂2, (c) d̂3.

scheme is listed as ‖qe‖ 6 5.56 × 10−7, ‖ωe‖ 6 6.86 × 10−7, and ‖s‖ 6 9.3 × 10−7 with sampling time

h = 0.005.

Evidently, the proposed control method achieves less variation of control signals and higher accuracy

than the existing attitude controller. These simulation results verify the superiority of the designed

controller for solving the attitude tracking control problem of a rigid spacecraft.

6 Conclusion

The ESO-based TOSMC scheme has been proposed for the attitude tracking control problem of a rigid

spacecraft with inertia uncertainties, external disturbances and saturation input. First, a finite-time

controller is designed based on TOSMC with nonsingular sliding surface to achieve precise accurate

tracking responses and robust performance. This controller not only makes the attitude errors converge to

the region containing the origin in finite time but also prevent the unwinding phenomenon. Then, a finite-

time extended stated observer is constructed to estimate total disturbances of the system. The ESO-based

TOSMC technique yields improved disturbance rejection and precise attitude tracking. The Lyapunov

stability theory is employed to prove that the overall closed-loop system is finite-time stable. Numerical

simulations on attitude control of a spacecraft model have been conducted to verify the effectiveness of

the proposed controller.
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