
SCIENCE CHINA
Information Sciences

January 2019, Vol. 62 012204:1–012204:15

https://doi.org/10.1007/s11432-017-9302-9

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

. RESEARCH PAPER .

Basic theory and stability analysis for neutral

stochastic functional differential equations

with pure jumps

Mengling LI1, Feiqi DENG1* & Xuerong MAO2

1Systems Engineering Institute, South China University of Technology, Guangzhou 510640, China;
2Department of Statistics and Modelling Science, University of Strathclyde, Glasgow G1 1XH, UK

Received 7 August 2017/Revised 7 October 2017/Accepted 6 November 2017/Published online 16 October 2018

Abstract This paper investigates the existence and uniqueness of solutions to neutral stochastic functional

differential equations with pure jumps (NSFDEwPJs). The boundedness and almost sure exponential stability

are also considered. In general, the classical existence and uniqueness theorem of solutions can be obtained

under a local Lipschitz condition and linear growth condition. However, there are many equations that do

not obey the linear growth condition. Therefore, our first aim is to establish new theorems where the linear

growth condition is no longer required whereas the upper bound for the diffusion operator will play a leading

role. Moreover, the pth moment boundedness and almost sure exponential stability are also obtained under

some loose conditions. Finally, we present two examples to illustrate the effectiveness of our results.
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1 Introduction

As is well known, many real systems are affected by stochastic factors. Thus, it is necessary to consider

stochastic systems. Of course, there is extensive literature in this area, such as [1–3]. Delayed systems

are suited to describing such systems that not only depend on the present states, but also on the past

states. In this paper, we study a class of time delay systems depending on past and present values that

involve derivatives with delays as well as the function itself. Such systems historically have been referred

to as neutral systems. Moreover, with the development of the stochastic analysis and the requirements of

applications, Poisson jumps have been considered by many researchers [4,5]. Moreover, there are practical

applications for Poisson jumps, such as financial markets [6]. In this paper, we consider the neutral

stochastic functional differential equations containing Poisson jumps, which are complex equations. Thus,

various stochastic analysis tools are employed to analyze our problems.

Our paper is motivated by [7], where the existence and uniqueness of the solutions to neutral stochas-

tic functional differential equations with pure jumps (NSFDEwPJs) whose coefficients satisfy the local

Lipschitz condition and the linear growth condition was studied. However, the coefficients of many im-

portant equations, such as stochastic delay Lotka–Volterra equations [8], do not satisfy the linear growth
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condition. Thus, if we could find a wider condition to replace the linear growth condition, many problems

would be solved. Fortunately, we finally find a more general test for NSFDEwPJs that covers a wide class

of highly nonlinear NSFDEwPJs. Here, we refer to [9–12], which also allow that there are high-order

terms consisting in their parameters. However, the above studies only focus on the stochastic models

containing the continuous Brown motion. To the best of our knowledge, the stochastic models containing

Poisson jump have not been investigated previously.

Based on the above discussion, our first result mainly utilizes the upper bounds of the diffusion operator

to replace the linear growth condition. A unique global solution exists even if the coefficients of the

equation are high order. In addition, in Section 4, we utilize the modified conditions to deal with the

asymptotic moment estimation, which is also one of our main results. Moreover, if there exists a trivial

solution for an equation, the trivial solution will be almost surely exponentially stable. Finally, we present

two examples to illustrate the effectiveness of our theory.

2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notation. Let (Ω,F , {Ft}t>0,P)

be a complete probability space with a filtration {Ft}t>0 satisfying the usual conditions (i.e., it is right

continuous and F0 contains all P-null sets). If A is a vector or matrix, AT denotes its transpose and its

trace norm is denoted by |A| =
√

trace(ATA). Let τ > 0. D([−τ, 0];Rn) denotes the family of all right-

continuous functions with left limits φ from [−τ, 0] to R
n equipped with the norm ‖φ‖ = sup−τ6s60 |φ(s)|.

Here Db
F0

denotes the family of all almost surely bounded, F0-measurable, D([−τ, 0];Rn)-valued random

variables ξ = {ξ(θ) : −τ 6 θ 6 0}. We use E(x) to denote the mathematical expectation of a random

variable x. Let p > 2. Lp
F0

([−τ, 0];Rn) denotes the family of all F0-measurable, D([−τ, 0];Rn)-valued

random variables φ = {φ(θ) : −τ 6 θ 6 0} such that E sup−τ6θ60 |φ(θ)|p < ∞. C([−τ,∞) × R
n;R+)

denotes the family of continuously nonnegative functions from [−τ,∞) × R
n to R

+. For a, b ∈ R, a ∨ b
(respectively, a ∧ b) means the maximum (respectively, minimum) of a and b.

Let (U,B(U)) be a measurable space and p̄(t)(t > 0) be the jump at time t. Then, for each Borel set

A ∈ B(U − {0}), the Poisson counting measure Np̄ is defined by

Np̄(t, A) :=
∑

0<s6t

IA(p̄(s)) = #{0 < s 6 t, p̄(s) ∈ A},

where I(·) denotes the indicative function and # records the number of jumps from 0 to t. According

to [13], if we fix t and A, Np̄(t, A) is a random variable. However, if we fix ω ∈ Ω and t > 0, Np̄(t, ·)(ω)
is a measure. Therefore, if we fix A with a Lévy measure π(A), {Np̄(t, A)}t>0 is a Poisson process with

intensity π(A). Moreover, we have

P (Np̄(t, A) = n) =
exp(−π(A)t)(π(A)t)n

n!
,

and the measure Ñp̄ satisfying Ñp̄(t, A) = Np̄(t, A)− π(A)t is a martingale measure.

Let x(t) be an R
n-valued stochastic process on t ∈ [−τ,∞) and let xt = {x(t + θ) : −τ 6 θ 6 0} for

t > 0 be regarded as a D([−τ, 0];Rn)-valued stochastic process. Consider the following NSFDEwPJs:

d[x(t)−D(xt)] = f(t, xt)dt+

∫

U

h(u, xt)Np̄(dt, du), (1)

where f : R+×D([−τ, 0];Rn) → R
n and h : U×D([−τ, 0];Rn) → R

n are both Borel-measurable functions.

Assume that the initial data is given by

x0 = ξ = {ξ(t) : −τ 6 t 6 0} ∈ Lp
F0

([−τ, 0];Rn).

In addition, Ñp̄(dt, du) = Np̄(dt, du)− π(du)dt is the compensated Poisson random measure.
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The classical existence and uniqueness theorem requires the coefficients f, h to satisfy the local Lipschitz

condition and the linear growth condition and the neutral term D satisfies the contractility condition

(see [7]). In this paper, we retain the contractility condition and the local Lipschitz condition, but replace

the linear growth condition by a more general condition. To state our condition, we need to introduce

the well-known Lyapunov function and Itô formula.

Let C1,2(R+ × R
n;R+) denote the family of all nonnegative functions V (t, x) on R

+ × R
n that are

continuously twice differentiable in x and once in t; moreover, define

Vx(t, x) =

(

∂V (t, x)

∂x1
, . . . ,

∂V (t, x)

∂xn

)

,

Vxx(t, x) =

(

∂2V (t, x)

∂xk∂xl

)

n×n

,

Vt(t, x) =
∂V (t, x)

∂t
.

Then, we can define an operator LV : R+ × D([−τ, 0];Rn) → R for the function V (t, x) ∈ C1,2(R+ ×
R

n;R+) by

LV (t, φ) =Vt(t, φ(0)−D(φ)) + Vx(t, φ(0)−D(φ))f(t, φ)

+

∫

U

[V (t, φ(0)−D(φ) + h(u, φ))− V (t, φ(0)−D(φ))

− Vx(t, φ(0)−D(φ))h(u, φ)]π(du),

where t ∈ R
+, φ ∈ D([−τ, 0],Rn).

Based on this, we can cite the Itô formula

dV (t, x(t) −D(xt)) =LV (t, xt)dt+

∫

U

[V (t, x(t) −D(xt) + h(u, xt))

− V (t, x(t) −D(xt))]Ñp̄(dt, du). (2)

We need to make the following assumptions.

Assumption 1 (Local Lipschitz condition). For arbitrary ϕ, ψ ∈ D([−τ, 0];Rn) and ‖ϕ‖ ∨ ‖ψ‖ 6 n,

there is a positive constant kn such that

|f(ϕ, t)− f(ψ, t)|2 ∨
∫

U

|h(ϕ, u)− h(ψ, u)|2π(du) 6 kn‖ϕ− ψ‖2,

where n ∈ N+, t ∈ R
+, u ∈ U . Moreover,

L = sup{|f(t, 0)| ∨ |h(u, 0)| : t > 0, u ∈ U} <∞.

Assumption 2. There are functions V ∈ C1,2([−τ,∞) × R
n;R+), H ∈ C([−τ,∞) × R

n;R+), and a

nondecreasing function K(t) ∈ C(R+;R+), three positive constants p(> 2), c1, c2, and two probability

measures µ(·) and ν(·) that are real-valued functions defined on [−τ, 0] with bounded variation such that

c1|x|p 6 V (t, x) 6 c2|x|p,

for any x ∈ R
n and

LV (t, φ) 6 K(t)[1 + V (t, φ(0)) +

∫ 0

−τ

V (t+ θ, φ(θ))dµ(θ)]

−H(t, φ(0)) +

∫ 0

−τ

H(t+ θ, φ(θ))dν(θ), (3)

where φ ∈ D([−τ, 0];Rn).
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Assumption 3 (Contractility condition). D(0) = 0 and there is a constant k0 ∈ [0, 1) such that

E|D(φ)|p 6 k
p
0 sup
−τ6θ60

E|φ(θ)|p,

for all φ ∈ Lp
F0

([−τ, 0];Rn).

In Section 3, the proof of our new existence and uniqueness theorem requires that there exists a maximal

local solution for (1) at first. Thus, we should introduce the definition of a maximal local solution and

provide a lemma about the existence of the maximal local solution.

Definition 1 (Maximal local solution). Let σ∞ be a stopping time, and there exists a finite time T

such that 0 6 σ∞ 6 T almost surely. An Ft-adapted, R
n-valued, cadlag process {x(t) : −τ 6 t 6 σ∞} (a

cadlag process refers to a stochastic process that is right continuous and has left limit) is called a local

solution to (1) with initial data x(t) = ξ(t) on t ∈ [−τ, 0] if for any stopping time σk 6 σ∞ and any

t ∈ [0, T ],

x(t ∧ σk)−D(xt∧σk
) = ξ(0)−D(ξ) +

∫ t∧σk

0

f(xs, s)ds+

∫ t∧σk

0

∫

U

h(xs, u)Np̄(ds, du)

holds with probability 1. Moreover, if

lim
t→σ∞

sup |x(t)| = ∞, whenever σ∞ < T,

{x(t)} and σ∞ are called a maximal local solution of (1) and the explosion time, respectively.

Lemma 1. If Assumptions 1 and 3 hold, for any given initial data ξ(t) on [−τ, 0], there exists a unique

maximal local solution to (1).

Proof. From Assumption 3, we have |D(φ)| 6 k0‖φ‖ almost surely. There is a sufficiently large number

k0 ∈ R
+ such that ‖ξ‖ 6 k0. In addition, for any positive integer k > k0, define

z[k] =
|z| ∧ k
|z| z, 0[k] = 0

for any z ∈ R
n. Then we can define the following truncation functions:

fk(t, y) = f(t, y[k]), hk(u, y) = h(u, y[k])

for y ∈ R
n. Next, we consider the following equation:

d[xk(t)−D(xkt )] = fk(t, x
k
t )dt+

∫

U

hk(u, x
k
t )Np̄(dt, du) (4)

on t ∈ [0, T ] with initial data xk(t) = ξ(t) on t ∈ [−τ, 0]. Then, we have

|fk(t, φ)|2 6 2|fk(t, φ) − f(0, t)|2 + 2L 6 L1(1 + ‖φ‖2),

where L1 = max{2kk, 2L}. Similarly,

∫

U

|hk(u, φ)|2 6 L1(1 + ‖φ‖2).

By Assumption 1, Eq. (4) satisfies the global Lipschitz condition and the linear growth condition.

Therefore, according to the literature [7], there is a unique global solution xk(t) to (4). Then, we define

the stopping time

σk = inf{t ∈ [0, T ] : |xk(t)| > k}
for k > k0 and where we set inf ∅ = ∞ throughout our paper (as usual ∅ denotes the empty set).

Moreover, we can see that

xk(t) = xk+1(t), − τ 6 t 6 σk, (5)
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which means that {σk} is a nondecreasing sequence and then let limk→∞ σk = σ∞ almost surely. Con-

sequently, we can define {x(t) : −τ 6 t < σ∞} with the initial data x(t) = ξ(t) on t ∈ [−τ, 0] and
define

x(t) = xk(t), t ∈ [σk−1, σk), k > 1, (6)

where σ0 = 0. From (4)–(6), we can obtain

x(t ∧ σk)−D(xt∧σk
) = ξ(0)−D(ξ) +

∫ t∧σk

0

f(xs, s)ds+

∫ t∧σk

0

∫

U

h(xs, u)Np̄(ds, du)

for any t ∈ [0, T ]. Moreover, if σ∞ < T ,

lim
t→σ∞

sup |x(t)| > lim
k→∞

sup |x(σk)| = lim
k→∞

sup |xk(σk)| = ∞.

Hence, {x(t) : −τ 6 t < σ∞} is a maximal local solution to (1) according to Definition 1.

3 The existence and uniqueness theorem

In this section, we prove that there is a unique global solution to (1) if the coefficients of (1) satisfy the

contractility condition, local Lipschitz condition, and Assumption 3.

Theorem 1. Let Assumptions 1–3 hold, then for a given initial value x0 = ξ ∈ D([−τ, 0];Rn), there

exists a unique global solution x(t; t0, ξ) to (1). Moreover, the solution has the property that

EV (t, x(t)) 6 (0.5 + c3)e
2c2

c1(1−k0)p

∫
t

0
K(ρ+τ)dρ

,

where

c3 =
c2k0

1− k0
E‖ξ‖p + c2M

c1(1− k0)p
,

M = E

(

V (0, x(0)−D(x0)) +K(τ)

∫ 0

−τ

V (ρ, x(ρ))dρ+

∫ 0

−τ

H(ρ, x(ρ))dρ

)

.

Proof. By Lemma 1, there is a unique maximal local solution x(t) on [−τ, σ∞), where σ∞ is called the

explosion time. Let k0 ∈ R
+ be sufficiently large for ‖ξ‖ 6 k0. For any integer k > k0, define

τk = inf{t ∈ [0, σ∞) : |x(t)| > k},

where inf ∅ = ∞. Obviously, the sequence {τk} is increasing. Thus, we have a limit τ∞ = limk→∞ τk,

whence τ∞ 6 σ∞. If we can show that τ∞ = ∞, we will have σ∞ = ∞. Therefore, we only need to focus

on proving τ∞ = ∞.

For any s > 0, by the Itô formula and Assumption 2, we have

V (s, x(s)−D(xs)) = V (0, x(0)−D(x0)) +

∫ s

0

LV (ρ, xρ)dρ

+

∫ s

0

∫

U

[V (ρ, x(ρ)−D(xρ) + h(xρ, u))− V (ρ, x(ρ)−D(xρ))]Ñp̄(dρ, du)

6 V (0, x(0)−D(x0)) +

∫ s

0

K(ρ)[1 + V (ρ, x(ρ))]dρ

+

∫ s

0

∫ 0

−τ

K(ρ)V (ρ+ θ, x(ρ+ θ))dµ(θ)dρ

−
∫ s

0

H(ρ, x(ρ))dρ +

∫ s

0

∫ 0

−τ

H(ρ+ θ, x(ρ+ θ))dν(θ)dρ

+

∫ s

0

∫

U

[V (ρ, x(ρ)−D(xρ) + h(xρ, u))− V (ρ, x(ρ)−D(xρ))]Ñp(dρ, du). (7)
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At the same time, by the Fubini theorem and the fact that K(t) is a nondecreasing function, we thus

obtain
∫ s

0

K(ρ)

∫ 0

−τ

V (ρ+ θ, x(ρ+ θ))dµ(θ)dρ =

∫ 0

−τ

dµ(θ)

∫ s

0

K(ρ)V (ρ+ θ, x(ρ+ θ))dρ

6

∫ s

−τ

K(ρ+ τ)V (ρ, x(ρ))dρ

6 K(τ)

∫ 0

−τ

V (ρ, x(ρ))dρ

+

∫ s

0

K(ρ+ τ)V (ρ, x(ρ))dρ. (8)

Similarly, we have

∫ s

0

∫ 0

−τ

H(ρ+ θ, x(ρ + θ))dν(θ)dρ 6

∫ s

−τ

H(ρ, x(ρ))dρ. (9)

Substituting (8) and (9) into (7) yields

EV (s ∧ τk, x(s ∧ τk)−D(xs∧τk)) 6M + E

∫ s∧τk

0

K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ, (10)

whereM = E(V (0, x(0)−D(x0))+K(τ)
∫ 0

−τ
V (ρ, x(ρ))dρ+

∫ 0

−τ
H(ρ, x(ρ))dρ). Because c1|x|p 6 V (x, t) 6

c2|x|p, by inequality (10), we have

c1E|x(s ∧ τk)−D(xs∧τk)|p 6M + E

∫ s∧τk

0

K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ. (11)

Applying elementary inequality |a + b|p 6 (1 − ε)1−p|a|p + ε1−p|b|p for any a, b ∈ R, ε ∈ (0, 1) and

setting ε = k0, we have

|x(s)|p 6 (1− k0)
1−p|x(s) −D(xs)|p + k

1−p
0 |D(xs)|p,

which implies

E|x(s ∧ τk)|p 6 (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k

1−p
0 E|D(xs∧τk)|p

6 (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0 sup

−τ6θ60
E|x(s ∧ τk + θ)|p

6 (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0E‖ξ‖p + k0 sup

06u6s∧τk

E|x(u)|p

6 (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0E‖ξ‖p + k0 sup

06u6s

E|x(u ∧ τk)|p. (12)

Then for any t > s, we have

sup
06s6t

E|x(s ∧ τk)|p 6 (1− k0)
1−p sup

06s6t

E|x(s ∧ τk)−D(xs∧τk)|p

+ k0E‖ξ‖p + k0 sup
06s6t

E|x(s ∧ τk)|p,

which implies

sup
06s6t

E|x(s ∧ τk)|p 6
k0

1− k0
E‖ξ‖p + 1

(1− k0)p
sup

06s6t

E|x(s ∧ τk)−D(xs∧τk)|p. (13)

By (11) and (13), we have

sup
06s6t

E|x(s ∧ τk)|p 6
k0

1− k0
E‖ξ‖p + M

c1(1− k0)p
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+
1

c1(1 − k0)p
sup

06s6t

E

∫ s∧τk

0

K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ. (14)

Applying c1|x|p 6 V (x, t) 6 c2|x|p once again and by inequality (14), we can obtain

sup
06s6t

EV (s ∧ τk, x(s ∧ τk)) 6 c3 +
c2

c1(1− k0)p
sup

06s6t

E

∫ s∧τk

0

K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ

6 c3 +
c2

c1(1− k0)p
sup

06s6t

E

∫ s

0

K(ρ+ τ)[1 + 2V (ρ ∧ τk, x(ρ ∧ τk))]dρ, (15)

where c3 = c2k0

1−k0
E‖ξ‖p + c2M

c1(1−k0)p
.

Inequality (15) implies that

sup
06s6t

EV (x(s ∧ τk), s ∧ τk) 6 c3 +
2c2

c1(1 − k0)p

∫ t

0

K(ρ+ τ)

[

0.5 + sup
06β6ρ

EV (β ∧ τk, x(β ∧ τk))
]

dρ.

By the Gronwall inequality [14], we therefore obtain

0.5 + EV (x(t ∧ τk), t ∧ τk) 6 (0.5 + c3)e
2c2

c1(1−k0)p

∫
t

0
K(ρ+τ)dρ

.

Consequently,

c1k
pP (τk 6 t) 6 c1E(|x(τk)|pI{τk 6 t}) 6 c1E|x(t ∧ τk)|p

6 EV (x(t ∧ τk), t ∧ τk) 6 (0.5 + c3)e
2c2

c1(1−k0)p

∫
t

0
K(ρ+τ)dρ

. (16)

Letting k → ∞ in the above inequality, we can obtain limk→∞ P (τk 6 t) = 0. Because t is arbitrary,

we have P (τk <∞) = 0. Hence, τ∞ = ∞ almost surely and by inequality (16), we have

EV (t, x(t)) 6 (0.5 + c3)e
2c2

c1(1−k0)p

∫
t

0
K(ρ+τ)dρ

.

The proof is complete.

4 Boundedness and almost sure exponential stability for solution

In this section, with the notation introduced in the previous section, we discuss the boundedness of the

pth moment of the solution. Moreover, if x(t) = 0 is the trivial solution, we can also obtain that the

trivial solution is almost surely exponentially stable under certain conditions.

Definition 2 (Almost sure exponential stability). If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t > 0, u ∈ U .

Then the trivial solution of (1) is said to be almost surely exponentially stable if the following formula

lim sup
t→∞

1

t
log |x(t; 0, ξ)| 6 0 almost surely

can be satisfied for all ξ ∈ R
n.

Theorem 2. Let Assumptions 1–3 hold except (3) which is replaced by

LV (t, φ) 6− α1V (t, φ(0)) + α2

∫ 0

−τ

V (t+ θ, φ(θ))dµ(θ)

−H(t, φ(0)) + α3

∫ 0

−τ

H(t+ θ, φ(θ))dν(θ), (17)

where α1 > α2 > 0 and α3 ∈ (0, 1). Then for any given initial data ξ, there is a unique global solution

x(t) to (1) that has the property that

E|x(t)|p 6

C(1−k0)
1−p

c1
+ k0E‖ξ‖p

1− k0
(18)
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for any t > 0, where C = V (0, x(0) − D(x0)) + α2e
ετE

∫ 0

−τ
V (s, x(s))ds + α3e

ετ
∫ 0

−τ
H(s, x(s))ds while

ε = ε1 ∧ ε2. In addition, ε1 and ε2 satisfy

α1 − α2e
ε1τ = 0, 1− α3e

ε2τ = 0,

respectively. Moreover,
∫ ∞

0

H(t, x(t))dt 6
M

1− α3
, (19)

where M = E(V (0, x(0)−D(x0)) + α2

∫ 0

−τ
V (s, x(s))ds + α3

∫ 0

−τ
H(s, x(s))ds).

Proof. First, we can observe that Eq. (17) is stronger than (3). Thus, we can obtain that there is a

unique global solution x(t) to (1) by Theorem 1. By the Itô formula and inequality (17), we can compute

E(eε(t∧τk)V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))− V (0, x(0)−D(x0))

= E

∫ t∧τk

0

εeεsV (s, x(s) −D(xs))ds+ E

∫ t∧τk

0

eεsLV (s, xs)ds

6 E

∫ t∧τk

0

εeεsV (s, x(s) −D(xs))ds− α1E

∫ t∧τk

0

eεsV (s, x(s))ds

+ α2E

∫ t∧τk

0

∫ 0

−τ

eεsV (s+ θ, x(s + θ))dµ(θ)ds − E

∫ t∧τk

0

eεsH(s, x(s))ds

+ α3E

∫ t∧τk

0

∫ 0

−τ

eεsH(s+ θ, x(s + θ))dν(θ)ds

6 E

∫ t∧τk

0

εeεsV (s, x(s) −D(xs))ds− α1E

∫ t∧τk

0

eεsV (s, x(s))ds

+ α2E

∫ t∧τk

−τ

eε(s+τ)V (s, x(s))ds− E

∫ t∧τk

0

eεsH(s, x(s))ds

+ α3E

∫ t∧τk

−τ

eε(s+τ)H(s, x(s))ds (20)

for any t > 0 and τk is as defined in Theorem 1. We take ε = ε1 ∧ ε2, and ε1, ε2 satisfy

α1 − α2e
ε1τ = 0, 1− α3e

ε2τ = 0,

respectively. Then the inequality (20) leads to

E(eε(t∧τk))V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))

6 V (0, x(0)−D(x0)) + α2e
ετE

∫ 0

−τ

V (s, x(s))ds + α3e
ετE

∫ 0

−τ

H(s, x(s))

+ εE

∫ t∧τk

0

eεsV (s, x(s)−D(xs))ds = C + εE

∫ t∧τk

0

eεsV (s, x(s) −D(xs))ds, (21)

where C = V (0, x(0)−D(x0)) + α2e
ετE

∫ 0

−τ
V (s, x(s))ds + α3e

ετE
∫ 0

−τ
H(s, x(s))ds.

By inequality (21) and the Fubini theorem [15], we can obtain

E(eε(t∧τk))V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))

6 C + εE

∫ t

0

eε(s∧τk)V (s ∧ τk, x(s ∧ τk)−D(xs∧τk))ds

= C + ε

∫ t

0

E(eε(s∧τk)V (s ∧ τk, x(s ∧ τk)−D(xs∧τk)))ds.

Hence, using the Gronwall inequality [14], we derive that

E(eε(t∧τk)V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))) 6 Ceεt.
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Letting k → ∞, we obtain that

E(V (t, x(t)−D(xt))) 6 C. (22)

By Assumption 2 and inequality (22), we know that

c1E|x(t)−D(xt)|p 6 E(V (t, x(t) −D(xt))) 6 C. (23)

Recall the fundamental inequality: |a+b|p 6 (1−k)1−p|a|p+k1−p|b|p for any a, b ∈ R, p > 1, k ∈ (0, 1).

Then,

|x(t)−D(xt)|p >
|x(t)|p − k

1−p
0 |D(xt)|p

(1− k0)1−p
. (24)

Substituting (24) into (23) yields

E|x(t)|p 6
C(1− k0)

1−p

c1
+ k

1−p
0 E|D(xt)|p. (25)

By Assumption 3 and inequality (25), we therefore obtain

sup
06s6t

E|x(s)|p 6
C(1 − k0)

1−p

c1
+ k

1−p
0 sup

06s6t

E|D(xs)|p

6
C(1 − k0)

1−p

c1
+ k0 sup

06s6t

sup
−τ6θ60

E|x(s+ θ)|p

6
C(1 − k0)

1−p

c1
+ k0 sup

−τ6s6t

E|x(s)|p

6
C(1 − k0)

1−p

c1
+ k0

(

E‖ξ‖p + sup
06s6t

E|x(s)|p
)

for any t > 0, which yields

E|x(t)|p 6 sup
06s6t

E|x(s)|p 6

C(1−k0)
1−p

c1
+ k0E‖ξ‖p

1− k0

and the assertion (18) follows.

To prove the other assertion (16), we apply Itô formula to V (t, x) directly:

EV (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) = EV (0, x(0)−D(x0)) + E

∫ t∧τk

0

LV (s, xs)ds

6 EV (0, x(0)−D(x0))− α1E

∫ t∧τk

0

V (s, x(s))ds

+ α2E

∫ t∧τk

0

∫ 0

−τ

V (s+ θ, x(s + θ))dµ(θ)ds

+ α3E

∫ t∧τk

0

∫ 0

−τ

H(s+ θ, x(s+ θ))dν(θ)ds

− E

∫ t∧τk

0

H(s, x(s))ds. (26)

By Fubini theorem [15], we can compute

∫ t∧τk

0

∫ 0

−τ

V (s+ θ, x(s+ θ))dµ(θ)ds =

∫ 0

−τ

∫ t∧τk

0

V (s+ θ, x(s+ θ))dsdµ(θ)

6

∫ 0

−τ

(
∫ t∧τk

0

V (s, x(s))ds

)

dµ(θ)

6

∫ t∧τk

−τ

V (s, x(s))ds. (27)
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Similarly,
∫ t∧τk

0

∫ 0

−τ

H(s+ θ, x(s+ θ))dµ(θ)ds 6

∫ t∧τk

−τ

H(s, x(s))ds. (28)

Substituting (27) and (28) into (26), we obtain

EV (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) 6M + (α2 − α1)E

∫ t∧τk

0

V (s, x(s))ds

+ (α3 − 1)E

∫ t∧τk

0

H(s, x(s))ds

6M + (α3 − 1)E

∫ t∧τk

0

H(s, x(s))ds, (29)

where M = E(V (0, x(0)−D(x0)) + α2

∫ 0

−τ
V (s, x(s))ds + α3

∫ 0

−τ
H(s, x(s))ds). Because α3 ∈ (0, 1) and

V (t, x) > c1|x|p > 0, inequality (29) yields the assertion (19).

Remark 1. Compared with the other known results, such as [9,11,12], the right-hand side of inequality

(16) is missing a positive constant. The reason is that our system is a neutral system, so we cannot

obtain the same result if there is a positive constant on the right-hand side of inequality (16) with our

current technique. That is, we can roughly explain that the positive constant can “compensate” for the

neutral system.

We can obtain the upper bound of the pth moment of the solution from Theorem 2. Next, we prove

that if there is a trivial solution, the boundedness of the pth moment of the solution implies that the

trivial solution is almost surely exponentially stable.

Theorem 3. Let all the assumptions of Theorem 2 hold and f(t, 0) = h(u, 0) = D(0) ≡ 0 for t > 0,

u ∈ U . Then the trivial solution to equation (1) is almost surely exponentially stable. That is, the unique

global solution x(t) has the property that

lim sup
t→∞

1

t
log |x(t; 0, ξ)| 6 0 almost surely

for all ξ ∈ R
n.

Proof. If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t > 0, u ∈ U , the equation admits a trivial solution x(t; 0) ≡ 0

corresponding to the initial data x0 = 0.

For simplify, we set M ,
C(1−k0)1−p

c1
+k0E‖ξ‖p

1−k0
. Next, for each n = 1, 2, . . . and any ǫ > 0, it follows from

the Markov inequality [16] and Theorem 2 that

P{ω : |x(t, ω)|p > eǫn} 6
E|x(t)|p

eǫn
6Me−ǫn

for any t ∈ [n− 1, n].

Because
∑∞

n=0Me−ǫn <∞, by the Borel–Cantelli lemma [14], there is an integer n0 such that

|x(t)|p 6 eǫn almost surely

for all n > n0 and t ∈ [n− 1, n]. Then, we can obtain

1

t
log |x(t)| = 1

pt
log |x(t)|p 6

ǫn

p(n− 1)
. (30)

Letting n→ ∞ on both sides of inequality (26),

lim sup
t→∞

1

t
log |x(t)| 6 ǫ

p
,

which is the required assertion because ǫ > 0 is arbitrary.
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Theorem 4. Let Assumptions 1–3 hold except for (3), which is replaced by

LV (t, φ) 6α− α1V (t, φ(0)) + α2

∫ 0

−τ

V (t+ θ, φ(θ))dµ(θ)

−H(t, φ(0)) + α3

∫ 0

−τ

H(t+ θ, φ(θ))dν(θ) − α4V (t, φ(0)−D(φ)), (31)

where α is a constant, and α1 > α2 > 0, α3 ∈ (0, 1), α4 > 0. Then for any given initial data ξ, there is a

unique global solution x(t) to (1) that has the property that

lim sup
t→∞

E|x(t)|p 6
α

εc1(1 − k0)p
+
k0E‖ξ‖p
1− k0

(32)

for any t > 0.

Here ξ is the initial data and ε = ε1 ∧ ε2 ∧ α4. In addition, ε1, ε2 satisfy

α1 − α2e
ε1τ = 0, 1− α3e

ε2τ = 0, (33)

respectively.

If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t > 0, u ∈ U , the trivial solution to (1) is almost surely exponentially

stable. That is, the unique global solution x(t) has the property that

lim sup
t→∞

1

t
log |x(t; 0, ξ)| 6 0 almost surely (34)

for all ξ ∈ R
n.

Proof. Similar to the proof of Theorem 2, we obtain

E(eε(t∧τk)V (t ∧ τk, x(t ∧ τk)−D(xt∧τk)))− EV (0, x(0)−D(x0))

= E

∫ t∧τk

0

εeεsV (s, x(s)−D(xs))ds+ E

∫ t∧τk

0

eεsLV (s, xs)ds

6 E

∫ t∧τk

0

eεsV (s, x(s))ds + E

∫ t∧τk

0

αeεsds

− α1E

∫ t∧τk

0

eεsV (s, x(s))ds + α2E

∫ t∧τk

0

∫ 0

−τ

eεsV (s+ θ, x(s+ θ))dµ(θ)ds

− E

∫ t∧τk

0

eεsH(s, x(s))ds+ α3E

∫ t∧τk

0

∫ 0

−τ

eεsH(s+ θ, x(s + θ))dν(θ)ds

− α4E

∫ t∧τk

0

eεsV (s, x(s)−D(xs))ds

6 α2e
ετE

∫ 0

−τ

V (s, x(s))ds + α3e
ετE

∫ 0

−τ

H(s, x(s))ds

+ α
eεt

ε
− (α4 − ε)E

∫ t∧τk

0

eεsV (s, x(s) −D(xs))ds

− (α1 − α2e
ετ )E

∫ t∧τk

0

eεsV (s, x(s))ds − (1− α3e
ετ )E

∫ t∧τk

0

eεsH(s, x(s))ds

6 α2e
ετE

∫ 0

−τ

V (s, x(s))ds + α3e
ετE

∫ 0

−τ

H(s, x(s))ds + α
eεt

ε
.

Taking k → ∞ on both sides, we obtain

E(eεtV (t, x(t)−D(xt)) 6 R+
αeεt

ε
, (35)
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where R = EV (0, x(0) − D(x0)) + eετE
∫ 0

−τ
V (s, x(s))ds + α3e

ετE
∫ 0

−τ
H(s, x(s))ds is a constant. By

inequality (35), we can compute

EV (t, x(t) −D(xt)) 6 Re−εt +
α

ε
. (36)

Using the following two inequalities, Assumption 3 and inequality (35),

c1|x(t) −D(xt)|p 6 V (t, x(t) −D(xt)),

|x(t)|p 6 (1 − k0)
1−p|x(t)−D(xt)|p + k

1−p
0 |D(xt)|p,

we can derive

E|x(t)|p 6
(1− k0)

1−p

c1
EV (t, x(t)−D(xt)) + k

1−p
0 E|D(xt)|p

6
(1− k0)

1−p

c1

(

Re−εt +
α

ε

)

+ k0 sup
−τ6θ60

E|x(t+ θ)|p

for any t > 0. Then

sup
06s6t

E|x(s)|p 6
(1− k0)

1−p

c1

(

Re−εt +
α

ε

)

+ k0 sup
06s6t

sup
−τ6θ60

E|x(s+ θ)|p

6
(1− k0)

1−p

c1

(

Re−εt +
α

ε

)

+ k0 sup
−τ6s6t

E|x(s)|p

6
(1− k0)

1−p

c1

(

Re−εt +
α

ε

)

+ k0E‖ξ‖p + k0 sup
06s6t

E|x(s)|p, (37)

and inequality (37) implies

E|x(t)|p 6 sup
06s6t

E|x(s)|p 6
Re−εt + α

ε

c1(1 − k0)p
+
k0E‖ξ‖p
1− k0

.

Consequently, we can obtain

lim sup
t→∞

E|x(t)|p 6
α

εc1(1− k0)p
+
k0E‖ξ‖p
1− k0

,

which is the assertion (31). The proof of the assertion (34) is similar to the proof of Theorem 3.

Remark 2. Note that the right-hand side of inequality (31) contains a constant α. That is because the

right-hand side of the inequality also includes another negative term −α4V (t, φ(0) − D(φ)), which can

“compensate” for the constant. Moreover, if α 6 0, we can obtain that the pth moment of the solution

is stable.

5 Examples

Example 1. Consider the following equation

d

[

x(t)− 1

2

∫ 0

−1

x(t+ θ)dθ

]

=

(

−1

2
x3(t) + t

∫ 0

−1

x(t+ θ)dθ

)

dt+
√
t

∫ 0

−1

x(t+ θ)dθdN(t). (38)

In this example, we set τ = 1, U = {1}. Define

D(ϕ) =
1

2

∫ 0

−1

φ(θ)dθ,

f(t, ϕ) = −1

2
x3(t) + t

∫ 0

−1

ϕ(θ)dθ,

h(1, ϕ) =
√
t

∫ 0

−1

ϕ(θ)dθ.
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Choose V (t, x) = x2, by Itô formula and Hölder inequality [14], we can compute

LV (t, ϕ)

= 2

(

ϕ(0)− 1

2

∫ 0

−1

φ(θ)dθ

)(

−1

2
ϕ3(0) + t

∫ 0

−1

ϕ(θ)dθ

)

+

(

ϕ(0)− 1

2

∫ 0

−1

φ(θ)dθ +
√
t

∫ 0

−1

ϕ(θ)dθ

)2

−
(

ϕ(0)− 1

2

∫ 0

−1

φ(θ)dθ

)2

− 2
√
t

(

ϕ(0)− 1

2

∫ 0

−1

φ(θ)dθ

)
∫ 0

−1

ϕ(θ)dθ

=
1

2
t

(
∫ 0

−1

φ(θ)dθ

)2

+
1

4
φ3(0)

∫ 0

−1

φ(θ)dθ + 2tφ(0)

∫ 0

−1

φ(θ)dθ − φ4(0)

6
3

2
t

[

ϕ2(0) +

∫ 0

−1

ϕ2(θ)dθ

]

− 1

16
φ4(0) +

1

16

∫ 0

−1

ϕ4(θ)dθ.

Taking K(t) = 3
2 t,H(t, x) = 1

2x, we can conclude that Eq. (38) has a unique global solution for any

given initial data by Theorem 1.

Remark 3. Example 1 has checked the conclusion of Theorem 1. The following example mainly shows

the effectiveness of Theorem 2.

Example 2. Let us consider the equation

d

[

x(t)− 2

3

∫ 0

−1

x(t+ θ)dθ

]

= (−x(t)− x3(t))dt +
1

2

∫ 0

−1

x(t+ θ)dθdN(t). (39)

In this example, we set U = {1} and define

D(ϕ) =
2

3

∫ 0

−1

ϕ(θ)dθ,

F (t, ϕ) = −ϕ(0)− ϕ3(0),

h(1, ϕ) =
1

2

∫ 0

−1

ϕ(θ)dθ

for t > 0, ϕ ∈ D([−1, 0];R). Then the coefficients satisfy Assumption 1. If we choose p = 2, the Hölder

inequality [14] yields

E|D(ϕ)|2 =
4

9
E

∣

∣

∣

∣

∫ 0

−1

ϕ(θ)dθ

∣

∣

∣

∣

2

6
4

9
sup

−16θ60
E|ϕ(θ)|2,

which implies Assumption 3.

Define V (x) = |x|2 and employing Itô formula, Young inequality [17] and Hölder inequality [14], we

can compute

LV (t, ϕ) = 2

(

ϕ(0)− 2

3

∫ 0

−1

ϕ(θ)dθ

)

(−ϕ(0)− ϕ3(0))

+

(

ϕ(0)− 2

3

∫ 0

−1

ϕ(θ)dθ +
1

2

∫ 0

−1

ϕ(θ)dθ

)2

−
(

ϕ(0)− 2

3

∫ 0

−1

ϕ(θ)dθ

)2

−
(

ϕ(0)− 2

3

∫ 0

−1

ϕ(θ)dθ

)
∫ 0

−1

ϕ(θ)dθ

6 −4

3
|ϕ(0)|2 + 11

12

∣

∣

∣

∣

∫ 0

−1

ϕ(θ)dθ

∣

∣

∣

∣

2

− |ϕ(0)|4 + 1

3

∣

∣

∣

∣

∫ 0

−1

ϕ(θ)dθ

∣

∣

∣

∣

4

6 −4

3
ϕ2(0) +

11

12

∫ 0

−1

ϕ2(θ)dθ − ϕ4(0) +
1

3

∫ 0

−1

ϕ4(θ)dθ.

Applying Theorem 1, if we chooseH(t, x) = |x|4, we can obtain that there is a unique global solution for

any given initial data. The conditions in Theorem 2 are satisfied when we choose α1 = 4
3 , α2 = 11

12 , α3 = 1
3 .

Therefore, if we take initial data ξ(θ) = θ+1, −1 6 θ 6 0, we can compute C = 0.986 and E|x(t)|2 6 4.194.
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Figure 1 (Color online) Trajectory of state.

In particular, the trivial solution x(t) ≡ 0 of (39) is almost surely exponentially stable in theory.

Moreover, it can be seen from Figure 1 that the trivial solution is stable.

6 Conclusion

In this paper, the existence and uniqueness of the solution to the NSFDEwPJs under the local Lipschitz

condition and the Khasminskii-type condition has been solved. The linear growth condition was not

required, so we could deal with the problems that the coefficients of the equation are high order. Moreover,

we have obtained the boundedness of the pth moment of the solution. The almost surely exponential

stability has also been proved in this paper.
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13 Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press, 2009

14 Mao X R. Stochastic Differential Equations and Applications. 2nd ed. Cambridge: Woodhead Publishing, 2008

15 Meyer P A. Probability and Potentials. Waltham: Blaisdell, 1966
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