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Abstract For a continuous-time switched linear system, the spectral abscissa is defined as the worst-case

divergence rate under arbitrary switching, which is critical for characterizing the asymptotic performance

of the switched system. In this study, based on the generalized coordinate transformations approach, we

develop a computational scheme that iteratively produces sequences of minimums of matrix set µ1 measures,

where the limits of the sequences are upper bound estimates of the spectral abscissa. A simulation example

is presented to illustrate the effectiveness of the proposed scheme.
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1 Introduction

In this study, we focus on the continuous-time switched linear system given by

ẋ(t) = Aσ(t)x(t), x(t) ∈ R
n, (1)

where σ(t) is a switching signal that takes values from the index set {1, . . . , κ} and Ai ∈ R
n×n are real

constant matrices for i ∈ {1, . . . , κ}.

Interest in the study of switched systems has grown due to their success in various applications [1–3]

and their theoretical importance [4–6] (e.g., see [7–15], and the references therein).

A primary issue that affects switched systems is the guaranteed stability, i.e., asymptotic stability under

arbitrary switching. Remarkable progress has been made in planar switched linear systems where the

“most destabilizing” phase portrait could be constructed to provide verifiable stability criteria [16–18]. For

general switched linear systems of higher order, the common Lyapunov function method played a major

role in stability analysis [10,11,19]. As quadratic Lyapunov functions are not sufficient for characterizing

stability [20], larger candidate functional sets, for instance, the set of piecewise linear/quadratic functions

and/or the set of (sum-of-squares) polynomials, are identified for providing universal common Lyapunov
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functions [14,19], where effective search seems to be an intractable problem. To overcome the limitation of

the common Lyapunov function method, the multiple Lyapunov function approach was proposed [21,22],

which makes the search for a Lyapunov candidate easier and more flexible. However, a constructive and

tractable algorithm is still unavailable in the general case.

Inspired by the achievements in spectral radius analysis for discrete-time switched linear

systems [23, 24], some researchers have developed an algebraic approach for quantitatively character-

izing the asymptotic performance to substitute for the qualitative stability scheme. On the other hand,

for continuous-time switched linear systems, by introducing the notion of the spectral abscissa of matrix

sets, it was proved that the spectral abscissa is exactly the worst-case divergence rate, i.e., the top Lya-

punov exponent of the switched system [11]. It was established that, for any switched linear system (1),

a positive real number c and a non-negative integer k 6 n− 1 exist such that

‖x(t)‖ 6 c(1 + tk)e̺t‖x(0)‖

for any system solution x(·), where ̺ is the spectral abscissa of the matrix set {A1, . . . , Aκ} [25,26]. The

estimate is tight in the sense that

lim
t→∞

sup
‖x(t)‖

(1 + tk)e̺t‖x(0)‖
> 0, for almost all x(0) ∈ R

n,

where the superior is taken along all possible switching signals. Therefore, the spectral abscissa is

important for characterizing both the transient and the asymptotic performances of continuous-time

switched linear systems. It was proved that the spectral abscissa is equal to the least common (matrix)

measure of matrix set over all possible matrix measures [27,28]. This equity provides a powerful tool for

computing the spectral abscissa based on the matrix set measure scheme. In addition to this scheme,

several computational algorithms have been proposed to approximate the least common measure of a

matrix set [29, 30]. In particular, as shown in Lemma 2, by using proper coordinate transformations,

the least common measure over all possible matrix measures can be approximated by the least common

µ1 measure of the transformed matrix set. In our previous study [30], we examined the case of square

transformations by decomposing a non-singular matrix into a multiplication of elementary matrices.

However, this idea cannot be extended to the case of non-square matrix transformations. For a class

of third-order switched linear systems, we also proposed an approach for approximating the spectral

abscissa based on 3 × 4 coordinate transformations [31]. In the present study, we extend this approach

to the case where the generalized transformation matrix is of dimensions n× (n+ 1). A key idea here is

that the transformation matrices are properly represented so we can make full use of the free parameters

in the augmented dimension in order to decrease the µ1 measure step by step. By performing the

transformations iteratively, we obtain sequences of minimums of µ1 measures that are convergent, where

the limits are upper bound estimates of the spectral abscissa.

2 Preliminaries

For a positive integer k, let k = {1, . . . , k}. Let In be the n × n identity matrix. Λ denotes the set of

non-trivial solutions of system (1).

Definition 1. For the switched linear system (1), the spectral abscissa is

̺(A) = lim sup
t→∞,x(·)∈Λ

ln ‖x(t)‖ − ln ‖x(0)‖

t
,

where A = {A1, . . . , Aκ}.

Note that the spectral abscissa in Definition 1 is also referred to as the top Lyapunov exponent or the

largest divergence rate in previous studies [26, 32–35].

Let λ(A) be the largest real part of the eigenvalues of matrices Ai, i = 1, . . . , κ. Clearly, λ(A) is a

lower bound of the spectral abscissa, i.e., λ(A) 6 ̺(A) [36].
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Definition 2 ([37]). For any vector norm v(·) in R
n, the induced matrix measure of A ∈ R

n×n is

µv(A) = lim sup
τ→0+,06=z∈Rn

v(z + τAz)− v(z)

τv(z)
.

It is well known that for a matrix A = (aij)n×n, the induced matrix measure of norm ℓ1, which denotes

the µ1(A) measure for simplicity, is the maximum of the column sum

µ1(A) = max
j∈n

ψj(A), (2)

where the j-th column sum is defined as

ψj(A) = ajj +

n
∑

i=1,i6=j

|aij |. (3)

The definition of a matrix measure can be extended to a set of matrices A = {A1, . . . , Aκ}, which is

defined as Definition 3.

Definition 3 ([11]). For any vector norm v(·) in R
n and a given set of matrices A = {A1, A2, . . . , Aκ},

the induced matrix set measure is defined as

µv(A) = max {µv(A1), . . . , µv(Aκ)}.

The least measure is defined as

µ∗(A) = inf
v∈V

µv(A),

where V is the set of vector norms.

For any norm v, we have the inequality

v(x(t)) 6 eµv(A)tv(x(0)), ∀ x(·) ∈ Λ, t > 0.

It follows that µv(A) is an upper bound of the spectral abscissa, i.e., µv(A) > ̺(A). Furthermore,

Lemma 1 establishes that the least matrix set measure is exactly the spectral abscissa.

Lemma 1 ([27, 28]). For any matrix set A, we have

µ∗(A) = ̺(A).

Lemma 2, which is an extension of Theorem 4.1 given by [38], indicates that the least measure can be

approximated at arbitrary precision by the µ1 measure of matrices obtained by generalized coordinate

transformations.

Lemma 2 ([30]). For any matrix set A and any ǫ > 0, a natural number r > n, matrix Tn×r of rank

n, and r × r matrices Hi exist such that

AiT = THi, i = 1, 2, . . . , κ, (4)

and

µ1(H1, . . . , Hκ) < µ∗(A) + ǫ.

Remark 1. As discussed by [38], Lemma 2 requires the identification of a polytope with n linear

constraints that approximates the level set {x : v(x) 6 ε}, where v is a norm that induces a measure near

the least measure and ε is a sufficiently small positive real number. Obviously, when the polytope has more

facets, i.e., r is large, the approximation could be more accurate. Therefore, the upper bound estimate

of the spectral abscissa obtained by generalized transformations here is sharper than that obtained by

square transformations.

Lemma 3 is a classic result of the matrix equation, which plays a very important role in this study.
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Lemma 3 ([39, 40]). The matrix equation

An×nYn×m = Yn×mPm×m (5)

with A ∈ R
n×n and Y ∈ R

n×m can be represented as

Gy = 0, (6)

where G = Im
⊗

A− PT
⊗

In, and y = [y11, . . . , yn1, . . . , y1m, . . . , ynm]T.

Remark 2. For a given matrix A ∈ R
n×n, let m = n+1, P = (pij)m×m and Y = (yij)n×m. According

to Lemma 3, for matrix equation (5), we can obtain a family of mn equations. For these equations, we

treat yij as constants and then determine whether numbers pij , i, j = 1, . . . ,m exist that satisfy each of

the equations simultaneously. We note that there are m2 unknowns but mn equations, so we have m free

independent parameters, which are denoted by pj , j = 1, . . . ,m, and these mn dependent unknowns pij
can then be expressed in terms of the remaining independent parameters pj , j = 1, . . . ,m. In particular,

the elements in the same column share the same independent parameter, i.e., pij are functions of y and

pj . p1, . . . , pm are free independent parameters that need to be optimized, so we write p = [p1, . . . , pm]T

and P = P (y, p).

Remark 3. Define A(j), j ∈ n as the j-th column vector of A ∈ R
n×n. Observe that Yn×m =

(Z1)n×n(Z2)n×m, n 6 m, where Z1 = (Y (1), . . . , Y (n)), and Z2 = (In, Z2(n + 1), . . . , Z2(m)). If Z1 is

invertible, it holds that AY = Y P is equivalent to Z−1
1 AZ1Z2 = Z2P . Therefore, the above coordinate

transformation can be treated as a composition of the square transformation AZ1 = Z1P̂ , as shown

in [30], and the generalized transformation P̂Z2 = Z2P ; otherwise, we suppose that rank(Z1) = n − 1.

We can first reduce the n×n system matrix to an (n−1)× (n−1) system matrix denoted by Ã and then

solve ÃỸ = Ỹ P̃ with Ỹ = (Z̃1)(n−1)×(n−1)(Z̃2)(n−1)×(m−1) and rank(Z̃1) = n− 1, which can be treated

as a combination of square and generalized transformations, as discussed above. Therefore, we focus on

the case where the transformation matrix is of the form Z2.

3 Calculation of the least µ1 measure

Next, we search for a proper generalized transformation matrix T ∈ R
n×(n+1) such that

AiT = TP ∗
i , i = 1, 2, . . . , κ,

where T = (In, z), z = [z1, . . . , zn]
T ∈ R

n, zi, i ∈ n are unknown scalars that need to be determined, and

we then examine the property of the least µ1 measure of the generalized transformed matrices P ∗
i . For

clarity, we focus on the switched systems with two subsystems, i.e., A = {A1, A2} with A1 = (aij)n×n,

A2 = (bij)n×n.

By Remark 2, we can verify that the matrices P ∗
1 and P ∗

2 are

P ∗
1 = P ∗

1 (z, p) and P ∗
2 = P ∗

2 (z, q),

where p = [p1, . . . , pn+1]
T ∈ R

n+1, q = [q1, . . . , qn+1]
T ∈ R

n+1, and pj and qj are free parameters of the

elements in the j-th column of matrices P ∗
1 (z, p) and P

∗
2 (z, q) for j ∈ n+ 1, respectively. Therefore, by

using (2), the problem of obtaining the least µ1 measure of the matrices P ∗
1 (z, p) and P ∗

2 (z, q) can be

mathematically described by

inf
T

max
j∈n+1

{ψj(P
∗
1 (z, p)), ψj(P

∗
2 (z, q))} (7)

s.t. A1T = TP ∗
1 (z, p),

A2T = TP ∗
2 (z, q).

Note that rank(T ) = n, so the largest real part of the eigenvalues of P ∗
1 (z, p) and P

∗
2 (z, q) is not less

than that of A1 and A2. Combining this with Theorem 2.11 in [41] indicates that

µ1(P
∗
1 (z, p), P

∗
2 (z, q)) > λ(A). (8)
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Hence, the optimal function value for problem (7) exists. An intrinsic difficulty when trying to solve

problem (7) is the fact that the function µ1(P
∗
1 (z, p), P

∗
2 (z, q)) is discontinuous and non-convex over the

free parameters pj , qj , j ∈ n+ 1. To address this problem, we propose an iterative scheme for calculating

the optimal value, as shown in Algorithm 1.

Algorithm 1 Iterative procedure for solving problem (7).

Initiation

Step 1. Find a pair (j♯, r♯) ∈ (n, 2), such that µ1(A1, A2) = ψj♯ (Ar♯). Let i := j♯ and ui := [0, . . . , 0]T ∈ R
n.

Recursion

Step 2. Set k := mod(i, n). If k = 0, then k := n. Set

bi(zi) := [0, . . . , zi, . . . , 0]
T ∈ R

n, (9)

where the k-th entry is zi and Ti(zi) := (In, ui + bi(zi)) ∈ Rn×(n+1).

Step 3. Solve the following problem

min
zi

max
j∈n+1

{ψj(P
i
1(zi, p)), ψj(P

i
2(zi, q))} (10)

s.t. A1Ti(zi) = Ti(zi)P
i
1(zi, p),

A2Ti(zi) = Ti(zi)P
i
2(zi, q)

and obtain zi = di.

Step 4. Update ui+1 := ui + bi(di), set i := i+ 1, and go to Step 2.

Remark 4. According to Step 1, the first transformation is performed on the j♯-th column, which

satisfies µ1(A1, A2) = maxr=1,2 ψj♯(Ar).

Remark 5. As discussed in Proposition 1, in some cases, the procedure could produce a repeated output

so we need to stop the procedure accordingly. Thus, the procedure is stopped in a finite number of steps;

otherwise, let di(kj) be di with k = j. Based on Proposition 1, we can verify that the sequence {hi}

obtained by Procedure 1 is convergent if the sequence {di(kj)} is convergent to 0 for each j ∈ {1, . . . , n}.

Therefore, in the simulation, for a given optimality tolerance, the procedure is stopped when |di(kj)| 6 ǫ,

j = 1, . . . , n, where ǫ is a sufficiently small positive constant.

The procedure is designed such that the minimum of the matrix set measure, i.e., the optimal value

for problem (10), is obtained at each iteration. In order to solve the critical problem (10) in Step 3, we

first state the following two results.

Lemma 4. Let ϕ(p1) = p1 +
∑

s |as + bsp1|+
∑

i |ci +
eip1

z1
|, where as, bs, ci, ei are given constants, z1

is a constant with unknown value, z1 6= 0, and p1 is a variable. The problem infp1∈R ϕ(p1) can be solved

by selecting p1 as non-differentiable points of ϕ(p1) or p1 = −∞.

Proof. It can be seen that ϕ(p1) is continuous with a finite number of non-differentiable points for

p1 ∈ R. All the non-differential points of ϕ(p1) are p1 = −as

bs
and p1 = − ciz1

ei
, denoted by wr. We

rearrange them in order such that w1 6 w2 6 · · · 6 wn1
. Then, the minimum value of the function ϕ(p1)

is obained in the intervals (−∞, w1] ∪ [w1, wn1
] ∪ [wn1

,+∞).

For any z1 that satisfies |z1| 6
∑

i |ei|

1−
∑

s |bs|
, it can be seen that ϕ(p1) is decreasing when p1 ∈ (−∞, w1],

and ϕ(p1) is increasing when p1 ∈ [wn1
,+∞). In particular, if 1+

∑

s |bs| sgn(as+ bsp1)+
∑

i
|ei|
|z1|

sgn(ci+
eip1

z1
) = 0, there exist wi0 < wi1 ∈ {wi}, or wi0 = −∞ and wi1 ∈ {wi}, or wi0 ∈ {wi} and wi1 = +∞,

such that ϕ(wi0 ) = ϕ(p1) = ϕ(wi1 ), p1 ∈ [wi0 , wi1 ]. By Fermat’s theorem, the set of extreme points of

ϕ(p1) is a subset of {w1, w2, . . . , wn1
} when p1 ∈ [w1, wn1

]. Therefore, we have

inf
p1∈R

ϕ(p1) = min {ϕ(w1), . . . , ϕ(wn1
)} .

In addition, for any z1 that satisfies |z1| >
∑

i |ei|

1−
∑

s |bs|
, it follows that ϕ(p1) is increasing when p1 ∈

(−∞, w1] ∪ [wn1
,+∞). In this case, we have

inf
p1∈R

ϕ(p1) = −∞.
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Therefore, we can obtain infp1∈R ϕ(p1) by selecting p1 = wi, i = 1, . . . , n1 or p1 = −∞.

Remark 6. We obtain a similar result for ϕ(p1) = p1 +
∑

s |as + bsp1|+
∑

i |cip1z1 + ei|.

For the general case where the j♯-th column of A with µ1(A) = ψj♯(A) has at least one nonzero off-

diagonal element, we first state a specific result, i.e., the first generalized transformation maintains the

least µ1 measure as unchanged and it corresponds to infinitely many optimal solutions.

Lemma 5. Suppose that A = (aij)n×n with µ1(A) = ψj♯(A), j♯ ∈ n and T (z1) = (In, bj♯(z1)) ∈

R
n×(n+1) with bj♯(z1) in (9). The following problem:

min
z1

µ1(P (z1, p)) s.t. AT (z1) = T (z1)P (z1, p) (11)

has infinitely many solutions, where p = [p1, . . . , pn+1]
T and pj are free parameters of the elements in the

j-th column of P (z1, p) for j ∈ n+ 1.

Proof. Obviously, µ1(P (0, p)) = µ1(A). If z1 6= 0, then according to Lemma 3, the expression of

the generalized transformed matrix, P (z1, p), can be obtained. If |z1| > 1, it can be verified that
∑n

s=2 |as,j♯z1| −
∑n

s=2 |as,j♯ | > 0 since at least one as,j♯ 6= 0, (s 6= j♯) exists. ψn+1(P (z1, p)) 6 ψj♯(A), so

this also implies that

|z1(aj♯,j♯ − pn+1)|+ pn+1 − aj♯,j♯ < 0,

which is simply impossible. Therefore, the feasible region is {z1 : |z1| 6 1}. From Lemma 4 and |z1| 6 1,

it follows that

inf
p1∈R

ψj(P (z1, p)) = ψj(A), j = 1, . . . , n.

By combining this with µ1(A) = ψj♯(A), we have

min
z1 6=0

µ1(P (z1, p)) = µ1(A).

Therefore, the problem has infinitely many solutions {z1 : |z1| 6 1}.

In the following, an iterative optimization procedure, presented as Algorithm 2, is proposed to solve

the problem

min
zi

max
j∈n+1

{ψj(P1(zi, p)), ψj(P2(zi, q))}, i ∈ N
+ (12)

s.t. A1Ti(zi) = Ti(zi)P1(zi, p),

A2Ti(zi) = Ti(zi)P2(zi, q),

where Ti(zi) = (In, c+ bi(zi)) with bi(zi) in (9), and c = [c1, . . . , cn]
T where cj are real constants, j ∈ n.

We note that γi(zi) is non-convex, so in Step 5, we cannot directly find the decreasing direction as

the searching direction. Each function ψj(P̃r(zi)), r ∈ 2, j ∈ n+ 1, j 6= i may have jumps, and thus the

maximum function γi(zi) may be discontinuous so we need to obtain all of its non-differentiable points.

Remark 7. The function γi(zi) in successive iterations is shown in Figure 1, where we assume that

n = 3, B1 = {2, 3} and B2 = {1, 2, 3}. It follows that B̄1 = {1, 4} and B̄2 = {4}. After identifying the free

parameters p1, p4, q4, problem (12) is transformed into minzi max{ψ1(P̃1(zi)), ψ4(P̃1(zi)), ψ4(P̃2(zi))}.

After Steps 2 and 3, we obtain the discontinuous point w and the initial point y0 because γi(y0) < γi(0),

as shown in Figure 1. According to Figure 1, ψ4(P̃1(y0)) = γi(y0), and we find the pair (j0, r0) = (4, 1)

in Step 4. After Step 5, we obtain the set W1 and y1 can then be found accordingly. r0 = 1, so we

have B̄1 = {1}, i.e., the function ψ4(P̃1(zi)) is not considered in the following iterations. The stopping

condition in Step 6 is not satisfied, and thus we loop to Step 4. As shown in Figure 1, we find the current

pair (j0, r0) = (4, 2) in Step 4 because γi(y1) = ψ4(P̃2(y1)). Similarly, according to Step 5, we obtain

y2. Hence, B̄2 = ∅, which combined with B̄1 = {1} implies that the procedure stops. Therefore, we can

find the optimal solution, ys0 = argminys∈{y0,y1,y2,w} γi(ys) = y2, and the corresponding optimal value,

γi(y2).
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Algorithm 2 Iterative procedure for solving problem (12).

Step 1. Set r := 1. Let B1 := {j : ψj(A1) < λ(A)} and B2 := {j : ψj(A2) < λ(A)}. Set B̄1 := n+ 1\B1 and

B̄2 := n+ 1\B2.

Step 2. Get

ψj(P̃1(zi)) := inf
pj
ψj(P1(zi, p)), j ∈ B̄1,

and

ψj(P̃2(zi)) := inf
qj
ψj(P2(zi, q)), j ∈ B̄2

for zi ∈ R. Let γi(zi) := maxs1∈B̄1,s2∈B̄2
{ψs1 (P̃1(zi)), ψs2 (P̃2(zi))}. Define the discontinuous points of γi(zi) as ws. Let

w := argminγi(ws).

Step 3. Set

B3 := {c|∃(j, l) ∈ (B̄l, 2), such that c is a nondifferentiable point of ψj(P̃l(zi)), and ψj(P̃l(c)) = γi(c)},

and

B4 := {c|∃l ∈ 2, such that ψ′
n+1(P̃l(c)) = 0, ψ′′

n+1(P̃l(c)) > 0, and ψn+1(P̃l(c)) = γi(c)}.

Let c0 := argminc∈B3∪B4
γi(c). If γi(0) < γi(c0), then set y0 := 0; otherwise, set y0 := c0.

Recursion

Step 4. Find a (j0, r0) ∈ (B̄l, 2), such that ψj0 (P̃r0(yr−1)) = γi(yr−1).

Step5. Obain the set

Wr := {v|∃(s, l) ∈ (B̄l, 2), (s, l) 6= (j0, r0), such that ψj0 (P̃r0 (v)) = ψs(P̃l(v)) = γi(v)}. (13)

Find yr := argminv∈Wr ψj0 (P̃r0 (v)) and obain the index, (j0, r0), of the function ψj0 (P̃r0(zi)). If r0 = 1, then set

B̄1 := B̄1\{j0}; otherwise, B̄2 := B̄2\{j0}.

Step 6. If there is only one element in B̄1 ∪ B̄2, set ys0 := argminys∈{y0,...,yr,w} γi(ys) and then STOP; otherwise, set

r := r + 1, and go to Step 4.

Figure 1 (Color online) The function γi(zi) in successive iterations.

Theorem 1. Algorithm 2 finds the optimal value, hi, and the corresponding optimal solution, di, to

problem (12) in a finite number of steps.

Proof. Similarly as discussed in (8), we have

min
zi

µ1(P1(zi, p), P2(zi, q)) > λ(A). (14)

Hence, each minimum of the matrix set measure, hi, i = 1, 2 . . ., satisfies hi > λ(A) > ψj(Al) for any

(j, l) ∈ (Bl, 2). Therefore, problem (12) is transformed into

min
zi

max
s1∈B̄1,s2∈B̄2

{ψs1(P1(zi, p)), ψs2(P2(zi, q))}. (15)
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As discussed in Lemma 4, we can identify the free parameters ps1 and qs2 , s1 ∈ B̄1, s2 ∈ B̄2 such

that the corresponding column sums ψs1(P1(zi, p)) and ψs2(P2(zi, q)) are minimized for any zi ∈ R,

respectively. Then, we have

ψs1(P̃1(zi)) = inf
ps1

ψs1(P1(zi, p)),

and

ψs2(P̃2(zi)) = inf
qs2

ψs2(P2(zi, q)).

We can verify that each function ψj(P̃l(zi)), (j, l) ∈ (B̄l, 2) may have discontinuous points on zi ∈ R.

Then, problem (15) is equivalent to

min
zi

max
s1∈B̄1,s2∈B̄2

{

ψs1(P̃1(zi)), ψs2(P̃2(zi))
}

. (16)

By checking the rules in Steps 4 and 5, we obtain yr, which satisfies (13). Next, the function ψj0(P̃r0(zi))

is not considered in subsequent iterations. Therefore, after a maximum of 2n+1 steps, only one function

remains, so we can obtain ys0 = argminys∈{y0,...,yr,w} γi(ys). Obviously, the points ỹs that satisfy γ
′
i(ỹs) =

0 and γ′′i (ỹs) > 0 can only be found in B4. The set of all the non-differentiable points of γi(zi) and the

points in B4, which are denoted by ỹl, is a subset of ∪rWr ∪ B3 ∪ B4 ∪ {wi}, which further implies that

γi(ys0) = minl γi(ỹl). The maximum function γi(zi) is lower semi-continuous on [minl ỹl,maxl ỹl] and

γi(wi) 6= ±∞, so the following equality holds true:

min
zi

γi(zi) = γi(ys0), zi ∈

[

min
l
ỹl,max

l
ỹl

]

.

In addition, it can be seen that γi(zi) is decreasing when zi ∈ (−∞,minl ỹl], while it is increasing when

zi ∈ [maxl ỹl,+∞). Therefore, we have ys0 = argminzi γi(zi), which completes the proof.

Remark 8. We note that for a given positive number i, the transformation matrix Ti(zi) in Algorithm 1

is determined according to Step 2. Therefore, for a given matrix set A and any fixed i-th transformation,

problem (10) is exactly problem (12). Hence, it follows that problem (10) is solved exactly by Algorithm 2

for each non-negative integer i.

By setting P1(zi, p) and P2(zi, q) as equal to the matrices P i
1(zi, p) and P

i
2(zi, q), i = 0, 1, 2, . . . in (12),

respectively, problem (10) can be solved as discussed in Theorem 1, and the minimum of the matrix set

measure is obtained. Hence, Algorithm 1 generalizes a sequence of minimums of matrix set measures {hi}

in successive iterations. In the following, we analyze the convergence property of the previous optimal

sequence.

Proposition 1. If we suppose that {hi} is a sequence generated by Algorithm 1, it holds that Algorithm

1 terminates finitely at some number i∗ such that di∗ = · · · = di∗+n−1 = 0 or the sequence {hi} is

convergent.

Proof. Note that

max
j∈n+1

{

min
pj

ψj(P
i
1(0, p)),min

qj
ψj(P

i
2(0, q))

}

= hi−1.

Theorem 1 shows that hi 6 hi−1; thus, the sequence {hi} is decreasing. By combining this with (14),

we can deduce that the sequence {hi} is convergent.

In addition, if there is a natural number i∗ such that di∗ = · · · = di∗+n−1 = 0, we can find hi∗−1 =

hi∗+n−1, which implies that the sequence reaches its minimum, so Algorithm 1 terminates.

Remark 9. As discussed in Lemma 5, the optimal solutions to problem (10) with i = j♯ are {zi : |zi| 6

1}. These solutions are designed to ensure the maximum flexibility when selecting dj♯ and the finiteness

of the solutions to problem (10) with i > j♯ if hi 6= ψj(As), (j, s) ∈ (B̄s, 2). It should be noted that

different choices of dj♯ may induce different limits for the sequence {hi}.
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Remark 10. Proposition 1 provides an upper bound estimate of the spectral abscissa. We note that

each maximum function γi(zi) in Algorithm 2 is non-convex and it may even be discontinuous, so the

optimal solution to problem (11) that satisfies hi+1 6 αihi where αi is any positive step size may not

exist. Therefore, the formulation used to characterize the relationship between hi+1 − h∗ and hi − h∗ is

still missing, where h∗ is the limit of sequence {hi}. Hence, it is not possible to estimate the convergence

rate for {hi}.

Remark 11. The objective function of problem (7) is non-convex, and thus the convergence of the

previous sequence {hi} to the global optimum is not guaranteed. Considering that the objective function

is discontinuous and non-convex over the free independent parameters, designing an algorithm to achieve

the global minimum is a challenging issue.

4 Numerical example

We consider the third-order switched linear system (1) with

A1 =









−2.5534 0.8706 1.8128

2.0876 −4.7910 2.9792

−0.9865 1.6241 −5.5000









and

A2 =









−3.833 −2.4284 2.1042

0.5480 −5.7010 0.6131

1.0578 1.0753 −3.8557









.

According to the procedures presented in [30], the least µ1 measures obtained by elementary transfor-

mations of types II and III are −0.5179 and −1.5197, respectively.

In addition, we can see that λ(A) = −1.7763 and µ1(A1, A2) = ψ1(A1) = 0.5207. ψ2(A1) < λ(A),

ψ1(A2) < λ(A) and ψ2(A2) < λ(A), so we have B̄1 = {1, 3, 4}, B̄2 = {3, 4}. Therefore, problem (7)

is equivalent to

inf
z

max
s1∈B̄1,s2∈B̄2

{ψs1(P
∗
1 (z, p)), ψs2(P

∗
2 (z, q))}.

By Lemma 5, in this example, we choose d1 = 1 and then h1 = 0.5207. Then, we solve the problem (12),

where b2(z2) in (9) and c = [1, 0, 0]T. By applying Algorithm 2, we find that d2 = 0.5200 and h2 =

−1.2701. After repeating the process, we obtain the sequence {hi} and the corresponding {di}. We find

that d12 = d13 = d14 = 0. By Proposition 1, Algorithm 1 terminates with i = 12, which also shows that

the least µ1 measure is obtained, i.e., µ1(P
12
1 , P 12

2 ) = −1.6354, and this is clearly more accurate than

that obtained by the elementary coordinate transformations. Therefore, the spectral abscissa lies in the

interval [−1.7763,−1.6354]. This result establishes the stability of this system as well as indicating that

the largest divergence rate for this system is less than −1.6354. The generalized coordinate transformation

matrix is

T12 =









1.0000 0 0 1.1511

0 1.0000 0 0.7169

0 0 1.0000 −0.2218









.

5 Conclusion

In this study, we presented a computational scheme for approximating the spectral abscissa for continuous-

time switched linear systems. The scheme is based on the generalized coordinate transformation method,
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where the free parameters in the n × (n + 1) transformation matrix were utilized to decrease the µ1

measure of the transformed system. We proposed detailed procedures to obtain decreasing sequences of

the minimums of matrix set µ1 measures in an iterative manner. The limits of the sequences are upper

bound estimates of the spectral abscissa. We also presented a numerical simulation to illustrate the

performance of the procedures.
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