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Abstract In many indoor scenarios, such as restaurants, laboratories, and supermarkets, the planar floors

are covered with rectangular tiles. We realized that the abundant parallel lines and crossing points formed

by tile joints can be used as natural features to assist indoor localization, and thus we propose a novel indoor

localization method for mobile robots by fusing odometry and monocular vision. The method comprises

three steps. First, the heading and location of the mobile robot are approximately estimated by odometry

based on incremental encoders. Second, with the aid of a camera, the lens of which points vertically toward

the floor, the odometric heading estimation can be corrected by detecting the relative angle between the

robot’s heading and the tile joints. Third, the odometric location estimation is corrected by detecting the

perpendicular distance between the image center and the tile joints. As compared with the existing indoor

localization methods, the proposed method, called floor vision aided odometry, is not only relatively low

in economic cost and computational complexity, but also relatively high in accuracy and robustness. The

effectiveness of this method is verified by a real-world experiment based on a differential-drive wheeled mobile

robot.
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1 Introduction

Mobile robots, in particular wheeled mobile robots, are currently used in almost every domain, including

universe exploration, factory automation, and restaurant service [1–3]. More than their maneuverability,

it is their autonomy that makes mobile robots attractive, so that it is paramount that they maintain

their sense of heading and location to allow them to navigate almost independently [4]. For outdoor

scenarios, a satellite navigation system, which is able to achieve meter-level accuracy in open areas,

is frequently used to solve this problem [5]. However, when blocked lines of sight to the satellites or

multi-path propagation are present, it is not possible to achieve indoor localization by means of satellites.

Hence, indoor localization has attracted great interest in both academia and industry in recent decades.

Although various indoor localization methods have already been developed based on different sensing

system architectures and data fusion algorithms, there is still room for developing more advanced indoor

localization methods to improve their performance from different aspects.

Relative localization (also termed dead reckoning or odometry) is the process of estimating a robot’s

heading and location based on measured changes with respect to previous estimations. In [6–8], some
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advanced odometris which are adaptive to curved surfaces and rough terrains are proposed. Because odo-

metric error diverges, it cannot in practice be used for long-term localization. However, proprioceptive

sensors have the advantages of low cost, low energy consumption, high updating rate, and insensibil-

ity to environmental changes, which shows that odometry can be an irreplaceable localization method

in scenarios where the performance of exteroceptive sensors is seriously affected by the working envi-

ronment [9–11]. Different from relative localization, absolute localization means the ability to directly

determine the robot’s location with respect to a given frame of reference by using exteroceptive sensors,

and therefore, it suffers no cumulative errors. The traditional absolute localization methods suffer from

the following problems. The GPS is a preferred localization method for outdoor applications, but is not

applicable in GPS-denied environments, such as rooms, tunnels, under water, or canyons [12]. The WiFi-

based localization method can determine the robot’s location by using trilateration or feature matching

technology, but it still suffers from the same signal attenuation and multi-path effect as GPS [13]. The

coverage of RFID-based localization method is relatively small, because a large number of RFID tags is

required for large-area localization, which gives rise to problems, such as high cost and tag collisions [14].

Utilizing special LED lamps mounted on ceilings, a robot can determine its location via visual light com-

munication [15]. However, the high cost of upgrading conventional lighting devices to LED lamps means

that this localization method cannot be widely used. Magnetic fingerprint-based localization method

requires low cost devices; its accuracy, however, seriously decreases with the presence of continuously

varying electromagnetic interference [16].

As a promising absolute localization method, visual localization method has been an attractive research

topic in recent years, because vision provides a large amount of environmental information. A common

method is to use a global camera mounted in an overhead position, such as on the ceiling or a wall, to

estimate a robot’s heading and location by measuring its profile or the position of a marker attached

to its top [17–19]. Because the surveillance camera is not mounted on the robot, this method is also

referred to as off-board visual localization method. This is a relatively cheap solution, since surveillance

cameras have usually already been mounted on the infrastructure of the environment, which means

extra cost is incurred for devices. However, it still suffers from the following problems. Illumination

conditions are one of the most challenging problems in practice, in particular in outdoor applications [20].

Extreme illumination and illumination variation may degrade the localization accuracy or even render

it invalid. Additionally, the localizable area is constrained by the camera’s field of view, and therefore,

the expenditure on devices may be very large for large-area localization. In addition, the camera’s lens

may be occluded by dynamic objects (e.g., pedestrians) or static objects (e.g., furniture), which seriously

limits the application of off-board visual localization method in indoor environments. On-board visual

localization method with cameras directly mounted on the robot is an additional localization method that

shows great promise [21–23]. The key objective is to recognize natural or artificial landmarks with known

locations and then calculate the distances between the robot and the landmarks; consequently, the robot’s

location can be readily determined using trilateration. Similarly to that of off-board visual localization

method, the performance of on-board visual localization method is influenced by extreme illumination

and lens occlusion. Moreover, landmark mismatching may introduce extremely large localization errors.

In many indoor scenarios, the planar floors are covered with rectangular tiles. We realized that the

abundant parallel lines and crossing points formed by tile joints can be used as natural features to assist

indoor localization, and thus we propose a novel indoor localization method for mobile robots that is

achieved by fusing odometry and monocular vision. The method, called floor vision aided odometry

(FVO) comprises three steps. First, the heading and location of the mobile robot are roughly approx-

imated by using odometry based on incremental encoders. Second, with the aid of a camera, the lens

of which is pointed vertically to the floor, the odometric heading estimation can be corrected by detect-

ing the relative angle between the robot’s heading and the tile joints. For lack of knowledge about the

tile-joint directions, the floor vision provides four possible results with respect to the robot’s heading.

Because odometry is accurate and reliable in the short term, we can use the odometric heading estimation

to exclude the three pseudo results and then correct the odometric heading estimation, in turn using the

preserved results. Third, the odometric location estimation is corrected by detecting the perpendicular
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Figure 1 (Color online) Top-view schematic of mobile robot on a planar floor. The meshed yellow rectangles represent

the robot’s wheels and the blue polygon its body. The red non-consecutive arc represents the trajectory.

distance between the image center and the tile joints.

The rest of the paper is organized as follows. Section 2 describes the kinematics model of the mobile

robot mathematically, as well as the incremental encoder-based odometry. Section 3 provides the core

steps of the proposed FVO. Section 4 covers the results and analysis of a real-world experiment. The

paper is concluded in Section 5.

2 Kinematics model and odometry

The kinematics of a mobile robot is schematically shown in Figure 1. Hereinafter, unless otherwise stated,

we use the term mobile robot to refer to a differential-drive wheeled mobile robot, which is the type most

widely used in industry.

The robot kinestates can be represented by a vector [xp, yp, θ]
′, where (xp, yp) denotes the coordinate

of point P with respect to the world coordinate system (WCS) and θ denotes the heading angle (i.e.,

the angle between the heading and the X-axis). Furthermore, denoting the axle width by W , the wheel

radius by R, the coordinate of axle midpoint O by (x, y), the length of the line PO by L, and the angle

between the line PO and the central axis of the mobile robot by β, we have

xp = x+ L cos(θ + β), (1a)

yp = y + L sin(θ + β). (1b)

The robot kinestates [x, y, θ]′ and the rotational speeds of the left and right wheels (ωr and ωℓ) can be

related by

ẋ =
R

2
(ωr + ωℓ) cos θ, (2a)

ẏ =
R

2
(ωr + ωℓ) sin θ, (2b)

θ̇ =
R

W
(ωr − ωℓ). (2c)

Combining (1a), (1b), (2a), (2b), and (2c), we derive the kinematics model of the mobile robot, taking

P as the reference point. Typically, by selecting O as the reference point, (2a), (2b), and (2c) can be read

as the kinematics model, and its discrete-time form is

xt+1 = xt +
RT

2
(ωr,t + ωℓ,t) cos θt, (3a)
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yt+1 = yt +
RT

2
(ωr,t + ωℓ,t) sin θt, (3b)

θt+1 = θt +
RT

W
(ωr,t − ωℓ,t), (3c)

where T denotes the sampling period and t denotes the sequence number of the sampling points. An

additional form of (3a), (3b), and (3c) based on the incremental motions is [4]

xt+1 = xt + δd,t cos

(
θt +

δθ,t

2

)
, (4a)

yt+1 = yt + δd,t sin

(
θt +

δθ,t

2

)
, (4b)

θt+1 = θt + δθ,t, (4c)

where δd,t =
RT
2 (ωr,t + ωℓ,t) denotes the incremental displacement and δθ,t =

RT
W

(ωr,t −ωℓ,t) denotes the

incremental heading, both during the sampling period from tT to (t + 1)T . It is noted that (4a) and

(4b) are not equal to (3a) and (3b) mathematically. Because θ may not be constant during the sampling

period from tT to (t+1)T , using θt+
δθ,t
2 to replace θt is a simple yet useful technique used in engineering

to reduce the discretization-induced error.

Therefore, using incremental encoders, the mathematical form of odometry can be expressed by

x
(o)
t+1 = x

(o)
t + δ

(o)
d,t cos

(
θ
(o)
t +

δ
(o)
θ,t

2

)
, (5a)

y
(o)
t+1 = y

(o)
t + δ

(o)
d,t sin

(
θ
(o)
t +

δ
(o)
θ,t

2

)
, (5b)

θ
(o)
t+1 = θ

(o)
t + δ

(o)
θ,t , (5c)

where δ
(o)
d,t and δ

(o)
θ,t denote the measurements of δd,t and δθ,t, respectively. In this paper, the superscript

(o) of the variables indicates that they are related to odometry. Based on data fusion technologies, a

generalized odometry method is able to compensate the odometric errors by using exteroceptive sensors,

thereby providing more accurate estimations of the robot’s heading and location. Therefore, (5a), (5b),

and (5c) change to

x
(o)
t+1 = x̂t + δ

(o)
d,t cos

(
θ
(o)
t +

δ
(o)
θ,t

2

)
, (6a)

y
(o)
t+1 = ŷt + δ

(o)
d,t sin

(
θ
(o)
t +

δ
(o)
θ,t

2

)
, (6b)

θ
(o)
t+1 = θ̂t + δ

(o)
θ,t , (6c)

where x̂t, ŷt, and θ̂t denote the outputs of generalized odometry at sampling point tT , which are optimal

estimations in some sense, obtained by fusing the data from exteroceptive sensors and odometry.

In reality, δ
(o)
d,t and δ

(o)
θ,t cannot reflect the robot’s real incremental motion because of the presence

of uncertainties, which are caused mainly by wheel deformation and wheel slip, as well as by irregular

flooring [24]. Hence, odometry can provide an approximate estimation only in the short term, since its

uncertainties grow unboundedly over time. In the existing literature, the majority of studies treated the

uncertainties as Gaussian white noise, which is far divorced from reality. Let us take the wheel deformation

as an example. The wheel radius is naturally time-varying at a slow rate because of barometric variation

and tire abrasion, and therefore, the errors caused by wheel deformation cannot satisfy the assumption

of white noise. Hence, in this paper, the uncertainties of δ
(o)
d,t and δ

(o)
θ,t are assumed to be unknown-but-

bounded (UBB) noise, which means

δd,t ∈ ∆
(o)
d,t =

[
δ
(o)
d,t −∆δ

(o)
d,t , δ

(o)
d,t +∆δ

(o)
d,t

]
, (7a)
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δθ,t ∈ ∆
(o)
θ,t =

[
δ
(o)
θ,t −∆δ

(o)
θ,t , δ

(o)
θ,t +∆δ

(o)
θ,t

]
, (7b)

where ∆δ
(o)
d,t > 0 and ∆δ

(o)
θ,t > 0 denote the odometric deviation radii, which meet

∆δ
(o)
d,t = kd ·

∣∣∣δ(o)d,t

∣∣∣, (8a)

∆δ
(o)
θ,t = kθ ·

∣∣∣δ(o)θ,t

∣∣∣, (8b)

where kd and kθ are the deviation coefficients that are dependent on the mobile robot and its working

environment. They should be determined experimentally by performing and analyzing representative

movements.

Therefore, it is better to calculate the intervals containing all the possible true states under the as-

sumption of UBB noise. We have

X
(o)
t+1 = X̂t +∆

(o)
d,t cos

(
Θ

(o)
t +

∆
(o)
θ,t

2

)
, (9a)

Y
(o)
t+1 = Ŷt +∆

(o)
d,t sin

(
Θ

(o)
t +

∆
(o)
θ,t

2

)
, (9b)

Θ
(o)
t+1 = Θ̂t +∆

(o)
θ,t , (9c)

where X
(o)
t , Y

(o)
t , Θ

(o)
t , X̂t, Ŷt, and Θ̂t are intervals in which x

(o)
t , y

(o)
t , θ

(o)
t , x̂t, ŷt, and θ̂t lie, respectively.

The operations and functions involved in interval arithmetic are provided in the appendix. As compared

with the conventional odometry using (5a), (5b), and (5c), which give the single vector estimations of the

robot kinestates, the equations (9a), (9b), and (9c) provide the interval vector estimation within which

the true states are guaranteed to fall. If a single vector estimation is needed, the interval midpoints can

be used, that is

x
(o)
t = mid

(
X

(o)
t

)
, (10a)

y
(o)
t = mid

(
Y

(o)
t

)
, (10b)

θ
(o)
t = mid

(
Θ

(o)
t

)
, (10c)

where mid(·) denotes the interval midpoint. It is noted that they are not, however, mathematically the

optimal estimations.

3 Floor visual correction

The floor visual correction procedure constitutes essentially a three-step strategy: (1) floor visual features

extraction, (2) robot heading correction, and (3) robot location correction.

3.1 Floor visual features extraction

The first step is elementary but crucial to the success of floor visual correction. Although only a few

interferences appear in the imaging formation, the motion blur, tile patterns, and line non-smoothness

should be taken into consideration in the image preprocessing step. After deblurring, binarization, skele-

tonization and pruning, the original image is transformed into a binary image with the tile-joint lines.

A popular feature extraction method in the domain of image processing, the standard Hough trans-

formation, is able to detect objects having a line form via a voting algorithm. First, the lines are

parameterized as follows:

u cosϑ+ v sinϑ = r, (11)
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where r ∈ [rmin, rmax] denotes the perpendicular distance from the origin of the PCS to the line and

ϑ ∈ [−π

2 ,
π

2 ) denotes the angle from the U -axis to the perpendicular. Hence, each line can be mapped to

the (r, ϑ)-space (also known as the Hough space) as a point. Second, the Hough space is quantized such

that it yields an Nϑ ×Nr matrix A, which is referred to as an accumulator matrix. For a µ× ν image,

we have

rmax = −rmin =
√
µ2 + ν2, (12)

and the accumulator matrix A has Nϑ elements equally dividing the interval ϑ ∈ [−π

2 ,
π

2 ) and Nr elements

equally dividing the interval r ∈ [rmin, rmax]. The matrix indices are integers (i, j) ∈ Z
2 that

i ∈ [1, Nϑ] 7→ ϑ ∈
[
−
π

2
,
π

2

)
, (13a)

j ∈ [1, Nr] 7→ r ∈ [rmin, rmax]. (13b)

Finally, each pixel point (u, v) votes for all the lines existing within the quantized Hough space, and

then, the potential lines represented by (r, ϑ)-pairs can be determined by calculating the peak values of

elements in the accumulator matrix. For every line, two or more (r, ϑ)-pairs with small differences in

value may be obtained because of the imperfection of the pruning algorithm. To solve this problem, the

(r, ϑ)-pairs should be clustered. For any two pairs, (ri, ϑi)-pair and (rj , ϑj)-pair, where i 6= j, if

|ri − rj | 6 σr, (14a)

|ϑi − ϑj | 6 σϑ, (14b)

where σr and σϑ are similarity thresholds, which are empirically determined, the average of (r, ϑ)-pairs

clustered in one group can serve as the final output of line detection.

3.2 Robot heading correction

In the previous step, the lines in the floor image are detected, thereby yielding a certain number of

(r, ϑ)-pairs. The tile-joint lines are mutually parallel or orthogonal. If two tile-joint lines with ϑ1 and

ϑ2 are parallel, we have ϑ1 = ϑ2. If they are orthogonal, ϑ1 and ϑ2 are either non-negative or negative,

since |ϑ1−ϑ2| =
π

2 and ϑ1, ϑ2 ∈ [−π

2 ,
π

2 ). Now, we examine the transformation from ϑ to θ. As shown in

Figure 2(a), the four cases where the robot’s heading θ lies in (0, π2 ], (
π

2 ,π], (π,
3π
2 ], and (3π2 , 2π] should

be analyzed respectively, because their floor vision is the same. Consider Case 1, where the robot heading

lies in the first quadrant. As shown in Figure 2(b), two orthogonal lines parameterized by (r1, ϑ1) and

(r2, ϑ2) are detected. Clearly, we have θ(c1) = π

2 − ϑ1 = −ϑ2, where θ(c1) ∈ (0, π

2 ] denotes the robot’s

heading in Case 1. Without generality, we have

θ(c1) =

{
π

2 − ϑ, if ϑ > 0,

−ϑ, if ϑ < 0.
(15)

For Cases 2–4, similarly we have

θ(c2) = θ(c1) +
π

2
, (16a)

θ(c3) = θ(c2) +
π

2
, (16b)

θ(c4) = θ(c3) +
π

2
, (16c)

where θ(c2) ∈ (π2 ,π], θ(c3) ∈ (π, 3π
2 ], and θ(c4) ∈ (3π2 , 2π] denote the robot heading in Cases 2–4, respec-

tively. Thus, we have

θ ∈
{
θ(c1), θ(c2), θ(c3), θ(c4)

}
=

{
−ϑ,−ϑ+

π

2
,−ϑ+ π,−ϑ+

3π

2

}
, (17)
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Figure 2 (Color online) (a) Relation between floor vision and robot’s heading and location. The purple grid represents

tile joints. The rectangle with black non-consecutive edges represents the camera’s field of view. The robot’s headings fall

into four different quadrants, respectively, but they have the same floor vision. (b) The schematic of Case 1.

which reveals the relation between θ and ϑ.

Now, we are in a position to calculate the heading measurements obtained by the camera. Denoting

by ϑt,i the parameter ϑ of the i-th line at sampling point tT , we have

ϑt,i ∈ Φ
(c)
t,i =

[
ϑ
(c)
t,i −∆ϑ

(c)
t,i , ϑ

(c)
t,i +∆ϑ

(c)
t,i

]
, (18)

where ϑ
(c)
t,i denotes the measurement of ϑt,i obtained by the camera and ∆ϑ

(c)
t,i > 0 denotes the deviation

radius of line detection, which may be caused by the roundoff of the standard Hough transformation and

spurs connected to the line skeleton. The superscript (c) indicates that the variables are derived from

the camera. The subscript i ∈ It = {1, 2, . . . , It}, where It is the maximum sequence number of detected

lines at sampling point tT . Combining (17) and (18) yields

Θ
(c)
t,i =

{
−Φ

(c)
t,i ,−Φ

(c)
t,i +

π

2
,−Φ

(c)
t,i + π,−Φ

(c)
t,i +

3π

2

}
, (19)

where Θ
(c)
t,i denotes the intervals in which θt lies deduced from the i-th line.

It is noted that other objects, such as electric wires, cannot be easily distinguished, resulting in a

situation where some non-tile-joint lines may be mistakenly recognized as tile-joint lines. A non-tile-joint

line has a stochastic angle, which may lead to Θ
(o)
t ∩Θ

(c)
t,i = ∅, and therefore, we have

Iθ,t =
{
i : Θ

(o)
t ∩Θ

(c)
t,i 6= ∅, i ∈ It

}
, (20)

where Iθ,t denotes the sequence number set of the detected lines, which are tile joints with a high

possibility at sampling point tT . It is clear that Iθ,t 6= ∅; otherwise, the robot heading correction cannot

be conducted because no tile joint has been detected. Furthermore, we have

θt ∈ Θ
(c)
t =

⋂

i∈Iθ,t

Θ
(c)
t,i , (21)

where Θ
(c)
t denotes the interval of floor visual heading measurement at sampling point tT .

Finally, the robot heading correction can be achieved by calculating

Θ̂t = Θ
(o)
t ∩Θ

(c)
t , (22)

where Θ̂t denotes the interval of the heading estimation of FVO.
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Table 1 Transformation rules from θ, ϑ, and r to x and y

Case Rule

Case 1: θ ∈
(
0, π

2

] x ∈ {Exi+ d|ϑ>0 + L cos θ : i = 0, 1, 2, . . .}

y ∈ {Eyi− d|ϑ<0 + L sin θ : i = 0, 1, 2, . . .}

Case 2: θ ∈
(
π

2
,π

] x ∈ {Exi+ d|ϑ<0 + L cos θ : i = 0, 1, 2, . . .}

y ∈ {Eyi+ d|ϑ>0 + L sin θ : i = 0, 1, 2, . . .}

Case 3: θ ∈
(
π, 3π

2

] x ∈ {Exi− d|ϑ>0 + L cos θ : i = 0, 1, 2, . . .}

y ∈ {Eyi+ d|ϑ<0 + L sin θ : i = 0, 1, 2, . . .}

Case 4: θ ∈
(
3π
2
, 2π

] x ∈ {Exi− d|ϑ<0 + L cos θ : i = 0, 1, 2, . . .}

y ∈ {Eyi− d|ϑ>0 + L sin θ : i = 0, 1, 2, . . .}

3.3 Robot location correction

First, the transformation from θ, ϑ, and r to xc and yc should be established, where (xc, yc) is the

coordinate of the camera lens center with respect to the WCS. Taking Case 1, where θ ∈ (0, π

2 ], as an

example, it is easy to determine that the tile-joint line is parallel to the X-axis if ϑ ∈ [−π

2 , 0) or to the

Y -axis if ϑ ∈ [0, π2 ), as illustrated in Figure 2. Furthermore, we denote

d =
µ
2 cosϑ+ ν

2 sinϑ− r

κ
√
cos2 ϑ+ sin2 ϑ

=
µ cosϑ+ ν sinϑ− 2r

2κ
, (23)

where |d| is the perpendicular distance from the camera lens center to the tile-joint line with respect to

the WCS and κ denotes the scaling factor from the PCS to the WCS. Define Oc as the camera lens center

with respect to the PCS. In the case of a line where ϑ ∈ [−π

2 , 0), it is clear that Oc lies in the upper area

of the PCS divided by the line parallel to the X-axis if d < 0, or in the lower area if d > 0. In the case of

a line where ϑ ∈ [0, π

2 ), it is clear that Oc lies in the left area of PCS divided by the line parallel to the

Y -axis if d < 0, or in the right area if d > 0. The exact coordinates of the tile-joint lines are unknown

in advance, but they must be multiples of the tile-edge length. Hence, the coordinate of the camera lens

center with respect to the WCS under Case 1 is

xc ∈ {Exi+ d|ϑ>0 : i = 0, 1, 2, . . .}, (24a)

yc ∈ {Eyi− d|ϑ<0 : i = 0, 1, 2, . . .}, (24b)

where Ex and Ey denote the lengths of the tile-edges parallel to the X- and Y -axis, respectively.

Substituting β = π into (1a) and (1b) yields

xc = x− L cos θ, (25a)

yc = y − L sin θ, (25b)

where L denotes the distance from the robot’s axle midpoint to the camera’s lens center. Therefore, the

coordinate of the robot location with respect to the WCS is derived, that is,

x ∈ {Exi+ d|ϑ>0 + L cos θ : i = 0, 1, 2, . . .}, (26a)

y ∈ {Eyi − d|ϑ<0 + L sin θ : i = 0, 1, 2, . . .}. (26b)

The two equations above show the transformation from θ, ϑ, and r to x and y in Case 1. Similarly,

the transformation rules under Cases 2–4 can be obtained, as summarized in Table 1.

Now, we are in a position to calculate the location measurements obtained by the camera. For Case 1

where Θ̂t ⊆ (0, π

2 ], we have

Ix,t =
{
i : max

{
Φ
(c)
t,i

}
< 0, i ∈ Iθ,t

}
, (27a)

Iy,t =
{
i : min

{
Φ
(c)
t,i

}
> 0, i ∈ Iθ,t

}
, (27b)
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Table 2 Calculation of the interval of floor visual location measurement

Case Intervals

Case 1:

Θ̂t ⊆
(
0, π

2

]
X

(c)
t =

{
Exi+

⋂
j∈Iy,t

D
(c)
t,j + L cos Θ̂t : i = 0, 1, 2, . . .

}
, where Iy,t =

{
i : min

{
Φ
(c)
t,i

}
> 0, i ∈ Iθ,t

}

Y
(c)
t =

{
Eyi−

⋂
j∈Ix,t

D
(c)
t,j + L sin Θ̂t : i = 0, 1, 2, . . .

}
, where Ix,t =

{
i : max

{
Φ
(c)
t,i

}
< 0, i ∈ Iθ,t

}

Case 2:

Θ̂t ⊆
(
π

2
, π

]
X

(c)
t =

{
Exi+

⋂
j∈Iy,t

D
(c)
t,j + L cos Θ̂t : i = 0, 1, 2, . . .

}
, where Iy,t =

{
i : max

{
Φ
(c)
t,i

}
< 0, i ∈ Iθ,t

}

Y
(c)
t =

{
Eyi+

⋂
j∈Ix,t

D
(c)
t,j + L sin Θ̂t : i = 0, 1, 2, . . .

}
, where Ix,t =

{
i : min

{
Φ
(c)
t,i

}
> 0, i ∈ Iθ,t

}

Case 3:

Θ̂t ⊆
(
π, 3π

2

]
X

(c)
t =

{
Exi−

⋂
j∈Iy,t

D
(c)
t,j + L cos Θ̂t : i = 0, 1, 2, . . .

}
, where Iy,t =

{
i : min

{
Φ
(c)
t,i

}
> 0, i ∈ Iθ,t

}

Y
(c)
t =

{
Eyi+

⋂
j∈Ix,t

D
(c)
t,j + L sin Θ̂t : i = 0, 1, 2, . . .

}
, where Ix,t =

{
i : max

{
Φ
(c)
t,i

}
< 0, i ∈ Iθ,t

}

Case 4:

Θ̂t ⊆
(
3π
2
, 2π

]
X

(c)
t =

{
Exi−

⋂
j∈Iy,t

D
(c)
t,j + L cos Θ̂t : i = 0, 1, 2, . . .

}
, where Iy,t =

{
i : max

{
Φ
(c)
t,i

}
< 0, i ∈ Iθ,t

}

Y
(c)
t =

{
Eyi−

⋂
j∈Ix,t

D
(c)
t,j + L sin Θ̂t : i = 0, 1, 2, . . .

}
, where Ix,t =

{
i : min

{
Φ
(c)
t,i

}
> 0, i ∈ Iθ,t

}

where Ix,t and Iy,t denote the sequence number set of detected lines that are parallel to the X-axis

and Y -axis, respectively. It is clear that Ix,t 6= ∅ and Iy,t 6= ∅; otherwise, the robot location correction

cannot be conducted. Let dt,i denote d of the i-th line at sampling point tT that lies in the interval D
(c)
t,i

measured by the camera. It can be obtained that

dt,i ∈ D
(c)
t,i =

µ cosΦ
(c)
t,i + ν sinΦ

(c)
t,i − 2R

(c)
t,i

2κ
, (28)

where R
(c)
t,i denotes the interval in which rt,i lies. Consequently, we have

xt ∈ X
(c)
t =



Exi+

⋂

j∈Iy,t

D
(c)
t,j + L cos Θ̂t : i = 0, 1, 2, . . .



 , (29a)

yt ∈ Y
(c)
t =



Eyi−

⋂

j∈Ix,t

D
(c)
t,j + L sin Θ̂t : i = 0, 1, 2, . . .



 , (29b)

where X
(c)
t and Y

(c)
t denote the intervals of the floor visual location measurement at sampling point tT .

Finally, the robot location correction can be achieved by calculating

X̂t = X
(o)
t ∩ X

(c)
t , (30a)

Ŷt = Y
(o)
t ∩ Y

(c)
t , (30b)

where X̂t and Ŷt denote the intervals of the location estimation of FVO.

In the other cases, where Θ̂t ⊆ (π2 ,π], Θ̂t ⊆ (π, 3π
2 ], and Θ̂t ⊆ (3π2 , 2π], the corresponding Ix,t, Iy,t,

X
(c)
t , and Y

(c)
t can be obtained, as summarized in Table 2, using the analogous analytical method.

4 Experiment results and analysis

In order to observe the performance of the FVO method proposed in this paper, a real-world experiment

was conducted based on the P3-DX wheeled mobile robot, which was equipped with a camera pointing

vertically to the floor and a laptop on the robot top. The robot working area is limited to a rectangular

space measuring 3.6 m × 2.4 m, which is covered with 30 cm × 30 cm rectangular non-patterned tiles.

A camera having a field of view that is able to cover the robot working area is mounted on the wall.

It is able to provide relatively accurate measurements of the robot’s heading and location, which are

treated as ground truths. The sampling period was 0.2 s and the actual moving speed was between 0 and

0.51 m/s. After the readings from the incremental encoders and camera were collected and sent to the

laptop (3.2 GHz with 8 GB RAM), the procedure of FVO was performed using MATLAB.

To verify the effectiveness of the floor visual features extraction, one frame was selected to show the

feature extracting process, as shown in Figure 3. We can see that the original image is blurred because
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Figure 3 (Color online) Feature extracting process of floor vision. The green orthogonal lines in the sixth picture are the

detected lines that almost coincide with the tile joints.
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Figure 4 (Color online) Test results of heading estimation of FVO. The curve “GT” represents the ground truths of the

robot heading obtained from the off-board camera. The curve “Odo” represents the odometric heading estimation. The

curves “FVO”, “FVO−”, and “FVO+” represent the midpoint, lower bound, and upper bound of the heading estimation

of FVO, respectively.

of the robot’s motion, but after the deconvolution of the original images is calculated with a point spread

function, the motion blur effects are almost eliminated and the tile joints become clear. By zooming

in on the deblurred image, ringing effects can be found near the tile joints, because the high-frequency

information was lost as a result of image degradation. They can be restrained by adjusting the point

spread function. By applying Canny edge detector to the deblurred image, a binary image containing the

edges of tile-joint lines is obtained. In the skeletonized image, there exist many branches connected or

not connected to the skeleton of the tile joints, which affects the precision of the line detection to some

extent. It can be seen that the skeletons of the tile joints usually possess a larger pixel amount than

the other connected components. Hence, only the tile-joint lines are preserved after pruning, and their

parameterized form is consequently precisely obtained.

Because FVO is not a localization method created by improving existing methods, but rather a local-

ization method with a completely different sensory system architecture and data fusion algorithm, we

could not perform a comparison experiment with the existing methods. Therefore, we present only the

performance of FVO and its differences from that of odometry. The test results of FVO are shown in

Figures 4 and 5. Because the off-board camera can provide millimeter-level measurements of the robot’s

heading and location, its outputs are treated as ground truths. It can be seen that the odometric heading

estimation and odometric location estimation based on incremental encoders both gradually diverge from

the ground truths as the moving distance of the mobile robot increases. This is the exact reason why rel-
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Figure 5 (Color online) Test results of location estimation of FVO. The curve “GT” represents the ground truths of the

robot’s location obtained from the off-board camera. The curve “Odo” represents the odometric location estimation. The

green rectangular boxes represent the location estimation of FVO, while the curve “FVO” represents the midpoint of the

location estimation of FVO.

Table 3 Error statistics of FVO

Variable Method 1st period 2nd period 3rd period

θ (deg)
Odometry 1.93 7.16 19.65

FVO 1.88 2.24 2.83

x (mm)
Odometry 34.25 74.28 259.56

FVO 6.06 5.43 5.22

y (mm)
Odometry 47.80 66.22 373.17

FVO 5.34 6.34 6.61

ative location methods should be combined with exteroceptive sensors. With the help of the floor visual

correction, odometric errors can be significantly reduced and bounded. It is clear that all the ground

truths are contained in the intervals or boxes of the FVO outputs. Taking the midpoints of the FVO out-

puts as the point estimations, the root mean squared error (RMSE) statistics can be obtained, as shown

in Table 3. We averagely divide the data into three parts in chronological order, to yield three periods.

Clearly, the accuracy of odometry decreases over time, while FVO retains a very stable millimeter-level

accuracy. In fact, the accuracy of FVO can be further improved from two aspects. First, it is known

that inevitable slippages occur while a mobile robot is turning, which leads to an imprecise kinematics

model; however, gyroscopes can be used to increase the accuracy of odometry. Second, because time

delays cannot be avoided in floor vision, we could use high-speed cameras or a compensation algorithm

to increase the accuracy of the floor visual correction.

5 Conclusion

In this paper, we proposed a novel indoor localization method for mobile robots in which odometry and

monocular vision are fused. It can be applied in many indoor scenarios, such as restaurants, laboratories,

and supermarkets having floors covered with rectangular tiles. The method comprises three steps. First,

the heading and location of the mobile robot are roughly estimated by odometry based on incremental

encoders. Second, with the aid of a camera, the lens of which is pointed vertically toward the floor, the

odometric heading estimation can be corrected by using the relative angle detected between the robot’s
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heading and the tile joints. Third, the odometric location estimation is corrected by using the detected

perpendicular distance between the image center and the tile joints. As compared with the existing indoor

localization methods, the proposed method, called FVO, has a lower economic cost and computational

complexity, but is also characterized by relatively high accuracy and robustness.
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An interval A = [a1, a2] is a set of real numbers denoted by

[a1, a2] = {x ∈ R : a1 6 x 6 a2}, (A1)

where a1 = −∞ and a2 = +∞ are allowed, with mid(A) = a1+a2

2
and rad(A) = a2−a1

2
denoting its midpoint and radius,

respectively.

The four basic arithmetic operations are as follows.

• Addition. A+ B = [a1 + b1, a2 + b2];

• Substraction. A−B = [a1 − b2, a2 − b1];

• Multiplication. A · B = [min{a1 · b1, a1 · b2, a2 · b1, a2 · b2}, max{a1 · b1, a1 · b2, a2 · b1, a2 · b2}];

• Division. A/B = [a1, a2] · [1/b2, 1/b1] if 0 /∈ [b1, b2].

If b2 < a1 or a2 < b1, the intersection of two intervals A = [a1, a2] and B = [b1, b2] is empty, that is,

A ∩ B = ∅. (A2)

Otherwise, we have

A ∩ B = {x : x ∈ A and B} = [max {a1, b1} ,min {a2, b2}]. (A3)

The function of an interval A = [a1, a2] is defined by

f(A) = {f(x) : x ∈ A} , (A4)

which is still an interval. For the monotonic functions, such as an exponential or logarithmic function, we have

f(A) = [min {f(a1), f(a2)} ,max {f(a1), f(a2)}]. (A5)

For a sine function, a piecewise monotonic function with critical points at nπ+ π

2
, where n ∈ Z, we have

sin(A) =






[min {sin(a1), sin(a2)} ,max {sin(a1), sin(a2)}], if n2 − n1 = 0,

[min{sin(a1), sin(a2)},+1], if n2 − n1 = 1 and n1 is even,

[−1,max {sin(a1), sin(a2)}], if n2 − n1 = 1 and n1 is odd,

[−1,+1], if n2 − n1 > 2,

(A6)

where n1 = ⌊
a1+

π

2

π
⌋ and n2 = ⌊

a2+
π

2

π
⌋ are two integers. Similarly, we have

cos(A) =






[min {cos(a1), cos(a2)} ,max {cos(a1), cos(a2)}], if n2 − n1 = 0,

[min {cos(a1), cos(a2)} ,+1], if n2 − n1 = 1 and n1 is odd,

[−1,max {cos(a1), cos(a2)}], if n2 − n1 = 1 and n1 is even,

[−1,+1], if n2 − n1 > 2,

(A7)

where n1 = ⌊a1

π
⌋ and n2 = ⌊a2

π
⌋ are also two integers.
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