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Abstract In this paper, we investigate the controllability problem of multi-agent systems with switching

topology over finite fields. The multi-agent system is defined over finite fields, where agents process only

values from a finite alphabet. Under leader-follower structure, one agent is selected as a leader for each

subsystem. First, we prove that a multi-agent system with switching topology is controllable over a finite

field if the graph of the subsystem is a spanning forest, and the size of the field is sufficiently large. Second,

we show that, by appropriately selecting leaders, the multi-agent system with switching topology can be

controllable over a finite field even if each of its subsystems is not controllable. Specifically, we show that the

number of leaders for ensuring controllability of the switched multi-agent system is less than the minimum

number of leaders for ensuring the controllability of all subsystems. Finally, it is proved that the multi-agent

system is controllable over a finite field if the union of the graphs is a directed path graph or a star graph.
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1 Introduction

Multi-agent systems consist of many communicating agents, which are governed by neighbor-based pro-

tocols. In recent years, decentralized coordination of multi-agent systems has gained more and more

attention [1–5]. This is partly due to its broad applications ranging from self-organized sensor networks

to formation control of mobile robots. Many critical problems are investigated in cooperative control,

such as consensus [6–13], stabilizability [14,15], and controllability [16–25]. Among all the aforementioned

research issues, controllability is a critical problem of multi-agent systems. Multi-agent controllability was

first studied by [16] under a leader-follower framework. It is proved that the controllability is equivalent

to that of a pair of submatrices of Laplacian matrix. Following that, the controllability was investigated

from a graph-theoretic perspective [17–20]. There are some other studies, e.g., results on structural

controllability [21], and target control [22].

In majority of the existing studies, the interaction values between agents are real numbers or quantized

values [7–11]. In many digital control applications of networked systems, the communication bandwidth

from sensors to controllers is often restricted and the limitations also occur in multi-agent systems.

Due to the development of digital communication and memory constraints, more realistic case of finite

communication bandwidth in the communication channels is under investigation, where each agent can
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only take a fixed number of states and can only update its states by a finite number of bits with its

neighbors. Compared with the system defined over complex fields, such a multi-agent system has a

considerable advantage in their convergence time and resilience to communication noises, which has

many practical applications, e.g., quantized control and distributed estimation. In this paper, we model

this case with the formalism of finite fields, where each agent is assumed to have the ability to store,

process, and transfer solely elements from a finite field, and operations are performed according to modular

arithmetic [3, 4].

Structural controllability and observability of multi-agent systems with fixed topology over finite fields

was first studied in [26,27]. It is well known that if the networks are time-varying or switching topology,

the controllability or observability becomes complicated [20, 28]. Switched systems are hybrid systems

that consist of two or more subsystems. Therefore, switched systems deserve investigation for theoretical

interest as well as for practical applications [20, 28]. As a result, it is important to address the control-

lability problem over finite fields in directed information interaction under link failure or creation (i.e.,

switching topology). In [29], algebraic conditions for the controllability of switched multi-agent systems

over finite fields were proposed. To the best of our knowledge, however, the controllability of a multi-agent

system is solely decided by its communication topology structure [18]. Therefore, it is necessary to study

the graph-theoretic conditions for the controllability of switched multi-agent systems over finite fields.

Particularly, we investigate the controllability of multi-agent systems with switching topology over finite

fields. That is, we prove that (a) a multi-agent system with switching topology is controllable over a finite

field if each graph of the subsystem is a spanning forest, and that (b) the number of leaders for ensuring

controllability of the switched multi-agent system is less than that of ensuring any of the subsystems if

the graphs of the subsystems satisfy certain properties, and that (c) the switched multi-agent system is

controllable over a finite field if the union of the graphs is a directed path graph or a star graph.

Notation. The following notations will be used throughout this paper. N denotes the set of natural

numbers. el1,n is a column-vector of length n with a 1 in its l1th position and zeros elsewhere. The

transpose of matrix A is denoted by AT. ∅ represents the empty set. 1n denotes [1, . . . , 1]T with

dimension n. Fm×n
q is the set of m × n dimensional matrices defining over the finite field Fq. Fn

q is

the vector space of dimension n over the field Fq. 0 denotes an all-zero column vector or matrix with

a compatible dimension. Λ(A) represents the set of all eigenvalues of matrix A. diag{a1, a2, . . . , an}

represents a diagonal matrix with entries ai, i = 1, 2, . . . , n.

2 Preliminaries

2.1 Graph theory

In this paper, a directed graph will be used to model the interaction topology among agents. Let

G = (N , E , A) be a weighted directed graph consisting of a node set N = {1, 2, . . . , n}, an edge set

E = {(i, j) ∈ N × N} and a weighted adjacency matrix A = [aij ] ∈ Fn×n
q . An edge (j, i) ∈ E if

the agent i can access the information of the agent j. The weighted adjacency matrix A is defined

by aij ∈ Fq if (j, i) ∈ E and aij = 0 otherwise. The set of neighbors of node i in G is denoted by

Ni = {j ∈ N : (j, i) ∈ E}. A directed path in a directed graph is a sequence j1, j2, . . . , jt of nodes such

that (ji−1, ji) ∈ E for i = 2, . . . , t. A graph is a spanning tree rooted at i if it is a directed graph where

every node in the graph can be reached by a path starting from i, and every node except i has in-degree

exactly equal to 1. The node with no outgoing edges is called a leaf node of the tree. A spanning forest is

a directed graph consisting of one or more spanning trees, every two of which have no node in common.

Throughout this paper, all the graph topologies are assumed to be simple.

2.2 Finite field

An algebraic field F , together with two operations of addition (+) and multiplication (·), satisfies the

following properties:
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(1) Closure of addition and multiplication. a+ b ∈ F and a · b ∈ F for all a, b ∈ F .

(2) Commutativity of addition and multiplication. a+ b = b+ a and a · b = b · a for all a, b ∈ F .

(3) Associativity of addition and multiplication. a+ (b + c) = (a+ b) + c and a · (b · c) = (a · b) · c for

all a, b, c ∈ F .

(4) The field includes an additive identity and a multiplicative identity, denoted by 0 and 1, respectively.

a+ 0 = a and 1 · a = 1 for all a ∈ F .

(5) Distributivity of multiplication over addition. a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ F .

(6) Existence of additive and multiplicative inverse elements. For each element a ∈ Fq, there are

additive inverse and multiplicative inverse denoted by â ∈ F , ā ∈ F , respectively, such that a + â = 0,

and a · ā = 1.

For example, the addition and multiplication tables for F7 = {0, 1, 2, 3, 4, 5, 6} are given by

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

In this paper, the finite field is referred to as Fq = {0, 1, 2, . . . , q− 1}, together with the addition and the

multiplication modulo q, where q is a prime number.

3 Main results

In this paper, the controllability problem is studied under leader-follower structure. Let us start by

dividing agents into leaders and followers. For a given multi-agent system, an agent is a leader if the

agent is actuated by some exogenous control inputs; otherwise, the agent is called a follower. In this paper,

the set of followers is denoted as Nf , the set of leaders is denoted as Nl and N = Nf ∪Nl = {1, 2, . . . , n}.

In this section, we consider a multi-agent system composed of n agents, which are labeled from 1 through

n. Consider the following multi-agent system over Fq,

xi(k + 1) = aiixi(k) +
∑

j∈Ni
aijxj(k), i ∈ Nf , (1)

xi(k + 1) = aiixi(k) +
∑

j∈Ni
aijxj(k) + uex

i (k), i ∈ Nl, (2)

where xi(k) ∈ Fq is the state of agent i and uex
i (k) ∈ Fq is the exogenous control input applied to the

agent i. Then, we can write the system model into a compact form

x(k + 1) = Ax(k) +BU ex(k), (3)

where x(k) = [x1(k), x2(k), . . . , xn(k)]
T, B = [el1,n, el2,n, . . . , el|Nl|

,n], U ex(k) = [uex
l1
(k), uex

l2
(k), . . .,

uex
l|Nl|

(k)]T is the stacked vector of the exogenous control inputs which are applied to the leaders and

1 6 l1 6 l2 6 · · · 6 l|Nl| 6 n. The communication topology of representing the information flow among

agents may vary due to link failure or creation. This case is usually described by switching topology.

Under m (m ∈ N) switching topologies, a switched multi-agent system over Fq is given by

x(k + 1) = Aσ(k)x(k) +Bσ(k)U
ex(k). (4)

The constant scalar function σ(k) : {0, 1, . . .} → M , {1, 2, . . . ,m} is the switching signal/path to be

designed. Moreover, σ(k) = ik ∈ M , (k ∈ {0, 1, 2, . . . , }) implies that matrix pairs (Aik , Bik) are selected
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as the subsystem realization, that is, matrix pairs (Aik , Bik) for ik ∈ M are referred to as the subsystems of

(4). Let {Gp : p ∈ M} be the set of possible directed graphs and Aσ(k) = [aij(σ(k))] be weighted adjacency

matrices which are associated with the graphs Gσ(k)(N σ(k), Eσ(k)), where N σ(k) = N = {1, 2, . . . , n}.

Definition 1 (Controllability under switching topology). Given m possible network topologies, the

switched system (4) is said to be p-controllable if for any arbitrary state xf ∈ Fn
q , there exist a p (p ∈ N),

a switching signal σ : P = {0, 1, . . . , p−1} → {1, 2, . . . ,m} and input sequence U ex(0), U ex(1), . . . , U ex(p−

1) ∈ F
|Nl|
q such that the switched system (4) can be driven from state x(0) ∈ Fn

q to xf in p steps. The

switched system (4) is said to be controllable if it is p-controllable for some p.

A switching sequence is a finite or infinite set of pairs π = {(i0, h0), (i1, h1), . . . , (im−1, hm−1)}, where

the positive integer m is the length of π, 0, h0, h0 + h1, . . . ,
∑m−2

j=0 hj is the switching instant sequence,

i0 = σ(0), i1 = σ(h0), . . . , im−1 = σ(
∑m−2

j=0 hj) is the switching index sequence.

Definition 2. Given a switching sequence π = {(i0, h0), . . . , (im−1, hm−1)}, the controllable state

set of π is defined by T (π) = {x(
∑m−1

j=0 hj) ∈ Fn
q | there are inputs U ext(i) ∈ F

|Nl|
q such that x(0) =

0 and x(
∑m−1

j=0 hj) = xf ,where xf ∈ Fn
q }.

In order to establish a criterion for checking controllability, we resolve the recursion within (4). Then

x(p) =

(
p−1∏

k=0

Aik

)
x0 +

(
p−1∏

k=1

Aik

)
Bi0U

ex(0) + · · ·+Aip−1
Bip−2

U ex(p− 2) +Bip−1
U ex(p− 1),

where σ(k) = ik for k, p ∈ N, ik ∈ {1, 2, . . . ,m} and
∏p−1

k=0 Aik = Aip−1
Aip−2

· · ·Ai0 . Then we get

x(p)−

(
p−1∏

k=0

Aik

)
x0 =

[
Bip−1

, Aip−1
Bip−2

, . . . ,

(
p−1∏

k=1

Aik

)
Bi0

]

· [(U ex(p− 1))T, (U ex(p− 2))T, . . . , (U ex(0))T]T.

Suppose µ is the minimum integer for which rank[Biµ−1
, Aiµ−1

Biµ−2
, . . . , (

∏µ−1
k=1 Aik)Bi0 ] = n. The integer

µ is called the controllability index of the switched multi-agent system (4).

Theorem 1. The switched multi-agent system (4) is p-controllable over the field Fq if the matrix

[Bip−1
, Aip−1

Bip−2
, . . . , (

∏p−1
k=1 Aik)Bi0 ] ∈ F

n×|Nl|p
q has (full) rank n.

It is known that controllability over finite-fields requires more strict conditions than that of controlla-

bility over the field of complex numbers [27]. If a graph is a spanning tree. It is shown that the graph is

controllable over the field Fq, with controllability index equal to n. If all the spanning trees are control-

lable and all the controllability index are equal to n, whether the system with switching topology reaches

the target state at time-step n (the definition of controllability index for fixed topology case is similar to

that of the switching case)? We show that this is not true by providing the following Example 1.

Example 1. Consider a multi-agent system (4) over F7 = {0, 1, 2, 3, 4, 5, 6}, where n = 4. Three

switching topologies of system (4) is illustrated in Figure 1. Let σ(0) = i0, σ(1) = i1, σ(2) = i2, σ(3) = i3
with i0 = i1 = 1, i2 = 2, i3 = 3 and B1 = B2 = B3 = e1,4. A1, A2, A3 are, respectively, the corresponding

adjacency matrices of graphs G1, G2 and G3. Then the first switching path (a) is G1 → G1 → G2 → G3,

that is,

x(1) = A1x(0) +B1U
ex(0), x(2) = A1x(1) +B1U

ex(1),

x(3) = A2x(2) +B2U
ex(2), x(4) = A3x(3) +B3U

ex(3).

The weights on the self-loops are a11(ik) = 2, a22(ik) = 3, a33(ik) = 4 and a44(ik) = 1, k = 0, 1, 2, 3. The

adjacency matrices A1, A2, A3 are, respectively, as follows:

A1 =




2 0 0 0

1 3 0 0

1 0 4 0

0 0 1 1



, A2 =




2 0 0 0

1 3 0 0

1 0 4 0

1 0 0 1



, A3 =




2 0 0 0

1 3 0 0

0 1 4 0

1 0 0 1



.
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Figure 1 (Color online) Three different switching paths. (a) G1→G1→G2→G3; (b) G2→G2→G3→G1; (c) G1→G1→G2

→G3→G3.

Define Q1 = [B3, A3B2, A3A2B1, A3A2A1B1]. It is straightforward to see that rank(Q1) = 3 over F7 and

rank(Q1) = 4 over F11. However, let σ(0) = i0, σ(1) = i1, σ(2) = i2, σ(3) = i3 with i0 = i1 = 2, i2 =

3, i3 = 1. Then the second switching path (b) is G2 → G2 → G3 → G1, that is,

x(1) = A2x(0) +B2U
ex(0), x(2) = A2x(1) +B2U

ex(1),

x(3) = A3x(2) +B3U
ex(2), x(4) = A1x(3) +B1U

ex(3).

The matrices Aj and Bj , j = 1, 2, 3 are the same as above. Define Q2 = [B1, A1B3, A1A3B2, A1A3A2B2].

It is straightforward to see that rank(Q2) = 4 over F7. Consider graph (c) in Figure 1. Let a11(ik) = 1,

a22(ik) = 5, a33(ik) = 2 and a44(ik) = 6, k = 0, 1, 2, 3, 4 with i0 = i1 = 1, i2 = 2, i3 = 3, i4 = 3,

B1 = B2 = B3 = e1,4. Then the third switching path (c) is G1 → G1 → G2 → G3 → G3, that is,

x(1) = Ai0x(0) +Bi0U
ex(0), x(2) = Ai1x(1) +Bi1U

ex(1),

x(3) = Ai2x(2) +Bi2U
ex(2), x(4) = Ai3x(3) +Bi3U

ex(3), x(5) = Ai4x(4) +Bi4U
ex(4).

Define Q3 = [B3, A3B3, A
2
3B2, A

2
3A2B1, A

2
3A2A1B1]. It can be be calculated that rank(Q3) = 3 over F7.

It follows that the switched multi-agent system (4) is not necessarily n-controllable through arbitrary

switching when all the subsystems (Aik , Bik) are controllable at time-step n. In order to realize the

controllability, the matrix [Bip−1
, Aip−1

Bip−2
, . . . , (

∏p−1
k=1 Aik )Bi0 ] must be full rank. However, there are

too many possible switching paths (switching orders) when the the number of nodes becomes large, and

it is computationally expensive to calculate the above matrix under all possible switching paths. In this

paper, we are interested in a particular path which is proposed by us. This path facilitates us to figure

out an effective way to ensure the controllability. Furthermore, in the every subsystem, there is a single

leader. That is, only one agent is selected as the leader for each subsystem and Bik ∈ Fn×1
q , U ex(k) ∈ Fq.

In the following, the proposed switching path is given by

σ(0) = σ(1) = · · · = σ(h0 − 1) = i0, σ(h0) = σ(h0 + 1) = · · · = σ(h0 + h1 − 1) = i1,

· · · (5)

σ




m−2∑

j=0

hj


 = σ




m−2∑

j=0

hj + 1


 = · · · = σ




m−1∑

j=0

hj − 1


 = im−1,

where h0, h1, . . . , hm−1 ∈ N, σ(k) = ik = i0, k = 0, 1, . . . , h0 − 1, . . ., σ(k) = ik = im−1, k = h0 + · · · +

hm−2, . . . , h0 + · · ·+ hm−2 + hm−1 − 1 and is ∈ {1, 2, . . . ,m}, s = 0, 1, . . . ,m− 1.

Given m graphs Gis(N is , E is , Ais), where s ∈ {0, 1, · · · ,m − 1} and ‖N is‖ = n, each graph Gis is

a spanning forest and each spanning forest Gis has νs(νs ∈ N), s ∈ {0, 1, . . . ,m − 1} trees, denoted by
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Gis
j , j ∈ {1, 2, . . . , νs}. A subset C of N is called a cell. A collection of cells {Gis

1 ,Gis
2 , . . . ,Gis

νs
}, νs ∈ N is

called a partition of graph Gis if the cells are mutually disjoint and
∑νs

j=1 N (Gis
j ) = N , where N (Gis

j ) are

the node sets of spanning trees Gis
j . In the following, we assume that there is some consistent topological

ordering throughout all of graphs Gis , that is, aij(σ(k)) = 0 for j > i, k = 0, 1, . . . , n. In Theorem 2 and

Corollary 1, for s = 0, . . . ,m− 1, we assume that there is a spanning tree in each Gis , where the number

of nodes of these spanning trees is ns+1, satisfying n1 + n2 + · · ·+ nm = n. Subsequently, we renumber

the nodes so that the nodes 1, n1 + 1, n1 + n2 + 1, . . . , n1 + n2 + · · ·+ nm−1 + 1 represent, respectively,

the root nodes of those above spanning trees. Those specified spanning trees are denoted, respectively,

by Gi0
τ0
, Gi1

τ1
, . . . ,G

im−2

τm−2
and G

im−1

τm−1
, where τ0 = 1, τm−1 = νm−1 and τl ∈ {1, 2, . . . , νl}, l = 1, 2, . . . ,m− 2.

Let

N (Gi0
τ0
) = {1, 2, . . . , n1}, N\N (Gi0

τ0
) = {n1 + 1, n1 + 2, . . . , n},

N (Gi1
τ1
) = {n1 + 1, n1 + 2, . . . , n1 + n2}, N\N (Gi1

τ1
) = {1, 2, . . . , n1, n1 + n2 + 1, . . . , n},

N (Gi2
τ2
) = {n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3},

N\N (Gi2
τ2
) = {1, 2, . . . , n1, n1 + 1, n1 + 2, . . . , n1 + n2, n1 + n2 + n3 + 1, . . . , n},

· · ·

N (Gim−2

τm−2
) = {n1 + · · ·+ nm−2 + 1, n1 + · · ·+ nm−2 + 2, . . . , n1 + · · ·+ nm−1},

N\N (Gim−2

τm−2
) = {1, 2, . . . , n1 + · · ·+ nm−2, n1 + · · ·+ nm−1 + 1, . . . , n},

N (Gim−1

τm−1
) = {n1 + · · ·+ nm−1 + 1, n1 + · · ·+ nm−1 + 2, . . . , n},

N\N (Gim−1

τm−1
) = {1, 2, . . . , n1 + n2 + · · ·+ nm−1}.

For the spanning tree with the root node
∑t

s=0 ns + 1, t ∈ {0, 1, . . . ,m − 1}, we renumber all the other

nodes besides
∑t

s=0 ns + 1, i.e., leaf nodes, by
∑t

s=0 ns + 2, . . . ,
∑t+1

s=0 ns, where n0 = 0.

Theorem 2. Consider the matrix pairs (Ais , Bis), s = 0, 1, . . . , n − 1, where Bi0 = e1,n, Bin1
=

en1+1,n, . . . , Bin1+···+nm−1
= en1+n2+···+nm−1+1,n and Ais is an n × n matrix with elements from a field

Fq of size at least n+ 1. Suppose that the following four conditions hold:

(i) Each graph Gis is a spanning forest, augmented with self-loops on each node, where ajj(is) 6= 0 for

s, j = 1, 2, . . . , n.

(ii) For each spanning tree, neither of two nodes in the same tree has the same weight on their self-loops

and aij(is) = 1 if (j, i) ∈ E is , where i 6= j.

(iii) Each spanning forest Gis has a spanning tree Gis
τs
, with the number of nodes of the spanning tree

Gis
τs

equal to ns+1, s = 0, . . . ,m− 1, where n1 + · · ·+ nm = n.

(iv) The switching path is given by (5), where hj = nj+1, j = 0, 1, 2, . . . ,m− 1.

Then the multi-agent system (4) with the communication topologies Gis , s ∈ {0, 1, . . . , n − 1} is

controllable over Fq, with controllability index equal to n.

Proof. Because each graph Gis is a spanning forest consisting of νs trees, the corresponding adja-

cency matrix Ais is Ais = diag{A1(is), A2(is), . . . , Aνs(is)}, where Aj(is) are adjacency matrices cor-

responding to the spanning trees Gis
j and Aτs(is) ∈ F

ns+1×ns+1

q , s = 0, 1, . . . , n − 1, j = 1, 2, . . . , νs.

Note that the matrices Ais are lower-triangular. Then we have that V −1
is

AisVis = J(Ais ), where

Vis = diag{V1(is), V2(is), . . . , Vνs(is)}, J(Ais ) = diag{λ1(is), λ2(is), . . . , λn(is)}, λk(is) is the kth eigen-

value of matrix Ais , λk(is) ∈ Λ(Ais), k = 1, 2, . . . , n and Vj(is) is the same size as Aj(is). It follows

that the left eigenvectors of the matrix Ais contain the left eigenvectors for each of the matrices Aj(is)

(augmented with zeros). Because each Aj(is) corresponds to a spanning tree, we have that the first

column vector of (Vτs(is))
−1 ∈ F

ns+1×ns+1

q is 1ns+1
, where s = 0, 1, . . . , n− 1.

Let

µi0 = [1T
n1
,0T

n2+···+nm
]T, µi1 = [0T

n1
1T
n2
,0T

n3+···+nm
]T,

· · ·

µim−2
= [0T

n1+n2+···+nm−2
,1T

nm−1
,0T

nm
]T, µim−1

= [0T
n1+n2+···+nm−1

,1T
nm

]T,
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then we get V −1
is

Bis = µis . From condition (iv) and x(0) = 0, we get

x(n) = Anm

im−1
A

nm−1

im−2
· · ·An3

i2
An2

i1
An1

i0
x(0) +

[
Bim−1

, Aim−1
Bim−1

, . . . , Anm−1
im−1

Bim−1︸ ︷︷ ︸
Qm−1

,

Anm

im−1
Bim−2

, Anm

im−1
Aim−2

Bim−2
, . . . , Anm

im−1
A

nm−1−1
im−2

Bim−2︸ ︷︷ ︸
Qm−2

, . . . ,

Anm

im−1
A

nm−1

im−2
· · ·An3

i2
Bi1 , A

nm

im−1
A

nm−1

im−2
· · ·An3

i2
Ai1Bi1 , . . . , A

nm

im−1
A

nm−1

im−2
· · ·An3

i2
An2−1

i1
Bi1︸ ︷︷ ︸

Q1

,

Anm

im−1
A

nm−1

im−2
· · ·An3

i2
An2

i1
Bi0 , A

nm

im−1
A

nm−1

im−2
· · ·An2

i1
Ai0Bi0 , . . . , A

nm

im−1
A

nm−1

im−2
· · ·An2

i1
An1−1

i0
Bi0︸ ︷︷ ︸

Q0

]
·

[U ex(n1 + · · ·+ nm − 1), U ex(n1 + · · ·+ nm − 2), . . . , U ex(n1 + · · ·+ nm−1), . . . , U
ex(n1 − 1),

U ex(n1 − 2), . . . , U ex(0)]T

= [Qm−1, Qm−2, . . . , Q0][U
ex(n1 + · · ·+ nm − 1), U ex(n1 + · · ·+ nm − 2),

. . . , U ex(n1 + · · ·+ nm−1), . . . , U
ex(n1 − 1), U ex(n1 − 2), . . . , U ex(0)]T.

Define

V (im−1) = diag
{
V1(im−1), V2(im−1), . . . , Vνm−1−1(im−1), Vνm−1

(im−1)
}
,

V (im−2) = diag




V1(im−2), V2(im−2), . . . , Vτm−2

(im−2), Vτm−2+1(im−2), . . . , Vνm−2
(im−2)︸ ︷︷ ︸

W (im−2)





,

V (ij) = diag
{
V1(ij), V2(ij), . . . , Vνj−1(ij), Vνj (ij)

}
, j = 0, 1, . . . ,m− 3,

Aim−1
= diag

{
A1(im−1), A2(im−1), . . . , Aνm−1−1(im−1), Aνm−1

(im−1)
}
,

Aim−2
= diag

{
A1(im−2), . . . , Aτm−2−1(im−2), Aτm−2

(im−2), Aτm−2+1(im−2), . . . , Aνm−2
(im−2)

}
,

Qm−1,m−1 =
[
1nm

,
(
Vνm−1

(im−1)
)−1

Aνm−1
(im−1)Vνm−1

(im−1)1nm
, . . . ,

(
Vνm−1

(im−1)
)−1 (

Aνm−1
(im−1)

)nm−1
Vνm−1

(im−1)1nm

]
,

Qm−2,m−2 =
[
1nm−1

,
(
Vτm−2

(im−2)
)−1

Aτm−2
(im−2)Vτm−2

(im−2)1nm−1
, . . . ,

(
Vτm−2

(im−2)
)−1 (

Aτm−2
(im−2)

)nm−1−1
Vτm−2

(im−2)1nm−1

]
,

Qj,j =
[
1nj+1

,
(
Vτj (ij)

)−1
Aτj (ij)Vτj (ij)1nj+1

, . . . ,

(
Vτj (ij)

)−1 (
Aτj (ij)

)nj+1−1
Vτj (ij)1nj+1

]
, j = 0, 1, . . . ,m− 3,

Dm−1,m−1 =




1 λn1+···+nm−1+1(im−1) (λn1+···+nm−1+1(im−1))
2 · · · (λn1+···+nm−1+1(im−1))

nm−1

1 λn1+···+nm−1+2(im−1) (λn1+···+nm−1+2(im−1))
2 · · · (λn1+···+nm−1+2(im−1))

nm−1

...
...

...
. . .

...

1 λn1+···+nm−1(im−1) (λn1+···+nm−1(im−1))
2 · · · (λn1+···+nm−1(im−1))

nm−1

1 λn1+···+nm
(im−1) (λn1+···+nm

(im−1))
2 · · · (λn1+···+nm

(im−1))
nm−1




,
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Dm−2,m−2 =




1 λn1+···+nm−2+1(im−2) (λn1+···+nm−2+1(im−2))
2 · · · (λn1+···+nm−2+1(im−2))

nm−1−1

1 λn1+···+nm−2+2(im−2) (λn1+···+nm−2+2(im−2))
2 · · · (λn1+···+nm−2+2(im−2))

nm−1−1

...
...

...
. . .

...

1 λn1+···+nm−1−1(im−2) (λn1+···+nm−1−1(im−2))
2 · · · (λn1+···+nm−1−1(im−2))

nm−1−1

1 λn1+···+nm−1
(im−2) (λn1+···+nm−1

(im−2))
2 · · · (λn1+···+nm−1

(im−2))
nm−1−1




.

Then we get

Qm−1,m−1 = [Bim−1
, Aim−1

Bim−1
, . . . , Anm−1

im−1
Bim−1

]

= V (im−1)·
[(
V (im−1)

)−1
· en1+n2+···+nm−1+1,n,

(
V (im−1)

)−1
·Aim−1

· V (im−1) ·
(
V (im−1)

)−1

·en1+n2+···+nm−1+1,n,. . . ,
(
V (im−1)

)−1
·Anm−1

im−1
· V (im−1)·

(
V (im−1)

)−1
·en1+n2+···+nm−1+1,n

]

= V (im−1) · [0
T,0T, . . . ,0T, QT

m−1,m−1]
T = V (im−1) · [0

T,0T, . . . ,0T, DT
m−1,m−1]

T.

Note that matrix Aim−1
is lower-triangular and matrix Vνm−1

(im−1) is nonsingular over Fq. Because the

self-loop weights on the diagonal entries of the matrix Aim−1
are different and λn1+···+nm−1+1(im−1), . . .,

λn1+···+nm
(im−1) are all different nonzero elements from the field Fq. From conditions (i) and (ii), we

have that rank(Vνm−1
(im−1)Dm−1,m−1) = nm.

Note that matrices Aim−1
, Aim−2

are lower-triangular and matrix Vτm−2
(im−2) is nonsingular over Fq,

where Vτm−2
(im−2) ∈ F

nm−1×nm−1

q and W (im−2) ∈ Fnm×nm
q . Then the matrix Anm

im−1
can be written as

follows:

Anm

im−1
=




C1 0 0

∗ C2 0

∗ ∗ C3


 ,

where C1 ∈ F
(n1+n2+···+nm−2)×(n1+n2+···+nm−2)
q , C2 ∈ F

nm−1×nm−1

q and C3 ∈ Fnm×nm
q . Because

the matrix Anm

im−1
is lower-triangular and the diagonal entries of the matrix Anm

im−1
are the form of

anm

jj (im−1), j = 1, 2, . . . , n, we have that

Qm−2,m−2 = Anm

im−1
·
[
Bim−2

, Aim−2
Bim−2

, . . . , A
nm−1−1
im−2

Bim−2

]

= Anm

im−1
· V (im−2) ·

[(
V (im−2)

)−1
· en1+n2+···+nm−1+1,n,

(
V (im−2)

)−1
·Aim−2

· V (im−2)

· en1+n2+···+nm−1+1,n, . . . ,
(
V (im−2)

)−1
· (Aim−2

)nm−1−1 · V (im−2) · en1+n2+···+nm−1+1,n

]

= Anm

im−1
V (im−2) ·

[
0T,0T, . . . ,0T, QT

m−2,m−2,0
T
]T

= Anm

im−1
V (im−2) ·

[
0T,0T, . . . ,0T, DT

m−2,m−2,0
T
]T

.

Because λn1+···+nm−2+1(im−2), . . ., λn1+···+nm−1
(im−2) are all different nonzero elements from the field

Fq, we have rank(DT
m−2,m−2) = nm−1 and rank(Qm−2,m−2) = nm−1.

Definition 3 ( [30]). For a prime p, let Fp be the set of {0, 1, . . . , p − 1} of the integers and let

ϕ : Z/(p) → Fp be the mapping defined by ϕ([a]) = a for a = 0, 1, . . . , p − 1. Then Fp, endowed with

field structure induced by ϕ, is a finite field, called the Galois field of order p.

In the ring Z/(p), p prime, the additive order of every nonzero element b is p; that is, pb = 0, and p is

the least positive interger for which this holds. It then follows that anm

jj (im−1)a
nm−1

jj (im−2) · · · a
n2

jj (i1), j =

1, 2, . . . , n are nonzero elements over Fq. Then we have rank(Qj,j) = nj+1, j = 0, 1, 2, . . . ,m− 1. It then

follows that rank[Qm−1, Qm−2, . . . , Q0] = n.

Remark 1. While this controllability under the proposed switching path is closely related to the physical

system with temporal networks ([31]), it extends the controllability with first-order dynamics in four

directions. Firstly, the controllability in our paper considers systems defined over finite fields, rather than
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Figure 2 (Color online) Three different topologies (a) Gi0 , (b) Gi1 and (c) Gi2 , where N (Gi0
τ0
) = {1, 2, 3}, N (Gi1

τ1
) = {4, 5},

N (Gi2
τ2
) = {6, 7, 8}, and τ0 = 1, τ1 = 3, τ2 = 4.

the field of the complex numbers. Secondly, we can propose a graphical condition for the controllability

over finite fields even if each subsystem is not controllable. Thirdly, we show the controllability index

for the switched system (4). Theorem 2 facilitates us to make use of less leaders to reach the target

of controllability. Actually, this can be achieved provided that the number of the switching graphs is

less than the minimum number of leaders required to make the corresponding static topology to be

controllable, that is, m < min{ν0, ν1, . . . , νm−1}.

Corollary 1. Consider the matrix pairs (Ais , Bis), s = 0, 1, . . . ,m − 1, where Bi0 = e1,n, Bin1
=

en1+1,n, . . . , Bin1+···+nm−1
= en1+n2+···+nm−1+1,n. Suppose that the following four conditions hold:

(i) Each graph Gis is a spanning forest, augmented with self-loops on each node, where aij(is) = 1 if

(j, i) ∈ E is , i 6= j, s = 0, 1, . . . , n− 1.

(ii) Each spanning forest Gis has a spanning tree Gis
τs
, with the number of nodes of the spanning tree

Gis
τs

equal to ns+1, s = 0, 1, . . . , n− 1, where n1 + n2 + · · ·+ nm = n.

(iii) Each spanning tree Gis
τs

has at most two branches and each branch is a path. The weights on the

self-loops for all nodes in the first branch are 0, and the weights on the self-loops for all nodes in the

second branch are 1. Except for the nodes of the spanning trees of Gis
τs
, s = 0, 1, . . . , n−1, the self-weights

for all the rest of the nodes are nonzero elements from Fq.

(iv) The switching path is given by (5), where hj = nj+1, j = 0, 1, 2, . . . ,m− 1.

Then the multi-agent system (4) with the communication topologies Gis , s ∈ {0, 1, . . . , n − 1} is

controllable over any field Fq, with controllability index equal to n.

In what follows, an illustrative example is given.

Example 2. Consider a multi-agent system (4) over F8
13, where F13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

and n = 8. Three switching topologies of system (4) are illustrated by graph (a) of Figure 2. Ai0 , Ai1 and

Ai2 are, respectively, the corresponding adjacency matrices of graphs Gi0 , Gi1 and Gi2 . The switching

order is Gi0 → Gi1 → Gi2 . Let Bi0 = e1,8, Bi1 = e4,8, Bi2 = e6,8, x(0) = [0, 1, 2, 3, 4, 5, 6, 7]T, x(8) =

[1, 1, 2, 2, 3, 3, 4, 4]T. The weights on the self-loops are a11(is) = 1, a22(is) = 2, a33(is) = 3, a44(is) = 4,

a55(is) = 5, a66(is) = 6, a77(is) = 7, a88(is) = 8, ar,t(is) = 1, r, t = 1, 2, . . . , n, where r 6= t, s = 0, 1, 2.

It follows that σ(0) = σ(1) = σ(2) = i0, σ(3) = σ(4) = i1 and σ(5) = σ(6) = σ(7) = i2. Define

Q = [Bi2 , Ai2Bi2 , A
2
i2
Bi2 , A

3
i2
Bi1 , A

3
i2
Ai1Bi1 , A

3
i2
A2

i1
Bi0 , A

3
i2
A2

i1
Ai0Bi0 , A

3
i2
A2

i1
A2

i0
Bi0 ]. Thus we have that

U ex(0) = 2, U ex(1) = 11, U ex(2) = 1, U ex(3) = 8, U ex(4) = 1, U ex(5) = 9, U ex(6) = 3, U ex(7) = 10, and

rank(Q) = 8. Then the trajectories of the 8 agents are given in Figures 3 and 4. This is in agreement

with the theoretical analysis results.

Let

ν0 = ν1 = · · · = νm−1, N (Gik
1 ) = {1, 2, . . . , n1}, N (Gik

2 ) = {n1 + 1, n1 + 2, . . . , n1 + n2},

N (Gik
3 ) = {n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3},

· · · (6)

N (Gik
m−1) = {n1 + n2 + · · ·+ nm−1 + 1, n1 + n2 + · · ·+ nm−1 + 2, . . . , n}, k = 1, 2, . . . , p− 1,
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Figure 3 (Color online) The trajectories of the agents.
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Figure 4 (Color online) The trajectories of the agents.
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Figure 5 (Color online) Three different topologies Gi0 , Gi1 and Gi2 , where ν0 = ν1 = ν2 = 3, N (Gi0

1 ) = N (Gi1

1 ) =

N (Gi2
1 ) = {1, 2, 3}, N (Gi0

2 ) = N (Gi1
2 ) = N (Gi2

2 ) = {4, 5, 6, 7}, N (Gi0
3 ) = N (Gi1

3 ) = N (Gi2
3 ) = {8, 9}, and τ0 = 1, τ1 = 3,

τ2 = 4.

Remark 2. In [27], the structural controllability was studied for fixed topology. The differences between

the structural controllability problem studied in [27] and this paper are as follows. (i) In this paper, the

results are derived for switching topology instead of fixed topology. Subsequent arguments show that

the multi-agent system with switching topology brings new features for the study of the controllability

problem. (ii) Theorem 3 of [27] can be viewed as a special case of Theorem 2 if (6) holds (e.g., Figure 5).

Furthermore, it is not hard to find that Theorem 2 also holds if the condition (iii) of Theorem 2 is replaced

by (6).

Consider the system (10) of [32] with a single leader, Theorem 6.1 of [32] is structurally controllable if

Ḡ has a connected partition. In the following, we present the difference between the graphic conditions
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in real fields (e.g., [32]) and finite fields.

Firstly, graphic conditions for the controllability over real fields were proposed in [32] by the Popov-

Belevich-Hautus (PBH) lemma. However, the PBH lemma is not sufficient to check the controllability of

linear systems over finite fields. The reason originates from the fact that finite fields are not algebraically

closed ([27]).

Secondly, we prove that the PBH Lemma is valid if the A ∈ Fn×n
q is split over Fq (i.e., A has n

eigenvalues). Before proceeding, we give Definition 4 and Lemma 1.

Definition 4 (Split matrix [33]). Let R be an arbitrary ring and the polynomial ring over R is denoted

by R[x]. If F is considered as a finite-dimensional vector space over a field of K, F is called a finite

extension of K. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ K[x] be a positive degree and F be an

extension field of K. Then f is said to split in F if f can be written as a product of linear factors in

F [x], that is, if there exist elements α1, α2, . . . , αn ∈ F such that f(x) = a(x− α1)(x − α2) · · · (x− αn),

where a is the leading coefficient of f(x). A matrix over O1 is called split if its characteristic polynomial

splits over Fq, where O1 is a ring of integers.

Lemma 1. Suppose that A is split over Fq. Then system (3) is controllable over Fq if and only if

rank[A− λiI, B] = n for all λi ∈ Λ(A).

Proof. Because A ∈ Fn×n
q is split over Fq, it follows from Theorem 3.5 of [34] that the characteristic

polynomial of matrix A has n eigenvalues over Fq. Define Q = [B,AB, . . . , An−1B].

(Sufficiency) Suppose that rank[A − λiI, B] = n for all λi ∈ Λ(A). Now suppose by contradiction

that system (3) is not controllable, that is, rankQ = n1 < n and n − n1 = k. Based on the (vii) of

Theorem 2.6.3 and Theorem 2.6.5 of [33] (pages 39 and 42), the following statement is valid after some

elementary row operations, where the elementary row operations over finite fields are given in [33] (pages

40 and 41). Then there exists a nonsingular matrix T , such that the jth row of matrix TQ equals to

0, where j = n1 + 1, n1 + 2, . . . , n. Let B̄ = TB, Ā = TAT−1 and Q̄ = TQ = T [B,AB, . . . , An−1B]

= [B̄, ĀB̄, . . . , Ān−1B̄], then we get B̄ = T · B = [ B1

0
], Ā = [ A1 A2

A3 A4
], where A1 ∈ Fn1×n1

q , B1 ∈ Fn1×m
q .

It follows that

ĀB̄ =

[
A1B1

A3B1

]
⇒ A3B1 = 0, Ā2B̄ = ĀĀB̄ =

[
A1 A2

A3 A4

][
A1B1

0

]
=

[
A2

1B1

A3A1B1

]
⇒ A3A1B1 = 0,

...

Ān−1B̄ =

[
An−1

1 B1

A3A
n−2
1 B1

]
= 0 ⇒ A3A

n−2
1 B1 = 0, Q̄ =

[
B1 A1B1 A2

1B1 · · · An−1
1 B1

0 0 0 · · · 0

]
.

Then we get rankQ̄ = n1 and rank[B1, A1B1, . . . , A
n−1
1 B1] = n1. Combing with Cayleigh-Hamilton

theorem over Fq (Theorem 4.1 of [35]) and n1 − 1 < n − 1, we get rank[B1, A1B1, . . . , A
n−2
1 B1] = n1

and the rows of matrix [B1, A1B1, . . . , A
n−2
1 B1] are linearly independent, where the definition of linear

independence is given in [33] (page 33). From A3[B1, A1B1, . . . , A
n−2
1 B1] = 0, we have

A3 = 0, Ā =

[
A1 A2

0 A4

]
, B̄ =

[
B1

0

]
,

T
[
A− λI B

] [ T−1 0

0 I

]
=
[
TA− λT TB

] [ T−1 0

0 I

]
=
[
TAT−1 − λI TB

]

=
[
Ā− λI B̄

]
=

[
A1 − λIn1

A2 B1

0 A4 − λIk 0

]
.

Then we get rank[ A1 − λIn1
A2 B1

0 A4 − λIk 0
] < n if λ ∈ Λ(A4). It then follows from [36] (page 38, Problems 5)

that λ ∈ Λ(A) if λ ∈ Λ(A4). This is a contradiction.

(Necessity) Suppose that rank[B,AB, . . . , An−1B] = n. Now suppose by contradiction that there

exists a λ0 ∈ Λ(A), such that rank[A − λ0I, B] < n. It follows that the rows of matrix [A− λ0I, B] are
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Figure 6 (Color online) (a) Two possible graphs Gi0 and Gi1 ; (b) a directed path graph; (c) two possible graphs Gi0 and

Gi1 ; (d) a directed star graph.

linearly dependent. Then there exists α = [α1, α2, . . . , αn] 6= 0, such that α[A − λ0I, B] = 0. Then we

have α[A − λ0I] = 0, αB = 0 ⇒ αAB = λ0αB = 0, . . . , αAn−1B = 0 ⇒ α[B AB · · · An−1B ] = 0. It

follows that the rows of matrix [B,AB, . . . , An−1B] are linearly dependent. This is a contradiction. This

completes the proof.

Thirdly, suppose that the matrix A is split. Let n = 6 and detA
2
= 2λ2 + λ5, and we show that

detA
2
= 0 over F3 = {0, 1, 2}, where ĉ2,i+1, βi, detA

1
and detA

2
are defined as in Theorem 6.1 of [32].

It is easy to find that detA
2
|λ= 0 for λ = 0, 1, 2. Consider the field F2 = {0, 1}. Suppose that

λ −
∑n−1

i=1 ĉ2,i+1 · βi = 1. It should be noted that detA
1
6= 0 if ān+1,n+1 = 0 over F2. Because Theorem

6.1 of [32] is valid for n ∈ N, Theorem 6.1 of [32] will be hold if the adjacency matrix A is split and

ān+1,n+1 = 0 for n > 4, which can be viewed as a strong assumption.

For any matrix Bis ∈ F
n×|Nl|
q , define Bis = ImBis , where Im(·) denotes the image space of a matrix.

In the following, we investigate the controllability conditions when the union of the graphs is a directed

path or star.

Theorem 3. Suppose that each graph Gis is augmented with self-loops on every node, where aii(is) ∈

Fq\{0}, i = 1, 2, . . . , n. Then system (4) with switching topology Gis , s ∈ {0, 1, . . . , n− 1} is controllable

over Fq if one of the following two statements holds:

(i) The union of the graphs
⋃n−1

s=0 Gis is a directed path.

(ii) The union of the graphs
⋃n−1

s=0 Gis is a directed star.

Proof. (i) We first consider the case of n = 3. If Gi0 and Gi1 are directed paths, (Ai0 , e1,n) and (Ai1 , e1,n)

are controllable. Therefore, we only consider the case that Gis is not a directed path. Consider the graph

(a) of Figure 6. The adjacency matrix of Gis is denoted as Ais . Let π1 = {(i0, 1), (i1, 2)}, Bi0 = e1,3 and

Bi1 = Bi2 = e2,3, then we get T (π1) = Im[e2,3, Ai1e2,3] +A2
i1
Im[e1,3] = {δ1, δ2, δ3}, where δ1 = [0, 1, 0]T,

δ2 = [0, γi1
2 , 1]T, δ3 = [(γi1

1 )2, 0, 0]T and T (π1) = F3
q , where γi1

2 , (γi1
1 )2 ∈ Fq\{0}. Suppose that system

(4) is controllable with π2 = {(i0, h0), . . . , (im1−1, hm1−1)} if
⋃n−1

s=0 Gis is a directed path for n = k. We

will prove that system (4) is controllable with π3 = {(j0, h0), . . . , (jm1−1, hm1−1), (jm1
, hm1

)} if
⋃n−1

s=0 Gjs

is a directed path for n = k + 1. It follows that

T (π2) = A
hm1−1

im1−1
· · ·Ah1

i1
Im
[
Bi0 , Ai0Bi0 , . . . , A

h0−1
i0

Bi0

]
+A

hm1−1

im1−1
· · ·Ah2

i2
Im[Bi1 , Ai1Bi1 , . . . , A

h1−1
i1

Bi1 ]

+ · · ·+A
hm1−1

im1−1
Im
[
Bim1−2

, Aim1−2
Bim1−2

, . . . , A
hm1−2−1

im1−2
Bim1−2

]

+ Im
[
Bim1−1

, Aim1−1
Bim1−1

, . . . , A
hm1−1−1
im1−1

Bim1−1

]
,

where T (π2) = Fk
q . According to the structure of the directed path, we have Gjs = (V is

⋃
{k +

1}, E is
⋃
(k, k + 1)) or Gjs = (V is

⋃
{k + 1}, E is

⋃
∅), where V is is a set of vertices of Gis , E is is a set

of edges of Gis , an edge (j, i) ∈ E is implies that the agent i can access the information of the agent j, and

∅ is an empty set. It follows that Ajs = [
Ais

0

eT
k,k

γ
is
k+1

] or Ajs = [
Ais

0

0 γ
is
k+1

], where s = 1, 2, . . . ,m1 − 1. Let

Bjs = [ Bis
0
], s = 0, 1, . . . ,m1 − 1, Bjm1

= ek+1,k+1, Ajm1
= [

Aiw
0

0 γ
iw
k+1

] for some w and hm1
= 1, where

w = 0, 1, . . . ,m1 − 1. Then we have

T (π3) = Ajm1

(
A

hm1−1

jm1−1
· · ·Ah1

j1
Im
[
Bj0 , Aj0Bj0 , . . . , A

h0−1
j0

Bj0

]
+A

hm1−1

jm1−1
· · ·Ah2

j2

· Im
[
Bj1 , Aj1Bj1 , . . . , A

h1−1
j1

Bj1

]
+· · ·+A

hm1−1

jm1−1
Im
[
Bjm1−2

, Ajm1−2
Bjm1−2

, . . . ,A
hm1−2−1

jm1−2
Bjm1−2

]
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+ Im
[
Bjm1−1

, Ajm1−1
Bim1−1

, . . . , A
hm1−1−1

jm1−1
Bjm1−1

])
+ Im(Bjm1

)

= Im

[
0k

1

]
+ Im

[
C0Bi0 C0Ai0Bi0 · · · C0A

h0−1
i0

Bi0

∗ ∗ · · · ∗

]
+ Im

[
C1Bi1 C1Ai1Bi1 · · · C1A

h1−1
i1

Bi1

∗ ∗ · · · ∗

]

+ · · ·+ Im

[
Cm1−2Bim1−2

Cm1−2Aim1−2
Bim1−2

· · · Cm1−2A
hm1−2−1
im1−2

Bim1−2

∗ ∗ · · · ∗

]

+ Im

[
Cm1−1Bim1−1

Cm1−1Aim1−1
Bim1−1

· · · Cm1−1A
hm1−1−1

im1−1
Bim1−1

∗ ∗ · · · ∗

]
,

where C0 = AiwA
hm1−1

im1−1
· · ·Ah1

i1
, C1 = AiwA

hm1−1

im1−1
· · ·Ah2

i2
, . . . , Cm1−2 = AiwA

hm1−1

im1−1
and Cm1−1 = Aiw .

Note that T (π2) = Fk
q , and we get

T (π3) = Im
[
(Aiw )

−1C0Bi0 , (Aiw )
−1C0Ai0Bi0 , . . . , (Aiw )

−1C0A
h0−1
i0

Bi0

]

+ Im
[
(Aiw )

−1C1Bi1 , (Aiw )
−1C1Ai1Bi1 , . . . , (Aiw )

−1C1A
h1−1
i1

Bi1

]
+ · · ·

+ Im
[
(Aiw )

−1Cm1−1Bim1−1
, (Aiw )

−1Cm1−1Aim1−1
Bim1−1

, . . . , (Aiw )
−1Cm1−1A

hm1
−1

im1−1
Bim1−1

]
.

Note that Aj0 , Aj1 , . . . , Ajm1
are nonsingular over Fq. Then we get T (π3) = Fk+1

q .

(ii) We first consider the case of n = 3. Consider the graph (c) of Figure 6, the adjacency matrix of

Gis is denoted as Ais . Let π̃1 = {(i0, 1), (i1, 2)}, Bi0 = e3,3 Bi1 = e2,3, and Bi2 = e1,3. Then we get

T (π̃1) = Im[e1,3, Ai1e2,3] + A2
i1
Im[e3,3] = {δ̃1, δ̃2, δ̃3}, where δ̃1 = [1, 0, 0]T, δ̃2 = [0, a22(i2), 0]

T, δ̃3 =

[0, 0, a33(i2)a33(i1)]
T and T (π̃1) = F3

q . Suppose that system (4) is controllable with π̃2 = {(i0, h0), . . . ,

(im1−1, hm1−1)} if
⋃n−1

s=0 Gis is a directed star for n = k. We will prove that system (4) is controllable

with π̃3 = {(j0, h0), . . . , (jm1−1, hm1−1), (jm1
, hm1

)} if
⋃n−1

s=0 Gjs is a directed path for n = k+1. It follows

that

T (π̃2) = A
hm1−1

im1−1
· · ·Ah1

i1
Im
[
Bi0 , Ai0Bi0 , . . . , A

h0−1
i0

Bi0

]
+A

hm1−1

im1−1
· · ·Ah2

i2
Im
[
Bi1 , Ai1Bi1 , . . . , A

h1−1
i1

Bi1

]

+ · · ·+ Im
[
Bim1−1

, Aim1−1
Bim1−1

, . . . , A
hm1−1−1
im1−1

Bim1−1

]
,

where T (π̃2) = Fk
q . According to the structure of the directed star, we have Gjs = (V is

⋃
{k +

1}, E is
⋃
(1, k + 1)), where V is is a set of vertices of Gis , E is is a set of edges of Gis , an edge (j, i) ∈ E is

implies that the agent i can access the information of the agent j, and ∅ is an empty set. It follows that

Ajs = [
Ais

0

eT
1,k

γ
is
k+1

], where s = 1, 2, . . . ,m1 − 1. Let Bjs = [ Bis
0
], s = 0, 1, . . . ,m1 − 1, Bjm1

= ek+1,k+1,

Ajm1
= [

Aiw
0

0 γ
iw
k+1

] for some w and hm1
= 1, where w = 0, 1, . . . ,m1 − 1. Then we have

T (π̃3) = Im

[
0k

1

]
+ Im

[
C0Bi0 C0Ai0Bi0 · · · C0A

h0−1
i0

Bi0

∗ ∗ · · · ∗

]
+ Im

[
C1Bi1 C1Ai1Bi1 · · · C1A

h1−1
i1

Bi1

∗ ∗ · · · ∗

]

+ · · ·+ Im

[
Cm1−1Bim1−1

Cm1−1Aim1−1
Bim1−1

· · · Cm1−1A
hm1−1−1

im1−1
Bim1−1

∗ ∗ · · · ∗

]
,

where C0 = AiwA
hm1−1

im1−1
· · ·Ah1

i1
, C1 = AiwA

hm1−1

im1−1
· · ·Ah2

i2
, . . . , Cm1−2 = AiwA

hm1−1

im1−1
and Cm1−1 = Aiw .

Note that T (π̃2) = Fk
q , and we get

T (π̃3) = Im
[
(Aiw )

−1C0Bi0 , (Aiw )
−1C0Ai0Bi0 , . . . , (Aiw )

−1C0A
h0−1
i0

Bi0

]

+ Im
[
(Aiw )

−1C1Bi1 , (Aiw )
−1C1Ai1Bi1 , . . . , (Aiw )

−1C1A
h1−1
i1

Bi1

]
+ · · ·

+ Im
[
(Aiw )

−1Cm1−1Bim1−1
, (Aiw )

−1Cm1−1Aim1−1
Bim1−1

, . . . , (Aiw )
−1Cm1−1A

hm1
−1

im1−1
Bim1−1

]
.
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Note that Aj0 , Aj1 , . . . , Ajm1
are nonsingular over Fq. Then we get T (π̃3) = Fk+1

q .

This completes the proof.

Remark 3. Ref. [29] proposes the algebraic conditions for the structural controllability with switching

topology. The differences between the structural controllability problem studied in [29] and this paper

are as follows. (i) In this paper, we propose graphical conditions instead of algebraic conditions for the

controllability. (ii) In Theorem 3 of [29], each graph has spanning forest, i.e., leader-follower connected.

However, we provide graphical conditions for the controllability even if each graph has some inaccessible

nodes.

4 Conclusion

In this paper, the controllability problem was studied for multi-agent systems with switching topology

over finite fields. We established several graphical conditions for controllability of multi-agent systems

over finite fields. We proved that a switched multi-agent system is controllable over a finite field if each

graph of the subsystem is a spanning forest. It is shown that a multi-agent system with switching topology

can be controllable over a finite field even if each of its subsystems is not controllable. Finally, we showed

that the switched system is controllable if the union of graphs is a path graph or a star graph.
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