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Appendix A Basic Setup for Stochastic Gradient MCMC
Given data D = {d1, · · · ,dN}, a generative model

p(D |θ) =

N∏
i=1

p(di |θ) ,

with model parameter θ ∈ Rr , and prior p(θ), we want to compute the posterior distribution:

ρ(θ) , p(θ|D) ∝ p(D |θ)p(θ) , e−U(θ) ,

where

∇θU(θ) = −∇θ log p(θ)−
N∑
i=1

∇θ log p(di |θ) . (A1)

Consider the SDE:

dxt = F (xt)dt+ g(xt)dwt , (A2)

where x ∈ Rd is the state variable, typically x ⊇ θ is an augmentation of the model parameter, thus r 6 d; t is the time index, wt ∈ Rd
is d-dimensional Brownian motion; functions F : Rr → Rd and g : Rd → Rd×d are assumed to satisfy the usual Lipschitz continuity
condition [1]. In Langevin dynamics, we have x = θ and

F (θt) = −∇θU(θt)

g(θt) =
√

2 .

For the SDE in (A2), the generator L is defined as:

Lψ ,
1

2
∇ψ · F +

1

2
g(θ)g(θ)∗ : D2ψ , (A3)

where ψ is a measurable function, Dkψ means the k-derivative of ψ, ∗ means transpose. a ·b , aT b for two vectors a and b, A : B ,
trace(AT B) for two matrices A and B. Under certain assumptions, we have that there exists a function φ on Rd such that the following
Poisson equation is satisfied [2]:

Lψ = φ− φ̄ , (A4)

where φ̄ ,
∫
φ(θ)ρ(dθ) denotes the model average, with ρ being the equilibrium distribution for the SDE (A2).
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In stochastic gradient Langevin dynamics (SGLD), we update the parameter θ at step l, denoted as θl1), using the following descreatized
method:

θl+1 = θl −∇θŨl(θl)hl+1 +
√

2hl+1ζl+1 ,

where hl+1 is the step size, ζl a Gaussian random variable with mean 0 and variance 1,∇θŨl is an unbiased estimate of∇θU in (A1) with a
random minibatch of size n, e.g.,

∇θŨl(θl) = ∇θ log p(θl) +
N

n

n∑
i=1

∇θ log p(xπi |θl) , (A5)

where {π1, · · · , πn} is a subset of a random permutation of {1, · · · , N}.
In our analysis, we are interested in the mean square error (MSE) at iteration L, defined as

MSEL , E
(
φ̂L − φ̄

)2
,

where φ̂L , 1
L

∑L
l=1 φ(θl) denotes the sample average, φ̄ is the true posterior average defined in (A4).

In this paper, for the function f : Rm → R in an Lp space, i.e., a space of functions for which the p-th power of the absolute value is
Lebesgue integrable, we consider the standard norm ‖f‖p defined as (‖f‖∞ is simplified as ‖f‖):

‖f‖p ,

(∫
Rm
|f(x)|pdx

)1/p

<∞ .

In order to guarantee well-behaved SDEs and the corresponding numerical integrators, following existing literatures such as [3,4], we impose the
following assumptions.

Assumption 1. The SDE (A2) is ergodic. Furthermore, the solution of (A4) exists, and the solution functional ψ of the Poisson equation (A4)
satisfies the following properties:
• ψ and its up to 3th-order derivatives Dkψ, are bounded by a function V , i.e., ‖Dkψ‖ 6 CkVpk for k = (0, 1, 2, 3, 4), Ck, pk > 0.
• The expectation of V on {xl} is bounded: supl EVp(xl) <∞.
• V is smooth such that sups∈(0,1) Vp (sx+ (1− s)y) 6 C (Vp (x) + Vp (y)), ∀x ∈ Rm,y ∈ Rm, p 6 max{2pk} for some

C > 0.

Appendix B Proofs of Extended Results for Standard SG-MCMC
First, let us make a clarification for ∆Vl, which will be used through out the paper. According to the definition of ∆Vl, we note that ∆Vlψ =

(∇θUl(θ)−∇θŨl(θ))·∇ψ for the solution functional ψ of the Poisson equation (A4). Since ‖∆Vlψ‖ 6 ‖∇θUl(θ)−∇θŨl(θ)‖‖∇ψ‖,
and ‖∇ψ‖ is assumed to be bounded for a test function ψ, we omit the operator ∇ in our following analysis (which only contributes to a
constant), manifesting a slight abuse of notation for conciseness.

The proofs of Lemma 2 and Theorem 1 are closely related. We will first prove Theorem 1, the proof for Lemma 2 then directly follows.
Proof. [Proof of Theorem 1]

Let αli = ∇θ log p(di |θl), and

zi =

{
1 if data i is selected

0 otherwise
,

then we have

∆Vl =

N∑
i=1

Eαli
(

1−
N

n
zi

)
→ E |∆Vl|2 =

N∑
i=1

N∑
j=1

EαliEαlj
(

1−
N

n
zi

)(
1−

N

n
zj

)
Since

Ezi =
1

N
+
N − 1

N

1

N − 1
+ · · ·+

N − 1

N

N − 2

N − 1
· · ·

N −m+ 1

N −m+ 2

1

N −m+ 1

=
n

N
,

we have E∆Vl = 0, i.e.,∇Ũl(θ) is an unbiased estimate of∇U(θ).
In addition, we have

E
(

1−
N

n
zi

)(
1−

N

n
zj

)
= E

[
1−

N

n
zi −

N

n
zj +

N2

n2
zizj

]
= 1− 2

N

n

n

N
+
N2

n2
Ezizj

1) Strictly speaking, θ should be indexed by “time” instead of “step”, i.e., θ∑′
l=1

=1lhl′
instead of θl. We adopt the later for notation

simplicity in the following. This applies for the general case of x.
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=
N2

n2
Ezizj − 1 .

When i = j,

E
(

1−
N

n
zi

)(
1−

N

n
zj

)
=
N2

n2
Ez2i − 1

=
N2

n2
Ezi − 1 =

N

n
− 1 .

When i 6= j, because

Ezizj = p(i selected)p(j selected|i selected) =
n

N

n− 1

N − 1
.

We have

E
(

1−
N

n
zi

)(
1−

N

n
zj

)
=
N2

n2
Ezizj − 1 =

N

n

n− 1

N − 1
− 1 .

As a result,

E |∆Vl|2

=

(
N∑
i=1

Eα2
li

)(
N

n
− 1

)
+ 2

∑
i<j

Eαliαlj
(
N

n

n− 1

N − 1
− 1

)

=

(
N

n
− 1

) N∑
i,j

Eαliαlj + 2
∑
i<j

Eαliαlj
(
N

n

n− 1

N − 1
− N

n

)

=

(
N

n
− 1

) N∑
i,j

Eαliαlj − 2
∑
i<j

Eαliαlj
N

n

N − n
N − 1

=
(N − n)N2

n

 1

N2

∑
i,j

Eαliαlj −
2

N(N − 1)

∑
i6j

Eαliαlj


,

(N − n)N2

n
Γl . (B1)

Because we assume using a 1st-order numerical integrator, according to Lemma 1, and combining (B1) from above, we have the bound for

the MSE E
(
φ̂L − φ̄

)2
as:

E
(
φ̂L − φ̄

)2
6 C

(
(N − n)N2ΓM

nL
+

1

Lh
+ h2

)
.

Proof. [Proof of Lemma 2] The lemma follows directly from (B1) and the fact that

E |∆Vl|2 > 0 .

Proof. [Proof of the optimal MSE bound of Theorem 1]
From the assumption, we have

T ∝ nL . (B2)

The MSE bounded is obtained by directly substituting (B2) into the MSE bound in Lemma 2, resulting in

MSE: E
(
φ̂L − φ̄

)2
6 C

(
(N − n)N2ΓM

T
+

n

Th
+ h2

)
After optimizing the above bound over h, we have

E
(
φ̂L − φ̄

)2
6 C

(
(N − n)N2ΓM

T
+
n2/3

T 2/3

)
. (B3)

Proof. [Proof of Corollary 1]
To examine the property of the MSE bound (B3) w.r.t.n, we first note that the derivative can be written as:

f ,
∂

∂n
E
(
φ̂L − φ̄

)2
= O

(
2

3T 2/3n1/3
−

ΓMN
2

T

)
.

As a result, we have the following three cases:
1) When f < 0, i.e., the bound is decreasing when n increasing, we have T < 27

8
Γ3
MN

6n. Because n is in the range of [1, N ], and we
require f < 0 for all n’s, the minimum value of 27

8
Γ3
MN

6n is obtained when taking n = 1. Consequently, we have that when T < 27
8

Γ3
MN

6,
the optimal MSE bound (B3) is decreasing w.r.t. n. The minimum MSE bound is thus achieved at n = N . This case corresponds to the
limited-computation-budget case.
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2) When f > 0, i.e., the bound is increasing when n increasing, we have T > 27
8

Γ3
MN

6n. Because n is in the range of [1, N ], and
we require f > 0 for all n’s, the maximum value of 27

8
Γ3
MN

6n is obtained when taking n = N . Consequently, we have that when
T > 27

8
Γ3
MN

7, the optimal MSE bound (B3) is increasing w.r.t.n. The minimum MSE bound is thus achieved at n = 1. This case corresponds
to the long-run case (computational budget is large enough).

3) When the computational budget is in between the above two cases, the optimal MSE bound (B3) first increases then decreases w.r.t.n in
range [1, N ]. The optimal MSE bound is thus obtained either at n = 1 or at n = N , depending on (N,T,ΓM ).

Appendix C Proofs of theorems for vrSG-MCMC
Proof. [Proof of Lemma 3] From the definitions, we know that αli is the same as βββli except evaluating on different model parameters, denoted
as θl and θ̃l, respectively. Note that θ̃l is an outdated version of θl, with difference at most m. The proof of Lemma 3 is then an application of a
lemma from [5], which is stated in Lemma 1 below.

Lemma 1 (Lemma 8 in [5]). Let θl and θ̃l be two parameters where θ̃l is τ -step older than θl, then we have∥∥∥E(∇θ log p(d |θl)−∇θ log p(d |θ̃l)
)∥∥∥ = O(τh) .

Based on the definitions in Algorithm 1, we can consider βββli as an outdated version of αli, with time difference m. As a result, Lemma 3
follows by replacing τ with m in Lemma 1.

The following is a formal proof of the unbiasness of∇θŨ(θl), stated in the “Convergence rate” section in the main text.
Proof. [Proof of the unbiasness of∇θŨ(θl)]

First note that in variance reduction, the following stochastic gradient is used:

∇θŨ(θl) =
N

n2

N∑
i=1

(
∇θ log p(xi |θl)−∇θ log p(xi |θ̃l)

)
zi

+
N

n1

N∑
i=1

N∑
i=1

∇θ log p(xi |θ̃l)bi . (C1)

∆Vl =

N∑
i=1

αli

(
1−

N

n2
zi

)
+

N∑
i=1

βββli

(
N

n2
zi −

N

n1
bi

)
. (C2)

Because Ezi = n2
N

, Ebi = n1
N

, it is easy to verify that E∆Vl = 0. As a result, the unbiasness holds.

Appendix D Proof of Theorem 2
Before proving Theorem 2, let us first simplify E‖∆Vl‖2 in the MSE bound. In the following, we decompose it into several terms which can be
simplified separately. Our goal is to show that the proposed vrSG-MCMC algorithm induces a smaller E‖∆Vl‖2 term, thus leading to a faster
convergence rate. Note we can rewrite ∆Vl in terms of {αli,βββli, zi, bi} as:

∆Vl =

N∑
i=1

αli

(
1−

N

n2
zi

)
+

N∑
i=1

βββli

(
N

n2
zi −

N

n1
bi

)
.

Consequently, we have

E‖∆Vl‖2 =
∑
i,j

EαTliαlj
(

1−
N

n2
zi

)(
1−

N

n2
zj

)
︸ ︷︷ ︸

Al

+
∑
i,j

EβββTli βββlj
(
N

n2
zi −

N

n1
bi

)(
N

n2
zj −

N

n1
bj

)
︸ ︷︷ ︸

Bl

+ 2
∑
i,j

EαTli βββlj
(

1−
N

n2
zi

)(
N

n2
zj −

N

n1
bj

)
︸ ︷︷ ︸

Cl

. (D1)

Now (D1) can be further simplified by summing over all the binary random variables {zi} and {bi}. After summing out the binary random
variables {zi, bi}, we arrive formula summarized in the following proposition:

Proposition 1. The terms Al, Bl and Cl in (D1) can be simplified as:

Al =

(
N

n2
− 1

)∑
ij

EαTliαlj − 2
N(N − n2)

n2(N − 1)

∑
i<j

EαTliαlj

Bl =

(
N

n2
+
N

n1
− 2

)∑
ij

EβββTli βββlj
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− 2

(
N(N − n2)

n2(N − 1)
+
N(N − n1)

n1(N − 1)

)∑
i<j

EβββTli βββlj

Cl = 2

(
1−

N

n2

)∑
ij

EαTli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

EαTli βββlj .

Proof. [Proof of Proposition 1]
First, for the Al term, from the proof of Theorem 1, we know that

Al =

(
N

n2
− 1

)∑
ij

Eαliαlj − 2
N(N − n2)

n2(N − 1)

∑
i<j

Eαliαlj ,

which is the value of E‖∆Vl‖2 for standard SG-MCMC.
The derivations for Bl and Cl go as follows. For Bl, we have

E
(
N

n2
zi −

N

n1
bi

)(
N

n2
zj −

N

n1
bj

)
=E
(
N2

n2
2

zizj +
N2

n2
1

bibj −
N2

n1n2
zibj −

N2

n1n2
bizj

)
=E
(
N2

n2
2

zizj +
N2

n2
1

bibj − 2

)
.

If i = j,

E
(
N2

n2
2

zizj +
N2

n2
1

bibj − 2

)
= E

(
N2

n2
2

zi +
N2

n2
1

bi − 2

)
=
N

n2
+
N

n1
− 2 .

If i 6= j,

E
(
N2

n2
2

zizj +
N2

n2
1

bibj − 2

)
=
N2

n2
2

n2

N

n2 − 1

N − 1
+
N2

n2
1

n1

N

n1 − 1

N − 1
− 2

=
N

n2

n2 − 1

N − 1
+
N

n1

n1 − 1

N − 1
− 2 .

Bl =

(
N

n2
+
N

n1
− 2

)(∑
i

Eβββ2
i

)
+ 2

(
N

n2

n2 − 1

N − 1
+
N

n1

n1 − 1

N − 1
− 2

)∑
i<j

Eβββli βββlj


=

(
N

n2
+
N

n1
− 2

)∑
ij

Eβββli βββlj +2

(
N

n2

n2 − 1

N − 1
+
N

n1

n1 − 1

N − 1
−
N

n2
−
N

n1

)∑
i<j

Eβββli βββlj

=

(
N

n2
+
N

n1
− 2

)∑
ij

Eβββli βββlj 2

(
N(N − n2)

n2(N − 1)
+
N(N − n1)

n1(N − 1)

)∑
i<j

Eβββli βββlj

Similarly, for Cl, we have

Cl = 2E
∑
i

∑
j

αli βββlj

(
N

n2
zj −

N2

n2
2

zizj −
N

n1
bj +

N2

n1n2
zibj

)

= 2E
∑
i

αli βββlj

(
1−

N

n2

)
+ 2E

∑
i 6=j

αli βββlj

(
1−

N

n2

n2 − 1

N − 1

)

= 2
∑
ij

Eαli βββlj
(

1−
N

n2

)
+ 4

N(N − n2)

n2(N − 1)

∑
i6j

Eαli βββlj .

This completes the proof.
The following derivations verify an intuition: with larger minibatch size n1, we can get smaller MSEs. This is not directly relevant to the

proof of Theorem 2. Readers can choose to skip this part without affecting the flow of the proof.
To show that, let’s first look at the term Bl + Cl defined above. We have that

Bl + Cl =

(
N

n1
+
N

n2
− 2

)∑
ij

Eβββli βββlj

−2
∑
i<j

Eβββli βββlj
(
N(N − n2)

n2(N − 1)
+
N(N − n1)

n1(N − 1)

)
+ 2

(
1−

N

n2

)∑
ij

Eαli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

Eαli βββlj

When n1 = N , the case of using the whole data to calculate old gradient g̃ [6], we have

Bl + Cl
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=

(
N

n2
− 1

)∑
ij

Eβββli βββlj −2
N(N − n2)

n2(N − 1)

∑
i<j

Eβββli βββlj +2

(
1−

N

n2

)∑
ij

Eαli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

Eαli βββlj

=

(
N

n2
− 1

)∑
ij

(
Eβββli βββlj −2Eαli βββlj

)
+ 2

N(N − n2)

n2(N − 1)

∑
i<j

(
2Eαli βββlj −Eβββli βββlj

)

=
(N − n2)N2

n2

 1

N2

∑
ij

(
Eβββli βββlj −2Eαli βββlj

)
+

2

N(N − 1)

∑
i<j

(
2Eαli βββlj −Eβββli βββlj

) ,MBC

When n1 6= N , we have

Bl + Cl

=MBC +
N − n1

n1

∑
ij

Eβββli βββlj −2
N(N − n1)

n1(N − 1)

∑
i<j

Eβββli βββlj

=MBC +
(N − n1)N2

n1

 1

N2

∑
ij

Eβββli βββlj −
2

N(N − 1)

∑
i<j

Eβββli βββlj

 .

According to Lemma 2, we have that
[

1
N2

∑
ij Eβββli βββlj −

2
N(N−1)

∑
i<j Eβββli βββlj

]
> 0. As a result, the value of Bl + Cl in the case

of n1 6= N is larger than that in the case of n1 = N , resulting in a larger MSE bound.
Now it is ready to prove Theorem 2.

Proof. [Proof of Theorem 2]
Note that term Al corresponds to the E∆Vl term in standard SG-MCMC, where no variance reduction is performed. As a result, in order to

prove that vrSG-MCMC induces a lower MSE bound, what remains to be shown is to prove Bl + Cl 6 0.

First, let us simplify term Cl, which results in:

Cl = 2

(
1− N

n2

)∑
ij

Eαli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

Eαli βββlj

=2

(
1− N

n2

)∑
ij

Eβββli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

Eβββli βββlj +2

(
1− N

n2

)
N ·O(mh) + 4

N(N − n2)

n2(N − 1)

N(N − 1)

2
·O(mh)

=2

(
1− N

n2

)∑
ij

Eβββli βββlj +4
N(N − n2)

n2(N − 1)

∑
i<j

Eβββli βββlj +O(mh) ,

where the second equality is obtained by applying the independence property of αli and βββlj , as well as the result from Lemma 3. Consequently,
Bl + Cl can be simplified as

Bl + Cl =

(
N

n1
−
N

n2

)∑
ij

Eβββli βββlj −2

(
N(N − n2)

n2(N − 1)
−
N(N − n1)

n1(N − 1)

)∑
i<j

Eβββli βββlj +O(mh)

By substituting the above formula in to the MSE bound in Lemma 1, we have that:

E
(
φ̂L − φ̄

)2
= O

(
AM

L
+

1

Lh
+ h2K +

mh

L
−
λM

L

)
.

To further simplify the Bl + Cl term, we have

Bl + Cl = O(mh) +
N3(n2 − n1)

n1n2

1

N2

∑
ij

Eβββli βββlj −2
N2(N − n2)n1 −N2(N − n1)n2

n1n2

1

N(N − 1)

∑
i<j

Eβββli βββlj

=
N3(n2 − n1)

n1n2

(
1

N2

∑
ij

Eβββli βββlj −2
1

N(N − 1)

∑
i<j

Eβββli βββlj

)
+O(mh)

According to Lemma 2,
[

1
N2

∑
ij Eβββli βββlj −2 1

N(N−1)

∑
i<j Eβββli βββlj

]
> 0. Consequently, we have Bl + Cl 6 0 up to an order of

O(mh). This completes the proof of λM > 0.

Appendix E Discussion of the Theoretical Results of Dubey et al. 2016
[6] proved the following MSE bound for SVRG-LD, by extending results of the standard SG-MCMC [4]:

E
(
φ̂L − φ̄

)2
= O

(
N2 min{2σ2,m2(D2h2σ2 + hd)}

nL
+

1

Lh
+ h2

)
, (E1)
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where (d,D, σ) are constants related to the data and the true posterior. Using similar techniques (shown in the paper), the MSE bound for SGLD
is given by

E
(
φ̂L − φ̄

)2
= O

(
N2σ2

nL
+

1

Lh
+ h2

)
. (E2)

From the proof of their theorem (eq. 13 in their appendix), we note that the constant “2” inside the “min” in (E1) is not negligible when
comparing to the bound for SGLD. As a result, the bound associated with this term is strictly larger than the bound for SGLD. This means that to
compared with SGLD, the MSE bound for SVRG-LD should be written in the form of

E
(
φ̂L − φ̄

)2
= O

(
N2m2(D2h2σ2 + hd)

nL
+

1

Lh
+ h2

)
. (E3)

As a result, the comparison between (E3) and (E2) becomes more complicated, because it now depends on other parameters such as the
stepsize. It is thus not clear if SVRG-LD would improve the MSE bound of SGLD.

In contrast, our theoretical results (Theorem 2) guarantee an improvement of vrSG-MCMC over the correspond SG-MCMC, which is a
stronger result than that in [6].

Appendix F Additional Experimental Results

Appendix F.1 Supplemental results on logistic regression and deep learning

We plot the corresponding results in terms of number of passes through data versus training error/loss in Figure F1, F2, F3 and F4.
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Figure F1 Number of passes through data vs. testing error (left) / loss (right) on MNIST (top) and CIFAR-10 (bottom) datasets.
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(a) MNIST-FFNN-Train-Error

50 100 150 200
#Data Pass

0.04

0.06

0.08

0.1

Lo
ss

SGLD
SVRG-LD
vrSG-MCMC
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(c) CIFAR10-FFNN-Train-Error
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Figure F3 Number of passes through data vs. training error / loss on MNIST and Cifar-10 datasets.
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Figure F4 Number of passes through data vs. training errors (left) / loss (right) on the CIFAR-10 dataset. All are with varying n1 values.


	Basic Setup for Stochastic Gradient MCMC
	Proofs of Extended Results for Standard SG-MCMC
	Proofs of theorems for vrSG-MCMC
	Proof of Theorem 2
	Discussion of the Theoretical Results of Dubey et al. 2016
	Additional Experimental Results
	Supplemental results on logistic regression and deep learning


